
SERVER

©2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

Table of Contents

Overview

Introduction

µTorrent Server is designed for use on computers running Linux and other UNIX-
like operating systems. It provides a state-of-the-art implementation of the BitTor-
rent protocol and a full-featured web-based user interface in a small footprint.

Features

µTorrent Server is a full implementation of the official BitTorrent protocol. Fea-
tures include:

• Distributed hash table (DHT)

• UPnP port mapping

• NAT-PMP port mapping

• Upload rate limiting

• Download rate limiting

• Queuing

• Configurable limit on number of simultaneously uploading peers

• Incremental file allocation

• Block level piece picking

• Separate threads for file-check and download

• Single thread and single port for multiple torrent downloads

• BitTorrent extension protocol

• Multi-tracker extension support

• Fair trade extension

• Compact tracker extension

1
©2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

• Fast resume

• Queuing of torrent file-check if fast resume not possible

• HTTP seed support

• Resumption of partial downloads from other BitTorrent clients

• File-sizes greater than 2GB

• Selective download of multi-file torrents

• IPv6

• High performance network stack

• uTP - Advanced UDP-based transport with dynamic congestion
control

Additionally, µTorrent Server includes a full-featured web-based user interface.

Getting Started

µTorrent Server consist of an executable (utserver) that implements BitTorrent
services and is controlled through an HTTP-based application programming inter-
face (API).

Command-line Arguments

µTorrent Server supports the following arguments - the keywords are case-insensitive
and should be immediately preceded with a dash (-):

• configfile - path to and name of the configuration file - if
this argument is not specified, the utserver program looks for
a file named utserver.conf in the current working directory
- see the following section for more details

• logfile - path to and name of the log file - specifying -logfile
filename will direct log output to filename, while specify-
ing -logfile without a filename will direct log file output to
utserver.log in the current working directory

2
©2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

• settingspath - path to directory to store files of relatively
small size (operational settings, torrent resume information, RSS
feed information) - if not specified, the utserver program will
store these files in the current working directory

• pidfile - path to and name of the file to create that will contain
the process ID of the utserver process

• daemon - directs the server to run in its own process group

• usage - directs the server to generate message describing sup-
ported arguments and then exit

Configuration File

At startup the utserver process looks for a configuration file which allows the
behavior of the product to be customized by changing the values of certain settings.
The format of this file is as follows:

• each setting is on a separate line;

• each line consists of colon-separated name of the setting and its
value;

• any line whose first non-whitespace character is # is a comment.

For example, a file that sets two values and includes one comment might look like:

This is a comment
dir_temp_files: temp
preferred_interface: eth0

For a complete list of application settings, see Application Settings.

Environment

When the utserver process creates files intended for end users, such as torrent
data files, it uses the value of the file mode creation mask to specify access to these

3
©2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

files. For more information, run man umask on a Linux command line. The value
of the file mode creation mask is not considered when creating files not intended
for use by users, such as settings files.

Application Settings

Settings fall into two categories:

• internal settings, whose values can only be set in the utserver.conf
file;

• regular settings, whose values can be set in the utserver.conf
file or the /api/app-settings-set RPC API call.

A setting can be of one of three types:

• string

• integer

• Boolean value (1 for true and 0 for false)

Internal Settings

bind_ip (string): IP address to use for socket connections. If not provided, a de-
fault IP address will be used. We do not recommend changing this value.

ut_webui_port (integer): Default value: 8080. Port number where the utserver
process accepts HTTP RPC API calls to support the µTorrent-compatible
HTTP interface. If the utserver process also serves HTML files (see
webui_server_files setting), also the port of HTTP server.

token_auth_enable (boolean) Default value: true. If true, the µTorrent HTTP in-
terface defends against cross-site request forgeries by requiring that a short-
lived token be obtained from the µTorrent HTTP interface and included at
the beginning of the parameter list of any request made to that interface. If
false, the µTorrent HTTP interface will not be protected in this manner.

4
©2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

dir_active (string): Default value: “./”. Directory in which currently downloaded
data is saved. Can be an absolute path or a relative path. If it is a relative
path, the value is relative to dir_root or the current working directory if
dir_root is not defined or an empty string. It is recommended that this
directory be hidden from users (i.e. not exported through Samba).

dir_completed (string): Default value: “”. Directory where completed down-
loads are stored. If the value is an empty string, the value of dir_active
is used. This value must represent a path that is accessible to users (e.g. ex-
ported through Samba). It also has to be on the same volume as dir_active.

dir_download (string): Default value: “”. Optional directory where completed
downloads can be stored, instead of in dir_completed. If no value
is specified for this setting, the value of dir_completed is used. The
value must represent a path that is accessible to users (e.g. exported through
Samba).

This option can be specified multiple times in the file - once for each direc-
tory to be designated as such. This option can be used when adding torrents
via the µTorrent HTTP interface, not via the SDK interface.

Use the action list-dirs to obtain a list of download directories from the
µTorrent HTTP interface. Use the option download_dir to specify which
of these directories to use when adding a torrent by URL or file through the
µTorrent HTTP interface; specify the one-based index of the entry of interest.
The index of each entry will be in order in which each entry appears in
utserver.conf, starting with 1 for the first entry, 2 for the second entry,
and so on. 0 indicates the default download directory should be used.

dir_torrent_files (string): Default value: “”. Directory where torrent files are
stored. If the empty string, the value of dir_active is used. It is recom-
mended that this directory be hidden from users (i.e. not exported through
Samba).

dir_temp_files (string): Default value: “”. Directory where temporary files are
stored. If the empty string, the value of dir_active is used. It is recom-
mended that this directory be hidden from users (i.e. not exported through
Samba). Also, using a separate directory just for temporary files allows for
deleting the files in this directory on boot and/or periodically. The utserver
process creates temporary files with a .utt extension - if a value for this
setting is specified, the utserver process will delete all files with that
extension in that directory at process startup. This setting applies only to

5
©2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

POSIX systems. The value should specify a directory, not a symbolic link to
a directory.

dir_autoload (string): Default value: “”. Directory where torrent files will be
recognized and auto-loaded. If the empty string, auto-load is disabled.

dir_autoload_delete (boolean): Default value: false. If true, torrent files in the
autoload directory will be deleted after being loaded, else they will be re-
named with an extension of .loaded. The dir_autoload setting must
be specified for this setting to have an effect.

dir_request (string): Default value: “”. Directory where maintenance request
files will be recognized, loaded, and deleted. If the empty string, mainte-
nance request handling is disabled. This directory should be hidden from
users (i.e., not exported through Samba). Your software running on your
device can create the following files in this directory in order to request the
following maintenance procedures.

If the file c.utmr is created in or moved into this directory, the credentials
necessary to access the µTorrent HTTP interface will be reset to username
admin and a blank password.

If the file wipl.utmr is created in or moved into this directory, the IP
restriction list that limits the IPs that can use the µTorrent HTTP interface is
cleared, so that there will be no restrictions on IP address.

These maintenance operations provide a way to help a user who has either
entered new credentials and then forgotten them, or who has entered an IP
range in the restricted list and can no longer access the µTorrent HTTP inter-
face as a result.

If the file rcf.utmr is created in or moved into this directory, the server
will reload the configuration file. If you always use this method to request
a configuration file reload, you can safely change the value of this setting
while the server is running.

The server will also reload the configuration file if you send a hangup signal
to the server; however, a race condition may occur if you send a hangup sig-
nal to the server in order to change the value of this setting. You should either
only use the file system interface for requesting configuration file reloads, or
you should not change the value of this setting in the configuration file before
sending a hangup signal to the server.

upnp (boolean): Default value: true. If true, UPNP functionality for mapping
ports is used by utserver. We recommend setting this value to true.

6
©2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

natpmp (boolean): If true, NAT-PMP functionality for mapping ports is used by
utserver. Default value: true. We recommend setting this value to true.

lsd (boolean): Default value: true. If true, Local Service Discovery is enabled.
We recommend setting this value to true.

dht (boolean): Default value: true. If true, Distributed Hash Table extension is
enabled. We recommend setting this value to true.

pex (boolean): Default value: true. If true, Peer Exchange extension is enabled.
We recommend setting this value to true.

rate_limit_local_peers (boolean): Default value: false. If true, rate limiting also
applies to communications with peers in the local subnet. We recommend
setting this value to false.

dir_root (string): Default value: “”. If not empty, dir_active, dir_completed,
and dir_torrent_files are relative to this directory.

disk_cache_max_size (integer): Default value: 0. Maximum amount of memory
used by each of the read, write, and piece caches. Value is in megabytes.
If 0, accepts the SDK’s default choices on selecting sizes of disk caches.
Maximum value is 512.

The value of this setting will be applied every time the utserver process
starts.

preferred_interface (string): Default value: “”. If defined, name of network in-
terface to be preferred when attempting to search among network interfaces
for an external IP and hardware address. If empty string, preferred interface
is ignored.

You need to provide a value for this setting if either 1) the toolchain for your
computer does not supply ifaddrs.h, or 2) you want the utserver process
to choose a different interface than it would choose on its own. You should
set a value for this setting if you see an incorrect port mapping on a UPnP
router for the subnet to which the device belongs (the IP address of the device
will not appear in the port mapping requested by the utserver process -
instead, the IP address associated with the mapping will be 0.0.0.0 with a
device having a toolchain that does not include ifaddrs.h, or some other IP
address with a device having a toolchain that includes ipaddrs.h).

The value of this setting will be applied every time the utserver process
starts.

7
©2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

admin_name (string): Default value: “admin”. If defined, name that must be
supplied (along with the password) when authenticating to the server via the
HTTP interface. This allows the administrator to define an initial non-default
value for this name. This value will not be applied from utserver.conf
if settings.dat already exists.

admin_password (string): Default value: “”. If defined, password that must be
supplied (along with the name) when authenticating to the server via the
HTTP interface. This allows the administrator to define an initial non-default
value for this password. This value will not be applied from utserver.conf
if settings.dat already exists.

localhost_authentication (boolean): Default value: true. If false, HTTP requests
originating from the local host will not be required to include administrative
user name and password. Disabling authentication of requests originating
on the local host may be useful on computers where there are no other users
or processes that shouldn’t be prevented from accessing the HTTP interface.
Disabling authentication presents a security risk on those computers that
support untrusted users or allow third-party applications to be installed and
run outside the control of the administrator.

logmask (integer): Default value: 0. A mask whose bits when set allow certain
categories of log messages to be generated. The value of this setting will be
applied every time the utserver process starts.

The bits (0 - 31) in the value of this setting correspond to a set of internal
events and subsystems. The usage of these bits may change without advance
notice in a future release.

• 3 - send have

• 6 - hole punch

• 7 - got bad piece request

• 8 - trace

• 9 - piece picker

• 10 - got bad cancel

• 11 - got bad unchoke

• 12 - got bad piece

• 13 - rss

• 14 - rss error

8
©2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

• 15 - got have

• 16 - got bad have

• 17 - error

• 18 - aggregated

• 19 - disconnect

• 20 - out connect

• 21 - in connect

• 22 - UPnP

• 23 - UPnP error

• 24 - NATPMP

• 25 - NATPMP error

• 26 - metadata finish

• 27 - web UI

• 28 - got bad reject

• 29 - pex

• 30 - peer messages

• 31 - blocked connect

ut_webui_dir (string): Directory where the web UI file archive webui.zip is
stored, or which contains a webui subdirectory within which the unarchived
web UI files are stored. It can be an absolute path or set relative to the current
directory. It is recommended that this directory be hidden from users (i.e.
not exported through Samba). Default value: “” (to use the same directory
as settings.dat and other settings files).

finish_cmd (string), state_cmd (string): If defined, finish_cmd is a command
that will be executed upon completion of each torrent, and state_cmd is a
command that will be executed when a torrent changes state. Default value:
“” (no command is run for the event(s) associated with that setting).

The command is run asynchronously, so that a lengthy or hung process will
not block the server. The server creates a new process group for the com-
mand, so that the server does not need to wait for it, and so the kernel process
table does not fill up with zombie processes. The command is run as the same
user that runs the server process.

The server permits substitutions in the command text as follows:

9
©2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

%F Name of downloaded data file (for single-file torrents)

%D directory where torrent data files are saved

%N torrent title

%S torrent state

%P previous state of torrent

%L label associated with torrent

%T tracker

%M status message

%I hex-encoded info-hash

State (%S) and previous state (%P) are integers that have the following values:

• 1 (error)

• 2 (checked)

• 3 (paused)

• 4 (super seeding)

• 5 (seeding)

• 6 (downloading)

• 7 (super seeding (forced))

• 8 (seeding (forced))

• 9 (downloading (forced))

• 10 (queued seed)

• 11 (finished)

• 12 (queued)

• 13 (stopped)

uconnect_enable (boolean): Default value: false. If true, the values of uconnect_username
and uconnect_password are provided when authenticating to µTorrent
Remote. This value is always applied from btsettings.txt; it is not
saved in settings.dat.

uconnect_username (string): Default value: “”. If defined, name that must be
supplied (along with the password) when authenticating to µTorrent Remote.
This value is always applied from btsettings.txt; it is not saved in
settings.dat.

10
©2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

uconnect_password (string): Default value: “”. If defined, password that must
be supplied (along with the name) when authenticating to µTorrent Remote.
This value is always applied from btsettings.txt; it is not saved in
settings.dat.

low_cpu (boolean): Default value: false. If true, a short sleep occurs during
the process of handling network traffic, so that network traffic handling
presents less of a load on the CPU. This value will not be applied from
utserver.conf if settings.dat already exists.

Regular Settings

bind_port (integer): Default value: 6881. Port used for BitTorrent protocol. This
can be any value in the range 1025-65000.

max_ul_rate (integer): Default value: -1. Maximum total upload rate in kilobytes
per second. -1 means unlimited. We recommend setting it to -1.

max_ul_rate_seed (integer): Default value: -1. Maximum per-torrent upload rate
when seeding, in kilobytes per second. -1 means unlimited. We recommend
setting it to -1.

conns_per_torrent (integer): Default value: 50. Maximum number of connec-
tions for a given torrent.

max_total_connections (integer): Default value: 200. Maximum number of con-
nection opened at the same time.

auto_bandwidth_management (boolean): Default value: true. If true, upload
bandwidth is automatically throttled in order to not impact other applications
using TCP/IP.

max_dl_rate (integer): Default value: -1. Maximum total download rate in kilo-
bytes per second. -1 means unlimited. We recommend setting it to -1.

seed_ratio (integer): Default value: 0. Seed ratio in percent (%) (e.g. 100 means
100%). If not 0, seeding will stop after reaching this upload/download ratio.

seed_time (integer): Default value: 0. Time after which seeding will stop, in
seconds. 0 means seeding won’t stop.

11
©2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

Reloadable Settings

Many of these settings are only read from the configuration file when the µTorrent
settings file settings.dat does not already exist in the settings directory. Once
settings.dat exists, the values specified in the configuration file for these
settings will be ignored, and the values stored in settings.dat will be used.
For other settings, the server will load the values from the configuration file every
time the program starts or receives a request to reload the configuration file.

The settings for which the values are always applied from the configuration file
when the file is read by the server include:

• dir_request

• disk_cache_max_size

• finish_cmd

• logmask

• preferred_interface

• state_cmd

• uconnect_enable

• uconnect_password

• uconnect_username

• ut_webui_dir

µTorrent API

What is the µTorrent Web UI?

µTorrent Server is based on the same codebase as the BitTorrent Mainline and
µTorrent PC applications, which have a powerful API to control and configure
the client from both local and remote applications, as well as display most data

12
©2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

available. Normally, this functionality is used in a web browser with the reference
Web UI we provide, but any application can talk to µTorrent directly by using the
Web API.

What is the µTorrent Web API?

It is an API to access the functions of the WebUI built into the application. The
API is stable and largely complete. Missing functionality will be added over time
and compatibility with existing applications will generally be preserved, so little
to no work will be needed to keep your web app working with future versions of
the applications. Many community projects have extended the functionality of the
PC applications using this Web API. These projects form a rich ecosystem and
vibrant community. Partners should consider the relative merits of enabling this
community to extend their platforms through the Web API. Current projects and
discussion can be accessed in the Web API section of the developer forums at
forum.utorrent.com.

General notes for API access

The base URI to access the API is:

http://[IP]:[PORT]/gui/. The data returned by calls is in the JSON for-
mat.

Authentication is done with basic HTTP authentication. The guest account, dis-
abled by default, is limited to a subset of the calls (Action calls that modify torrent
state and application and torrent settings are disallowed).

Unless otherwise noted, each request is made using HTTP GET. Parameters are
added onto the base URI in the format that is standard for HTTP GET. The first
parameter should always be the command (e.g. ?list or ?action).

Most action commands require a hash to be passed. This is the infohash of the
torrent, obtained from listing all torrents. Each hash is a 40-character ASCII string.
Some commands accept multiple infohashes chained together, e.g.“http://[IP]:[PORT]/gui/?action=[ACTION]&hash=[TORRENT

13
©2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

HASH 1]&hash=[TORRENT HASH 2]&...“ to cut down on the number of requests
required.

When setting boolean values either by &action=setsetting or &action=setprops, the
value parameter should be sent as 0 for “false” or 1 for “true” rather than a string
indicating “true” or “false”.

Token Authentication System (important!)

A token authentication system (http://trac.utorrent.com/trac/wiki/TokenSystem) was
implemented in µTorrent to prevent cross-site request forgeries (CSRF). All devel-
opers creating applications that use the WebUI backend MUST implement sup-
port for this system, as the application will otherwise fail if the user has we-
bui.token_auth enabled.

The token= parameter must appear on a request’s parameter list before or imme-
diately following the action or list parameters, or the request will fail.

In 1.8.3 (µTorrent for windows) and earlier, token authentication is disabled by
default (though users can enable it manually), but this option WILL be enable by
default in future versions, so implementing support now is a requirement for future
compatibility.

Modifying Settings

The base parameter for settings is ?action=getsettings. Using this param-
eter by itself will give a list of settings in the following format:

{
"build": BUILD NUMBER (integer),
"settings": [

[
OPTION NAME (string),
TYPE* (integer),
VALUE (string),
PARAMETERS {

14
©2010 BitTorrent, Inc.

http://trac.utorrent.com/trac/wiki/TokenSystem

TABLE OF CONTENTS TABLE OF CONTENTS

"access": (string)
}

],
...

]
}

OPTION NAME is the name of the setting. They are not listed here, as some of
the settings (particularly advanced ones) vary with each version and most are self-
explanatory. However, a near-complete list for 1.8.2 is at http://forum.utorrent.
com/viewtopic.php?id=55526 for your perusal.

TYPE: The TYPE is an integer value that indicates what type of data is enclosed
within the VALUE string. The following is a list of the possible TYPEs and what
VALUE type it corresponds to:

• 0 = Integer

• 1 = Boolean

• 2 = String

To change settings, the following URI can be used:

http://[IP]:[PORT]/gui/?action=setsetting&s=[SETTING]&v=[VALUE]

Multiple settings can be changed in a single request by chaining together s= and
v= in the URI. s= defines the setting and v= is the value for the s= immediately
preceding it.

For example, to set the global upload cap to 10KiB/s and the global download cap
to 40KiB/s, you would request this URI:

http://[IP]:[PORT]/gui/?action=setsetting&s=max_ul_rate&v=10&s=max_dl_rate&v=40

PARAMETERS: The PARAMETERS is a dictionary of additional attributes of
the associated setting. The only attribute currently supported is access, which
specifies if the client can view and/or modify this setting. Here are the possible
values:

15
©2010 BitTorrent, Inc.

http://forum.utorrent.com/viewtopic.php?id=55526
http://forum.utorrent.com/viewtopic.php?id=55526

TABLE OF CONTENTS TABLE OF CONTENTS

• Y - read and write

• R - read only

• W - write only

Settings that are neither readable nor writable won’t be included in the list of set-
tings generated by the getsettings action.

Torrent/labels/RSS/Filters List

To get the list of all torrents and RSS feeds, request http://[IP]:[PORT]/gui/?list=1
. This will return the torrents in the following fashion:

{
"build": BUILD NUMBER (integer),
"label": [

[LABEL (string),
TORRENTS IN LABEL (integer)],
...

],
"torrents": [

[HASH (string),
STATUS* (integer),
NAME (string),
SIZE (integer in bytes),
PERCENT PROGRESS (integer in per mils),
DOWNLOADED (integer in bytes),
UPLOADED (integer in bytes),
RATIO (integer in per mils),
UPLOAD SPEED (integer in bytes per second),
DOWNLOAD SPEED (integer in bytes per second),
ETA (integer in seconds),
LABEL (string),
PEERS CONNECTED (integer),
PEERS IN SWARM (integer),
SEEDS CONNECTED (integer),
SEEDS IN SWARM (integer),

16
©2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

AVAILABILITY (integer in 1/65535ths),
TORRENT QUEUE ORDER (integer),
REMAINING (integer in bytes),
DOWNLOAD URL (string),
RSS FEED URL (string),
STATUS MESSAGE (string),
STREAM ID (string),
ADDED ON (integer in seconds),
COMPLETED ON (integer in seconds),
APP UPDATE URL (string)],

...
],
"rssfeeds": [

[IDENT (integer),
ENABLED (boolean),
USE FEED TITLE (boolean),
USER SELECTED (boolean),
PROGRAMMED (boolean),
DOWNLOAD STATE (integer),
URL (string),
NEXT UPDATE (integer in unix time),
[

[NAME (string),
NAME FULL (string),
URL (string),
QUALITY (integer),
CODEC (integer),
TIMESTAMP (integer),
SEASON (integer),
EPISODE (integer),
EPISODE TO (integer),
FEED ID (integer),
REPACK (boolean),
IN HISTORY (boolean)],

...
]],

...

17
©2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

],
"rssfilters": [

[IDENT (integer),
FLAGS (integer),
NAME (string),
FILTER (string as regexp),
NOT FILTER (string as regexp),
DIRECTORY (string),
FEED (integer as feed ID),
QUALITY (integer in bytes),
LABEL (string),
POSTPONE MODE (integer),
LAST MATCH (integer),
SMART EP FILTER (integer),
REPACK EP FILTER (integer),
EPISODE FILTER STR (string),
EPISODE FILTER (boolean),
RESOLVING CANDIDATE (boolean)],

...
],
"torrentc": CACHE ID** (string integer)

}

STATUS: The STATUS is a bitfield represented as integers, which is obtained by
adding up the different values for corresponding statuses:

• 1 = Started

• 2 = Checking

• 4 = Start after check

• 8 = Checked

• 16 = Error

• 32 = Paused

• 64 = Queued

• 128 = Loaded

18
©2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

For example, if a torrent job has a status of 201 = 128 + 64 + 8 + 1, then it is
loaded, queued, checked, and started. A bitwise AND operator should be used to
determine whether the given STATUS contains a particular status.

CACHE ID: The CACHE ID is a number randomly generated by µTorrent for the
given data. By requesting the torrent list using http://[IP]:[PORT]/gui/?list=1&cid=[CACHE
ID], only the items that have changed since the list corresponding to the CACHE
ID was sent will be returned. This is used to minimize bandwidth usage and sim-
plify parsing by decreasing the amount of data sent by µTorrent. In this situation,
six new dictionary keys replace "torrents", "rssfeeds" and "rssfilters"
and the returned JSON will look as follows:

{
"build": BUILD NUMBER (integer),
"label": [

[LABEL (string),
TORRENTS IN LABEL (integer)],

...
],
"torrentp": [

[HASH (string),
STATUS (integer),
NAME (string),
SIZE (integer in bytes),
PERCENT PROGRESS (integer in per mils),
DOWNLOADED (integer in bytes),
UPLOADED (integer in bytes),
RATIO (integer in per mils),
UPLOAD SPEED (integer in bytes per second),
DOWNLOAD SPEED (integer in bytes per second),
ETA (integer in seconds),
LABEL (string),
PEERS CONNECTED (integer),
PEERS IN SWARM (integer),
SEEDS CONNECTED (integer),
SEEDS IN SWARM (integer),
AVAILABILITY (integer in 1/65535ths),
TORRENT QUEUE ORDER (integer),

19
©2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

REMAINING (integer in bytes),
DOWNLOAD URL (string),
RSS FEED URL (string),

...
],
"torrentm": [

HASH (string),

...
],
"rssfeedp": [

[IDENT (integer),
ENABLED (boolean),
USE FEED TITLE (boolean),
USER SELECTED (boolean),
PROGRAMMED (boolean),
DOWNLOAD STATE (integer),
URL (string),
NEXT UPDATE (integer in unix time), [

[NAME (string),
NAME FULL (string),
URL (string),
QUALITY (integer),
CODEC (integer),
TIMESTAMP (integer),
SEASON (integer),
EPISODE (integer),
EPISODE TO (integer),
FEED ID (integer),
REPACK (boolean),
IN HISTORY (boolean)],

...
]],

...
],
"rssfeedm": [

IDENT (integer),
...

20
©2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

],
"rssfilterp": [

[IDENT (integer),
FLAGS (integer),
NAME (string),
FILTER (string as regexp),
NOT FILTER (string as regexp),
DIRECTORY (string),
FEED (integer as feed ID),
QUALITY (integer in bytes),
LABEL (string),
POSTPONE MODE (integer),
LAST MATCH (integer),
SMART EP FILTER (integer),
REPACK EP FILTER (integer),
EPISODE FILTER STR (string),
EPISODE FILTER (boolean),
RESOLVING CANDIDATE (boolean)],

...
],
"rssfilterm": [

IDENT (integer),
...

],
"torrentc": CACHE ID (string integer)

}

The "torrentp" array contains a list of torrent jobs that have changed since
the corresponding CACHE ID and is identical to the “torrents” array in format.
Similarly the "rssfeedp" and "rssfilterp" arrays correspond to the “rss-
feeds” and “resfilters” arrays respectively. The "torrentm" array contains a list
of hashes for torrent jobs that have been removed since the corresponding CACHE
ID. Similarly the "rssfeedm" and "rssfilterm" reflect rss feeds and filters
that have been removed since the corresponding CACHE ID. A new CACHE ID
will be given in torrentc and this can be used for the next list request.

21
©2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

Files List

To get the list of files in a torrent job, request this URI:

http://[IP]:[PORT]/gui/?action=getfiles&hash=[TORRENT HASH].

This will return the following:

{
"build": BUILD NUMBER (integer),
"files": [

HASH (string),
[

[FILE NAME (string),
FILE SIZE (integer in bytes),
DOWNLOADED (integer in bytes),
PRIORITY* (integer) ,
FIRST PIECE (integer),
NUM PIECES (integer),
STREAMABLE (boolean),
ENCODED RATE (integer),
DURATION (integer),
WIDTH (integer),
HEIGHT (integer),
STREAM ETA (integer),
STREAMABILITY (integer)],

...
]

]
}

PRIORITY: This is an integer value that indicates the file’s priority. The following
is a list of the possible PRIORITY values and what each corresponds to:

• 0 = Don’t Download

• 1 = Low Priority

22
©2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

• 2 = Normal Priority

• 3 = High Priority

This command accepts multiple hashes. It will return multiple “files” key/value
pairs.

Torrent Job Properties

To get a list of the various properties for a torrent job, request:

http://[IP]:[PORT]/gui/?action=getprops&hash=[TORRENT HASH]

This will return the following:

{
"build": BUILD NUMBER (integer),
"props": [
{

"hash": HASH (string),
"trackers": TRACKERS* (string),
"ulrate": UPLOAD LIMIT (integer in bytes per second),
"dlrate": DOWNLOAD LIMIT (integer in bytes per second),
"superseed": INITIAL SEEDING** (integer),
"dht": USE DHT** (integer),
"pex": USE PEX** (integer),
"seed_override": OVERRIDE QUEUEING** (integer),
"seed_ratio": SEED RATIO (integer in per mils),
"seed_time": SEEDING TIME*** (integer in seconds),
"ulslots": UPLOAD SLOTS (integer)

}]
}

TRACKERS: This is a list of the trackers used by the torrent job. Each newline is
represented by a carriage return followed by a newline ().

23
©2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

INITIAL SEEDING/USE DHT/USE PEX/OVERRIDE QUEUEING: These op-
tions are all integer values that indicate their respective states. The following is a
list of the possible values and what each corresponds to:

• -1 = Not allowed

• 0 = Disabled

• 1 = Enabled

SEEDING TIME: This is an integer representing the minimum amount of time (in
seconds) that µTorrent should continue to seed after it has finished downloading
the torrent. A value of 0 (zero) means no minimum seeding time.

To change the properties for a torrent, the following URI can be used:

http://[IP]:[PORT]/gui/?action=setprops&hash=[TORRENTHASH]
&s=[PROPERTY]&v=[VALUE]

Multiple properties can be changed at once by appending more s= and v= pairs.
Multiple torrent jobs can be modified in a single request by appending another
hash= value along with its s= and v= pairs. Any following s= and v= pairs will
modify the properties of the last specified hash.

For example, to set an upload rate limit of 10 KiB/s and a download rate of 20
KiB/s for [TORRENT HASH 1], while simultaneously setting 4 upload slots for
[TORRENT HASH 2], request the following URI:

http://[IP]:[PORT]/gui/?action=setprops&hash=
[TORRENT HASH 1]&s=ulrate&v=10240&s=dlrate&v=20480&hash=
[TORRENT HASH 2]&s=ulslots&v=4

Actions

This section contains a list of all the other possible actions supported by the API.
All actions are in the form http://[IP]:[PORT]/gui/?action=

24
©2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

?action=start&hash=[TORRENT HASH] This action tells µTorrent to start the
specified torrent job(s). Multiple hashes may be specified to act on multiple torrent
jobs.

?action=stop&hash=[TORRENT HASH] This action tells µTorrent to stop the
specified torrent job(s). Multiple hashes may be specified to act on multiple torrent
jobs.

?action=pause&hash=[TORRENT HASH] This action tells µTorrent to pause
the specified torrent job(s). Multiple hashes may be specified to act on multiple
torrent jobs.

?action=forcestart&hash=[TORRENT HASH] This action tells µTorrent to force
the specified torrent job(s) to start. Multiple hashes may be specified to act on mul-
tiple torrent jobs.

?action=unpause&hash=[TORRENT HASH] This action tells µTorrent to un-
pause the specified torrent job(s). Multiple hashes may be specified to act on mul-
tiple torrent jobs.

?action=recheck&hash=[TORRENT HASH] This action tells µTorrent to recheck
the torrent contents for the specified torrent job(s). Multiple hashes may be speci-
fied to act on multiple torrent jobs.

?action=remove&hash=[TORRENT HASH] This action removes the specified
torrent job(s) from the torrent jobs list. Multiple hashes may be specified to act on
multiple torrent jobs. This action respects the option “Move to trash if possible”.

?action=removedata&hash=[TORRENT HASH] This action removes the spec-
ified torrent job(s) from the torrent jobs list and removes the corresponding torrent
contents (data) from disk. Multiple hashes may be specified to act on multiple
torrent jobs. This action respects the option “Move to trash if possible”.

?action=removetorrent&hash=[TORRENT HASH] This action removes the spec-
ified torrent job(s) from the torrent jobs list and removes the corresponding torrent
file(s) from disk. Multiple hashes may be specified to act on multiple torrent jobs.
This action respects the option “Move to trash if possible”.

?action=removedatatorrent&hash=[TORRENT HASH] This action removes
the specified torrent job(s) from the torrent jobs list, removes the corresponding

25
©2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

torrent file(s) from disk, and removes the corresponding torrent contents (data)
from disk. Multiple hashes may be specified to act on multiple torrent jobs. This
action respects the option “Move to trash if possible”.

?action=setprio&hash=[TORRENTHASH]&p=[PRIORITY]&f=[FILE INDEX]
This action sets the priority for the specified file(s) in the torrent job. The possible
priority levels are the values returned by “getfiles”. A file is specified using the
zero-based index of the file in the inside the list returned by “getfiles”. Only one
priority level may be specified on each call to this action, but multiple files may be
specified.

?action=getxferhist This action returns the current transfer history.

?action=resetxferhist This action resets the current transfer history.

?action=getversion This action returns information about the server.

{
"version": [
{

"product_code": "server",
"ui_version": (revision number),
"engine_version": (revision number),
"major_version": (major version number)
"minor_version": (minor version number)
"user_agent": (user-agent)
"version_date": (date product was built)
"device_id": (identifies general type of target/OS)
"peer_id": (identifier sent to peers)

}]
}

?action=add-url&s=[TORRENT URL] This action adds a torrent job from the
given URL. For servers that require cookies, cookies can be sent with the :COOKIE:
method (see here). The string must be URL-encoded.

?action=add-file This action is different from the other actions in that it uses HTTP
POST instead of HTTP GET to submit data to µTorrent. The HTTP form must use

26
©2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

an enctype of “multipart/form-data” and have an input field of type “file” with
name “torrent_file” that stores the local path to the file to upload to µTorrent.

Optional parameters to add-file and add-url actions:

&download_dir=<integer> This action determines which download directory to
put the torrent in. The integer refers to the list of download dirs the client has
configured (see list-dirs action). 0 always means the default directory. The list
of available download directories must be created in the btsettings.txt file. On PC
systems the directories can be created by users via the application, but not via the
web UI. There is currently no API to create download directories.

&path=<sub_path> This action determines a subdirectory to put the file in, under
the already chosen download directory. This path may not contain “..” and must be
a relative path.

http://[IP]:[PORT]/gui/?action=list-dirs The return value has a list, download-
dirs. Each entry in the list is a dictionary:

"download-dirs": [
{ "path": <full path>, "available": <available free disk space in MB> },
...
]

http://<ip>:<port>/proxy?id=<info-hash>&file=<file index> The &file= pa-
rameter may be omitted if the torrent is a single file torrent. The call will return the
entire file, or a part of it if a range request was made to it.

RSS Feed Actions:

?action=rss-remove&feed-id=[FEED ID] This action removes the corresponding
RSS feed from the list of RSS feeds.

?action=rss-update&feed-id=[FEED ID] This action adds or updates an RSS
feed.

Optional parameters for rss-update action:

&download_dir=<integer> This action determines which download directory to

27
©2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

put the torrent in. The integer refers to the list of download dirs the client has
configured (see list-dirs action). 0 always means the default directory. The list
of available download directories must be created in the btsettings.txt file. On PC
systems the directories can be created by users via the application, but not via the
web UI. There is currently no API to create download directories.

&feed-id=<integer> This parameter identifies the RSS feed receiving the updates.
If this parameter is set to -1 or omitted a new RSS feed will be created and the
following will be included in the return:

:: “rss_ident” : [RSS IDENT] (integer),

&url=<string> This parameter identifies the URL of the RSS feed.

&alias=<string> This parameter identifies the RSS feed alias.

&subscribe=<boolean> This parameter signifies whether or not the user wishes
to subscribe to the RSS feed.

&smart-filter=<boolean> This parameter enables the smart filter functionality on
an RSS feed.

&enabled=<boolean> This enables or disables the RSS feed.

&update=1 If this is set the RSS feed is forced to update instead of waiting for the
next update interval. The update interval will be set accordingly.

RSS Filter Actions:

?action=filter-remove&filter-id=[FILTER ID] This action removes the corre-
sponding RSS filter from the list of RSS filters.

?action=filter-update&filter-id=[FILTER ID] This action adds or updates an
RSS filter.

Optional parameters for filter-update action:

?filter-id=<integer> The ID of the RSS filter to be updated. If this is omitted or
set to -1 a new filter will be created and the following will be included in the return

28
©2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

value:

:: “filter_ident”: [FEED ID] (integer),

?name=<string> Name of the RSS Filter.

?save-in=<string> Directory to save the downloaded RSS torrents in.

?episode=<string> Episode expression to download.

?filter=<string> Download filter expression.

?not-filter=<string> Download exception filter expression.

?label=<string> Label to apply to torrents downloaded by this filter rule.

?quality=<integer> Minimum quality to accept when qualifying for download.

?episode-filter=<boolean> Set the enabling of downloading by episode.

?origname=<string> Filter original name.

?prio=<boolean> Prioritize this filter.

?smart-ep-filter=<boolean> Enable/disable smart episode filter.

?add-stopped=<boolean> Enable queuing of torrents selected by this filter as
stopped for manual starting rather than adding them to the download queue.

?postpone-mode=<boolean> Enable/disable postpone mode.

?feed-id=<integer> RSS feed to associate this filter with. If set to -1 the feed is
associated with all active RSS feeds.

Limitations

It is not possible to rename or relocate individual files in a torrent job.

29
©2010 BitTorrent, Inc.

TABLE OF CONTENTS TABLE OF CONTENTS

Legal Notices

Copyright (c) 2010 BitTorrent Inc. All rights reserved.

BitTorrent and µTorrent are trademarks or registered trademarks of BitTorrent, Inc.
used only under license.

30
©2010 BitTorrent, Inc.

