

Preface

Hello and welcome! If you are reading this then it’s likely that you’re interested in getting to know more about

programming for the Nintendo DS! If you are not, then you likely took the wrong turn, but let’s not get into that. Let’s

also start with establishing one important thing – as the title suggests, this is a “From Zero to Hero” guide. If you are

an experienced programmer then it is likely that you will not benefit from it much, if at all. It is going to introduce the

very basics to users who have never even seen a compiler before and never coded in their life – stuff that you

probably already know and aren’t interested in anymore. You are however still welcome as this is my first tutorial and

will likely require a certain degree of proof-reading, plus, you may of course have useful suggestions! Keep in mind

the target audience though, I’m doing my best not to introduce complicated concepts early on. If you’re not an

experienced programmer or never programmed at all, this is a great place to start!

I’ve seen many guides approaching this subject – some were more helpful, some were rather vague, but there is one

thing that was common in all of them, and it became apparent to me that something has to be done about it. The

guides I’ve seen so-far are dedicated to users who are familiar with programming and only require an introduction to

the DS environment, none of them are actually “tutorials” from the ground up. Does this mean that a non-

experienced user simply cannot program for the DS or should not begin his adventure with programming on this

exact platform? No, it does not! In fact, the DS is likely the easiest platform to program for when it comes to consoles

– libnds is really not that hard to wrap your mind around and there are numerous libraries out there that facilitate

programming for it even further. You probably want to ask: “If it’s so easy, why do You think it requires some sort of

an explanation? The libraries are well-documented, do you expect the readers to be dill-wits who can’t follow simple

examples?” and the answer to that is “No, in fact, I do believe that everybody is capable of programming, however

one has to learn and acquire some basic programming habits and have some practice in C to be successful at it” and

this is exactly the main goal of this tutorial. Depending on the interest shown by users and my workload at Uni this

may or may not be a full-featured guide, however I promise that I will at least try to keep it up-to-date and expand

upon it from time to time.

Now that the purpose is established, let’s move on to the juicy parts! I hope you will enjoy learning together and in

case of any questions or suggestions, do write! Dear readers, keep in mind that the first few tutorials will be an

incredibly rapid course in C, applicable to any type of programming, not just for the DS! We won’t be compiling much

until this material is covered and thoroughly understood! So… Let’s get it on!

Introductory Chapter 0: Preparing the Environment

Alright then! We’ve established our goal, it is time to make the first steps towards it! For the duration of this course

we will be using the C language which is versatile and simple enough to understand. We’ll program in the Visual

C++ Express 2008and we’ll be using NFLib by NightFox and Co. as our graphics library so that graphics do not

impede our progress, but we’re miles before getting there. First and foremost, we need to start up our download

queue, and we’ll be needing plenty-fancy things!

Firstly, we of course need the devKit Pro toolchain, available here:

http://sourceforge.n...ed%20Installer/

Next, we need to get our hands on the code editor:

http://msdn.microsof...future/bb421473

We will also need Drunken Coders’s Wizard to add a Nintendo DS application (among others!) as a project type:

http://pern.drunkenc...udio_wizard.zip

Finally, we’ll download NightFoxLib:

http://sourceforge.n...ts/nflib/files/

Once all the files are downloaded, proceed to installing them, starting from devKit Pro (preferably on C:\), next the

Visual C++ Studio Express 2008, the Drunken Coders’s Template Wizard and finally NightFox Lib (preferably in the

devKit Pro directory).

Now we have our programming environment ready! Exciting, isn’t it? Well, not quite. Why? Because now we have to

move onto the Introductory chapters of this guide – they may be boring and taxing but without them we will not be

able to really program anything as everything you will be reading from now on will sound like black magic before this

knowledge sinks into you, at least partially. Thus, without further ado, we move onto…

Introductory Chapter 1: Variables!

To even have a chance at programming something, we need to know what we’ll be dealing with. Introductory

Chapter 1 will introduce the first important subject – Variables, your main weapons when it comes to programming.

So, what is a Variable? Well, in layman’s terms, a variable can be just about “anything” – it can be a number, a

character, literally anything, but to simplify it, we’ll say it is a value, a piece of data that is kept in the console’s

memory for later use. In most tutorials you would see a link to a Wikipedia article or a reference to a book that will

introduce you to the subject – not here. We want to get from Zero to Hero and we want to get there fast, don’t we?

As far as we’re concerned, we could possess all the knowledge about the variables and we still won’t be able to use

them anyways! I will only pass onto you the knowledge that will actually be relevant to you, so bear with me.

Let’s start with describing how to Declare a Variable:

Type Name = Value;

Your typical variable has four identifying features – a scope, a type, a name and a value. First and foremost we

will tackletypes, as they determine how we will actually use a given variable.

We can divide our variables into 3 main groups – Integers, Booleans and Chars. Those can

be Signed or Unsigned (except Booleans), plus Integers may range from 8 to 32 bit ones (even 64 on PC’s, but

let’s not go ahead of ourselves). Sounds like black magic so-far? Good, cause we’re going to explain what all that

means, starting from types and their properties:

Signedness is the first property we will discuss. One could write a whole elaborate essay on the differences between

signed and unsigned variables. What you need to know is that Signed variables range from negative values

throughout 0 and positive values while Unsigned ones range from 0 upwards. That’s it, really. That’s all you need to

know!

Next, we’ll tackle the lovely Integers. As I said, Integers on the DS may consist of 8, 16 or 32 bits, but what does

that mean, exactly? Well, it means what range of values a variable will be able to carry! For example, an 8-bit

integer will have a lenght of 255, meaning it will range from -128 to 127 when signed and from 0 to 255 when it’s

unsigned. A 16-bit one will have a length of 65,535 while a 32-bit one, a length of 4,294,967,295.

To use them, we will have to learn how to declare them! The symbols used to refer to those integers are u for

Unsigned, s for Signed, followed by the length in bits, for example “u8” or “s16”.

Next we have Booleans. There’s really not much to say about them other then they may hold only two possible

values – “true” (1) or “false” (0). We will mostly be using them for simple switches and there’s no point in dedicating

any more time to them. The symbol used to declare Booleans is “bool”.

Finally, we have chars… Chars will mostly be used to hold characters or numbers, but they are much more

versatile then that. By “holding anything” I really meant that you can use those variable to hold “anything”.

From text to graphics andsound, arrays of chars will be your tool of choice. The symbol to declare chars is

“char”.

Now that types have been discussed, we can move to Scopes, and we’ll discuss only two: Global and Local.

A Global Variable is declared outside the main block of the program, thus can be called anywhere within it while

a Local Variable is declared within a function, thus may only be used within that function. I’m sounding vague,

huh? Functions? Blocks? What am I talking about? Well, let’s get right onto that in the Introductory Chapter 2,

as I don’t think the “name” part needs any explanation other than “don’t use special signs or spaces when naming a

Variable”.

Introductory Chapter 2: Functions!

So, what is a Function, you ask? Well, a Function in layman’s terms is a set of instructions that the program is

supposed to carry out. How does a function look like, how do we declare it you ask? Let’s see the declaration for

ourselves:

Type Name(TypeOf Argument, TypeOf Argument2){ … };

That… looks incredibly complex, doesn’t it? Let’s cut it into pieces, shall we?

Where “Type” you put either “void” if you don’t really want the function to return any value for you, just carry out

the instructions. If you do want it to return some sort of a value or data, you can specify it using the previously

described Types– that way, you will be able to assign the value returned to a given variable! Snazzy!

The Name can be just about anything, but without spaces and really fancy special signs.

As far as Arguments are concerned, there can be as many as you like and they can be any type of a variable

you want.

How do we call our declared function? Well, we simply do this:

NameOfTheFunction(Value1, Value2);

Simple!

Just to practice, let’s build our very first simple function, shall we?

CODE

s16 Adding(s16 Number1, s16 Number2){

s16 Result=Number1+Number2;

return(Result);

}

So, what does this function do? Well, it adds the value specified as Number1 to the value specified in Number2

and returns its number as shown by Result!

So, if we do this:

CODE

s16 Number3;

Number3=Adding(2, 2);

Our function will assign the value “4” to the declared variable Number3. Neato, huh? Of course we’re not going to

build functions with *that* simple functionality but hey! We’re just starting, right?

Before we can actually create any fun functions, we’ll have to learn a bit about operators and built-in C

functions… but I’m feeling like you guys are yawning at this point – so much new-found knowledge and we

can’t use it anywhere! Annoying, isn’t it? Well…

Let’s do something else, shall we? Let’s build our very first application! Oh, the excitement! First and

foremost though, we will analyze the template we’re given from libnds so that we know where to put what, hmm?

Your minds open? You’re fingers ready? This is the part you were all looking forward to, so let’s do this!

Exercise #1 - Your first program!

Open up Visual Studio C++ Express, start a new project and select the DS as your platform of choice via the wizard –

the default settings will do.

Once you’re done, you will be able to browse the contents of your Solution using the table of contents situated on the

left-hand part of the screen.

Right now you only have the Source file called “template.c”. Let’s open it! You will likely see this as the result:

CODE

 /*---

 Basic template code for starting a DS app

---*/

#include <nds.h>

#include <stdio.h>

//---

int main(void) {

//---

 consoleDemoInit();

 iprintf("Hello World!");

 while(1) {

 swiWaitForVBlank();

 }

}

Wow wow wow, that’s alot and sooo fast! Let’s look through this quickly, shall we?

Every program is essentially divided into three main sections: the Includes, the Declarations and Defines and

finally themain(); Function. We will discuss them all briefly. I will also explain the three functions that appear in this

code so that they’recrystal clear.

#include is a directive referring to any files that may be included in the project. It’s vital to know that #include files

will *always* be in our RAM – their content can be accessed anywhere throughout our program! This will turn out to

be very useful when organizing your work and resources later-on, so remember it! The two files included are nds.h,

which is the libnds library and stdio.h, which is the Standard Input/Output library of C and C++. The Angle-Brackets

<> indicate that the compiler will search for the file using it’s specified INCLUDE path as well as the parent directory

of your program, were we using simple quotation marks “”, the compiler would attempt to find it only in the parent

directory, but more on that later.

Normally after the #include we would start putting our Global declarations, every variable declared there will be

treated as Global. Keep that in mind!

This basic template has no variables, but let’s add one, just for the heck of it! Scroll up and put your declaration right

before the main(); function. Let’s say…

char MyName[25]=”Put your name here, silly!”;

Can you tell me what kind of a variable that is? Yep, you are absolutely right! Great attention span! It’s indeed a

char, its name is “MyName” and its value is… well, whatever your name is! What’s with the weird number in the

brackets, you ask? Well, one char can only hold one character – with this number, our variable is now an Array,

otherwise known as String, of the length of 25 characters – that way, we can put more characters in, but more on

that in the later chapters about Arrays. In any case, good job! Remember about the “;”, without putting it at the

end, the compiler will not know when the line of input ends and will return an error, so declare carefuly! Let’s move

on.

Lines starting with “//” or enclosed between “/*” “*/” are called Comments – the compiler ignores them, but they

are helpful to mark important parts of your code.

Finally we move on to the int main(); the most interesting part we’ll tackle today.

main(); is effectively the main function of the program – whatever is supposed to happen is placed in it. It is divided

into two main parts – the part before while(1) and after it. We’ll talk about the while loop later, for now, all we need

to know is that whatever is before while happens once, whatever comes within its brackets happens once each frame

(the DS works at circa60 frames per second, so the maths here are clear).

Before while(1) we have two functions, let’s have a closer look to know what they are:

consoleDemoInit(); is a function built-in libnds, it will launch a DOS-like command line to which you will be able to

output text. Nothing more, nothing less, really.

iprintf("Hello World!"); is a function used for printing text. It prints it directly into the console, the text printed is

placed between the quotation marks. Simple!

Let’s head to while, shall we?

It contains only one function - swiWaitForVBlank(); which, as the name implies, wait for a VBlank, meaning the

end of a frame. You will have to put this function at the end of your main, always!

So, from what we’ve read so-far, this program should:

1. Initialize the console.

2. Print Hello World! On the screen.

Let’s see if it does that, shall we? Select “Build” from the context menu at the top of the screen, then hit “Build

Solution”, alternatively just hit “F7”. This will begin the makefile operations and compile your very first .nds

file. Excited? You should be!

Once Building Operations are finished, you will be able to read where the file was saved at the bottom part of the

screen. No surprise there – it’s in the folder you specified when creating the Project.

Open that folder – the .nds file should be there. Provided you have an .nds emulator, you will be able to launch it,

and…magic! It does what it’s supposed to!

I can hear you nagging “but what about my Variable?!? I want it to do something that wasn’t in the template, you’re

a lame teacher!” and that breaks my heart. Would I desert you? Would I? Never!

Let’s spice up the code a little bit, hmm? Let’s make this program specifically about *you*.

Scroll back up where you declared your first variable and declare another one, like this:

char Text[100];

We already know it’s a string of characters with a specified length, but why No value? Well, it means that the string

is empty – we can put data into it later-on though. This is called a “buffer” – a place dedicated in RAM for us to input

data into.

Let’s move onto the function though, shall we? Before the iprintf(), we’ll add another fun function that is commonly

used with strings:

sprintf(Text, “Hello World! My name is %s!”, MyName);

Okay, confusing, I know. Explaining now. sprintf(); is a function used for formatting strings – you select

a destination buffer, then you write the format within the brackets, finally you write which variables should be

used to format it. In this case, we are inserting the string MyName using “%s”. The final result should be “Hello

World! My name is Whatever you specified as your name”. That’s neat, isn’t it?

Now, let’s modify the iprintf to use our text. All you need to do is this:

iprintf(Text);

Now, rather then Hello World!, the text printed will be whatever has been put in the buffer Text (hence the lack of

brackets).

Now, what you should have is this:

CODE

#include <nds.h>

#include <stdio.h>

char Text[100];

char MyName[25]="Foxi4";

int main(void) {

 consoleDemoInit();

 sprintf(Text, "Hello World! My name is %s!", MyName);

 iprintf(Text);

 while(1) {

 swiWaitForVBlank();

 }

}

Ready? Steady? BUILD! So… does it work? Well, why shouldn’t it?

You’ve just built your very first program for the DS, congratulations! Admittedly it’s simple, but with some

dedication, soon enough you’ll be a pro at this! One thing is for sure, you’re no longer a Zero, you moved

onto... 0,1… So there’s still a road ahead of you!

This concludes our first day, thank you for reading and I hope you all enjoyed! If you have any questions

whatsoever or any suggestions about the format of these lessons, please, comment below!

Introductory Chapter 3: Operators in C

So far, we've learned the basic structure of an application in C, the types of Variables and looked at some functions -

I hope everything so-far sunk in because we're about to look at if statements and switches with

various conditions!

Before we get there though, we need to know how to build those conditions, and for that, we'll need to have a look

at Operators. Without further ado, let's get to it, starting from explaining what exactly they are.

Operators are very simple elements which tell the program how to combine, compare or modify Values. By

putting them in-between of two Operands we create Expressions. We can also use some of them connect

Expressions together, designing more advanced Logic. Let's use an example that's known from our daily life and

math - an expression is for example "3+4" where "+" is the Operator.

Operators are divided into 5 groups, each of them with different uses. Those groups are Arithmetic, Comparison,

Logical, Assignment and the Ternary Operator.

First, we'll have a look at Arithmetic Operators as we've already used a few. They are used exactly the same as

you'd use them in everyday math tasks, so their function should not pose any problems to anyone. Those Operators

are:

ARITMETHIC OPERATORS

+ addition

- substraction (- when placed before numbers negates them)

* multiplication

/ division

(and) define precedence (to define in what order the calculations happen)

++ incrementation (adding 1)

-- decrementation (substracting 1)

>> bit shift right

<< bit shift left

% modulus (calculating the remainder of dividing two numbers)

Example of use: AVariable=3+3;

(Assign the result from adding 3 to 3 to AVariable)

As of now, only the first 5 (well, maybe 7) are of our interest, the rest will be covered in more detail in

subsequent chapters if they pop up, for now you just need to know they exist. Next up are operators which we also

used, calledAssignment Operators. We use them to assign Values to a given Variable. Those operators are:

ASSIGNMENT OPERATORS

= Simple assignment. The Value of the right operand is assigned to the Variable on the left.

*= Multiplication assignment. The Value of the left operand is multiplied by the Value of the right operand and the

result is assigned to the left one.

/= Division assignment. The Value of the left operand is divided by the Value of the right operand and the result is

assigned to the left one.

%= Remainder assignment. The remainder of dividing the Value of the left operand by the right operand is assigned

to the left operand.

+= Addition assignment. The Values of operands are added and the result is assigned to the left one.

–= Subtraction assignment. The Value of the right operand is substracted from the Value of the left operand and the

result is assigned to the left one.

<<= Left-shift assignment. The Value of the left operand is shifted left by the ammount of bits specified by the right

operand and the result is assigned to the left one.

>>= Right-shift assignment. The Value of the left operand is shifted right by the ammount of bits specified by the

right operand and the result is assigned to the left one.

&= Bitwise-AND assignment. Obtains the bitwise AND of the left and right operands and assigns the result in the left

operand.

^= Bitwise-exclusive-OR assignment. Obtains the bitwise exclusive OR of the left and right operands and assigns the

result in the left operand.

|= Bitwise-inclusive-OR assignment Obtains the bitwise inclusive OR of the left and right operands and assigns the

result in the left operand.

Example of use: AVariable=AnotherVariableOrAValue;

(Assign the value of AnotherVariableOrValue to AVariable)

Once again, I've divided them into two groups - the ones you should be concerned with firstly and the ones that we'll

be using much, much later. Now we can move on to what interests us the most today, which would be Comparison

Operators. These will be the basis of building conditions and you need to know them by heart. Their purpose is to

compare two Values and return the result of this comparison. Those operators are:

COMPARISON OPERATORS

== Checks if the Value on the left is equal to the Value on the right.

!= Checks if the Value is not equal to the Value on the right.

< Checks if the Value on the left is smaller then the Value on the right.

> Checks if the Value on the left if greater then the Value on the right.

<= Checks if the Value on the left is smaller or equal to the Value on the right.

>= Check if the Value on the left is greater or equal to the Value on the right.

Example of use: if(Variable<3) Variable++;

(if the Variable's value is less then three, increment it)

ALL Comparison Operators are essential, there is literally nothing we could leave for later. Finally we can move on

to another useful kind of Operators which we will frequently use to join together different expressions. Those

operators are calledLogical Operators and are relatively simple to remember since there are only three of them.

LOGICAL OPERATORS

! Is used to negate a given expression, this operator is called NOT.

&& If both parts of the expression are true, the whole expression is true. If either part if false, the expression will be

false. This operator is called AND.

|| If either part of the expression is true, the whole expression is true. This operator is called OR.

Example of use: if(AVariable==3 && AnotherVariable==3) AVariable++;

(if both variables are equal 3, increment the first one)

That'd be all we need to know now - the Ternary Operator will be introduced together with if statements. That's all

for this chapter and tune in next time to learn how to build Conditions with our new-found knowledge, alongside some

fun examples!

Introductory Chapter 4: Conditions

Now that we know Operators, we are pretty much set to start learning about creating various Conditions in C.

What is aCondition? Well, it is a Statement that specifies how our program is going to react when a given

event happens. We can divide those statements into two basic groups, if Statements and switches. Firstly we'll

have a look at both, then we're going to compare them as to know exactly when to use them efficiently.

We've actually seen a few if statements already in the previous Chapter, I'm sure you've noticed! These were

however very short - they were the shortest possible form of that kind:

if (Condition) Result;

With that kind of a statement we can only specify one Result and one Condition, so naturally this is a really

limitedstatement. To fully utilize if Statements we need to be familiar with their entire structure, which is as

follows:

CODE

if (Condition){

 Statements;

 }

else if(Condition2){

 Statements;

 }

else{

 Statements;

 }

We can see that this is a much more flexible implementation of an if Statement, we can not only specify as

many Conditionsand Results as we want using else if's, we can also set a Result that will occour if neither of the

Conditions are met! It is divided into three parts, our first if, a number of following else if's and finishes

with else - the latter two parts are entirely optional and you can ommit either of them if you don't need them.

To show how this works in a more practical way, let's have a look at this example:

CODE

if (Age>=18){

 iprintf("You're an adult!");

 }

else if(Age<18 && Age>=0){

 iprintf("You're a minor!");

 }

else{

 iprintf("Very funny. You were supposed to input your age!");

 }

Here, if the Variable Age's Value is greater or equal to 18, the program will inform the user that he is an adult by

printing a message on the screen. If the Value is less then 18, but more then 0, the program will state that the user

is a minor. If the Variable has a value that is incorrect, such as less then 0, the program snarkly remarks that the

user inputted an incorrect value.

Of course we could just do this:

CODE

if (Age>=18){

 iprintf("You're an adult!");

 }

else{

 iprintf("You're a minor!");

 }

But this presents a degree of ambiguity - if the user would input a value that is less then 0, the program

would still refer to him as a minor despite the fact that the value is incorrect. This could be prevented by doing

this:

CODE

if (Age>=18){

 iprintf("You're an adult!");

 }

else if(Age<18 && Age>0){

 iprintf("You're a minor!");

 }

However again, the program would be confused if the inputted value was of incorrect type, for example a character

rather then a digit and this would result in a glitch - the character would be transcribed into a numerical value.

Why am I saying all this? You're going to say "we're not brain-dead, this is obvious!". Well, let me tell you, it's

not. I'm doing this to teach you to avoid being ambiguous at all costs, this will save you time

when debugging your applications.

Keeping these issues in mind will help you avoid glitches in your program and prevent it from acting in a manner

that you would not expect. Computers are not intelligent, they will not do your work for you. You have to

imagine you're giving orders to a complete simpleton who requires really specific instructions as to not make a

mistake. Simplify your code when it is possible, by all means, butwhere there is room for error, specify your

intentions in detail.

To conclude the section about if Statements, we'll have a look at the Ternary Operator as promised last time.

Sometimes our conditions can be thoroughly simplified and we can ommit the use of if

Statements or switches altogether by using theTernary Operator "?".

Let's consider this snippet of code:

CODE

if (Variable==10){

 Result = 1;

}

else{

 Result = 0;

}

We created an if Statement which checks whether the Variable is equal to 10. If it is, the program will assign the

value 1 (true) to Result, otherwise it will assign 0 (false). We can simplify this with a simple Ternary Operation,

like this:

CODE

Result = Variable==10 ? 1 : 0;

This will automatically assign the values to Result depending on whether the Condition will turn out to

be true or false! Much quicker, isn't it?

Now that we are accustomed with if Statements, we can learn about switches, which are very similar in function

however may come in handy simply because they are more see-through and easier to debug. Let's have a look,

shall we?

CODE

switch(Variable){

 case 1:

 Statements;

 break;

 case 2:

 Statements;

 break;

 default:

 Statements;

 break;

}

In this example switch, we have two cases and the default case. If the Value of Variable is equal to 1, it

performs theStatements specified in case 1, if it is equal to 2, it performs the Statements specified in case 2, if it

is neither, it performs the Statements specified in the default case, which is optional. Each case is separated

by break; as to conclude the case,however it is optional if you want to recieve the same result in several

cases, like here:

CODE

switch(Variable){

 case 0:

 iprintf("Variable is equal to 0");

 break;

 case 1:

 case 2:

 iprintf("Variable is equal to either 1 or 2");

 break;

 default:

 iprintf("Variable is neither 0 nor 1 or 2");

 break;

}

By not adding the break; after case 0, we specified the same Statement for both case 1 and case 2, thus saving

time andsimplifying the switch.

The default; case again is optional, however I'm reminding you about possible ambiguity of code. This is

a disadvantage of using switches - if the Variable will not fall in either case specified and there will be no

default case present, the program will simply ignore the input altogether! Another disadvantage of switches is

that the Variable used must be a simple Variable - either an Integer or a char, thus we cannot use it with

Strings or Structures.

This concludes Introductory Chapter 4, in the next and final introductory chapter we will have a look at Loops,

specifically forLoops and while Loops. The rest of C-related material will be discussed as we progress if needs-

be. Thank you for reading and see you next time!

