
More eBooks @ http://www.free-ebooks-library.com

Download at WoweBook.Com

Advance Praise for Head First C#

“I’ve never read a computer book cover to cover, but this one held my interest from the first page to the
last. If you want to learn C# in depth and have fun doing it, this is THE book for you.”

— Andy Parker, fledgling C# programmer

“Head First C# is a great book for hobbyist programmers. It provides examples and guidance on a
majority of the things [those] programmers are likely to encounter writing applications in C#.”

—Peter Ritchie, Microsoft MVP (2006-2007), Visual Developer, C#

“With Head First C#, Andrew and Jenny have presented an excellent tutorial on learning C#. It is very
approachable while covering a great amount of detail in a unique style. If you’ve been turned off by
more conventional books on C#, you’ll love this one.”

—Jay Hilyard, Software Developer, co-author of C# 3.0 Cookbook

“Head First C# is perfect blend of unique and interesting ways covering most of the concepts of
programming. Fun excercises, bullet points, and even comic strips are some of the catchy and awesome
works that this book has. The game-based labs are something that you really don’t want to miss. [This
book is] a great work... the novice as [well as the] well-experienced will love this book. GREAT JOB!”

—Aayam Singh, .NET professional

“Head First C# is a highly enjoyable tutorial, full of memorable examples and entertaining exercises. Its
lively style is sure to captivate readers—from the humorously annotated examples, to the Fireside Chats,
where the abstract class and interface butt heads in a heated argument! For anyone new to programming,
there’s no better way to dive in.”

—Joseph Albahari, C# Design Architect at Egton Medical Information Systems,
the UK’s largest primary healthcare software supplier, co-author of C# 3.0 in a
Nutshell

“[Head First C#] was an easy book to read and understand. I will recommend this book to any developer
wanting to jump into the C# waters. I will recommend it to the advanced developer that wants to
understand better what is happening with their code. [I will recommend it to developers who] want to
find a better way to explain how C# works to their less-seasoned developer friends.”

—Giuseppe Turitto, C# and ASP.NET developer for Cornwall Consulting Group

“Andrew and Jenny have crafted another stimulating Head First learning experience. Grab a pencil, a
computer, and enjoy the ride as you engage your left brain, right brain, and funny bone.”

—Bill Mietelski, Software Engineer

“Going through this Head First C# book was a great experience. I have not come across a book series
which actually teaches you so well…This is a book I would definitely recommend to people wanting to
learn C#”

—Krishna Pala, MCP

Download at WoweBook.Com

Praise for other Head First books

“Kathy and Bert’s Head First Java transforms the printed page into the closest thing to a GUI you’ve ever
seen. In a wry, hip manner, the authors make learning Java an engaging ‘what’re they gonna do next?’
experience.”

—Warren Keuffel, Software Development Magazine

“Beyond the engaging style that drags you forward from know-nothing into exalted Java warrior status, Head
First Java covers a huge amount of practical matters that other texts leave as the dreaded “exercise for the
reader...” It’s clever, wry, hip and practical—there aren’t a lot of textbooks that can make that claim and live
up to it while also teaching you about object serialization and network launch protocols. ”

—Dr. Dan Russell, Director of User Sciences and Experience Research
IBM Almaden Research Center (and teaches Artificial Intelligence at Stanford
University)

“It’s fast, irreverent, fun, and engaging. Be careful—you might actually learn something!”

—Ken Arnold, former Senior Engineer at Sun Microsystems
Co-author (with James Gosling, creator of Java), The Java Programming
Language

“I feel like a thousand pounds of books have just been lifted off of my head.”

—Ward Cunningham, inventor of the Wiki and founder of the Hillside Group

“Just the right tone for the geeked-out, casual-cool guru coder in all of us. The right reference for practi-
cal development strategies—gets my brain going without having to slog through a bunch of tired stale
professor-speak.”

—Travis Kalanick, Founder of Scour and Red Swoosh
 Member of the MIT TR100

“There are books you buy, books you keep, books you keep on your desk, and thanks to O’Reilly and the
Head First crew, there is the penultimate category, Head First books. They’re the ones that are dog-eared,
mangled, and carried everywhere. Head First SQL is at the top of my stack. Heck, even the PDF I have
for review is tattered and torn.”

— Bill Sawyer, ATG Curriculum Manager, Oracle

“This book’s admirable clarity, humor and substantial doses of clever make it the sort of book that helps
even non-programmers think well about problem-solving.”

— Cory Doctorow, co-editor of Boing Boing
Author, Down and Out in the Magic Kingdom
and Someone Comes to Town, Someone Leaves Town

Download at WoweBook.Com

Praise for other Head First books

“I received the book yesterday and started to read it...and I couldn’t stop. This is definitely très ‘cool.’ It is
fun, but they cover a lot of ground and they are right to the point. I’m really impressed.”

— Erich Gamma, IBM Distinguished Engineer, and co-author of Design
Patterns

“One of the funniest and smartest books on software design I’ve ever read.”

— Aaron LaBerge, VP Technology, ESPN.com

“What used to be a long trial and error learning process has now been reduced neatly into an engaging
paperback.”

— Mike Davidson, CEO, Newsvine, Inc.

“Elegant design is at the core of every chapter here, each concept conveyed with equal doses of
pragmatism and wit.”

— Ken Goldstein, Executive Vice President, Disney Online

“I ♥ Head First HTML with CSS & XHTML—it teaches you everything you need to learn in a ‘fun
coated’ format.”

— Sally Applin, UI Designer and Artist

“Usually when reading through a book or article on design patterns, I’d have to occasionally stick myself
in the eye with something just to make sure I was paying attention. Not with this book. Odd as it may
sound, this book makes learning about design patterns fun.

“While other books on design patterns are saying ‘Buehler… Buehler… Buehler…’ this book is on the
float belting out ‘Shake it up, baby!’”

— Eric Wuehler

“I literally love this book. In fact, I kissed this book in front of my wife.”

— Satish Kumar

Download at WoweBook.Com

Other related books from O’Reilly

Programming C# 3.0

C# 3.0 in a Nutshell

C# 3.0 Cookbook™

C# 3.0 Design Patterns

C# Essentials

C# Language Pocket Reference

Other books in O’Reilly’s Head First series

Head First Java

Head First Object-Oriented Analysis and Design (OOA&D)

Head Rush Ajax

Head First HTML with CSS and XHTML

Head First Design Patterns

Head First Servlets and JSP

Head First EJB

Head First PMP

Head First SQL

Head First Software Development

Head First JavaScript

Head First Ajax

Head First Statistics

Head First Physics (2008)

Head First Programming (2008)

Head First Ruby on Rails (2008)

Head First PHP & MySQL (2008)

Download at WoweBook.Com

Beijing • Cambridge • K�ln • Sebastopol • Taipei • Tokyo

Andrew Stellman
Jennifer Greene

Head First C#

Wouldn’t it be dreamy
if there was a C# book that
was more fun than endlessly

debugging code? It’s probably
nothing but a fantasy…

Download at WoweBook.Com

Head First C#
by Andrew Stellman and Jennifer Greene

Copyright © 2008 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Series Creators: Kathy Sierra, Bert Bates

Series Editor: Brett D. McLaughlin

Design Editor: Louise Barr

Cover Designers: Louise Barr, Steve Fehler

Production Editor: Sanders Kleinfeld

Proofreader: Colleen Gorman

Indexer: Julie Hawks

Page Viewers: Quentin the whippet and Tequila the pomeranian

Printing History:
November 2007: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations,
Head First C#, and related trade dress are trademarks of O’Reilly Media, Inc.

Microsoft, Windows, Visual Studio, MSDN, the .NET logo, Visual Basic and Visual C# are registered
trademarks of Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No bees, space aliens, or comic book heroes were harmed in the making of this book.

ISBN: 978-0-596-51482-2

[M] [9/08]

This book uses RepKover™,  a durable and flexible lay-flat binding.
TMTM

Download at WoweBook.Com

This book is dedicated to the loving memory of Sludgie the Whale,
who swam to Brooklyn on April 17, 2007.

You were only in our canal for a day,
but you’ll be in our hearts forever.

Download at WoweBook.Com

viii

Jennifer Greene studied philosophy in
college but, like everyone else in the field, couldn’t
find a job doing it. Luckily, she’s a great software
tester, so she started out doing it at an online
service, and that’s the first time she really got a
good sense of what project management was.

She moved to New York in 1998 to test software
at a financial software company. She managed
a team of testers at a really cool startup that
did artificial intelligence and natural language
processing.

Since then, she’s traveled all over the world to work
with different software teams and build all kinds of
cool projects.

She loves traveling, watching Bollywood movies,
reading the occasional comic book, waiting for
her Xbox to be repaired, drinking carloads of
carbonated beverages, and owning a whippet.

Andrew Stellman, despite being raised a
New Yorker, has lived in Pittsburgh twice. The
first time was when he graduated from Carnegie
Mellon’s School of Computer Science, and then
again when he and Jenny were starting their
consulting business and writing their first book for
O’Reilly.

When he moved back to his hometown, his first
job after college was as a programmer at EMI-
Capitol Records—which actually made sense,
since he went to LaGuardia High School of
Music and Art and the Performing Arts to study
cello and jazz bass guitar. He and Jenny first
worked together at that same financial software
company, where he was managing a team of
programmers. He’s had the privilege of working
with some pretty amazing programmers over the
years, and likes to think that he’s learned a few
things from them.

When he’s not writing books, Andrew keeps
himself busy writing useless (but fun) software,
playing music (but video games even more),
studying taiji and aikido, having a girlfriend
named Lisa, and owning a pomeranian.

the authors

Jenny and Andrew have been building software and writing about software engineering together since they

first met in 1998. Their first book, Applied Software Project Management, was published by O’Reilly in

2005. They published their first book in the Head First series, Head First PMP, in 2007.

They founded Stellman & Greene Consulting in 2003 to build a really neat software project for
scientists studying herbicide exposure in Vietnam vets. When they’re not building software or writing
books, they do a lot of speaking at conferences and meetings of software engineers, architects and
project managers.
Check out their blog, Building Better Software: http://www.stellman-greene.com

Jenny

Andrew

Thanks for buying our book! We really
love writing about this stuff, and we
hope you get a kick out of reading it… … because we know

you’re going to have a
great time learning C#.

This photo (and the photo of the
Gowanus Canal) by Nisha Sondhe

Download at WoweBook.Com

table of contents

ix

Table of Contents (Summary)

Table of Contents (the real thing)

Your brain on C#. You’re sitting around trying to learn something, but

your brain keeps telling you all that learning isn’t important. Your brain’s saying,

“Better leave room for more important things, like which wild animals to avoid and

whether nude archery is a bad idea.” So how do you trick your brain into thinking

that your life really depends on learning C#?

Intro

Who is this book for? xxx

We know what you’re thinking xxxi

Metacognition xxxiii

Bend your brain into submission xxxv

What you need for this book xxxvi

Read me xxxii

The technical review team xxxiv

Acknowledgments xxxv

 Intro xxix

1 Get productive with C#: Visual Applications, in 10 minutes or less 1

2 It’s All Just Code: Under the hood 43

3 Objects Get Oriented: Making code make sense 85

4 Types and References: It’s 10:00. Do you know where your data is? 123

 C# Lab 1: A Day at the Races 163

5 Encapsulation: Keep your privates… private 173

6 Inheritance: Your object’s family tree 205

7 Interfaces and abstract classes: Making classes keep their promises 251

8 Enums and collections: Storing lots of data 309

 C# Lab 2: The Quest 363

9 Reading and writing files: Save the byte array, save the world 385

10 Exception handling: Putting Out Fires Gets Old 439

11 Events and delegates: What Your Code Does When You’re Not Looking 483

12 Review and preview: Knowledge, Power, and Building Cool Stuff 515

13 Controls and graphics: Make it pretty 563

14 Captain Amazing: The Death of the Object 621

15 LINQ: Get control of your data 653

 C# Lab 3: Invaders 681

i Leftovers: The top 5 things we wanted to include in this book 703

Download at WoweBook.Com

table of contents

x

Visual Applications, in 10 minutes or less1 Want to build great programs really fast?�

With C#, you’ve got a powerful programming language and a valuable tool

at your fingertips. With the Visual Studio IDE, you’ll never have to spend hours

writing obscure code to get a button working again. Even better, you’ll be able

to focus on getting your work done, rather than remembering which method

parameter was for the name for a button, and which one was for its label.

Sound appealing? Turn the page, and let’s get programming.

get productive with C#

Why you should learn C# 2

C# and the Visual Studio IDE make lots of things easy 3

Help the CEO go paperless 4

Get to know your users’ needs before you start building your program 5

Here’s what you’re going to build 6

What you do in Visual Studio… 8

What Visual Studio does for you… 8

Develop the user interface 12

Visual Studio, behind the scenes 14

Add to the auto-generated code 15

You can already run your application 16

We need a database to store our information 18

Creating the table for the Contact List 20

The blanks on contact card are columns in our People table 22

Finish building the table 25

Diagram your data so your application can access it 26

Insert your card data into the database 28

Connect your form to your database objects with a data source 30

Add database-driven controls to your form 32

Good apps are intuitive to use 34

How to turn YOUR application into EVERYONE’S application 37

Give your users the application 38

You’re NOT done: test your installation 39

You built a complete data-driven application 40

Download at WoweBook.Com

table of contents

xi

Under the Hood
You’re a programmer, not just an IDE-user.
You can get a lot of work done using the IDE. But there’s only so far it

can take you. Sure, there are a lot of repetitive tasks that you do when

you build an application. And the IDE is great at doing those things for

you. But working with the IDE is only the beginning. You can get your

programs to do so much more—and writing C# code is how you do it.

Once you get the hang of coding, there’s nothing your programs can’t do.

it’s all just code

2
When you’re doing this… 44

…the IDE does this 45

Where programs come from 46

The IDE helps you code 48

When you change things in the IDE, you’re also changing your code 50

Anatomy of a program 52

Your program knows where to start 54

You can change your program’s entry point 56

Two classes can be in the same namespace 61

Your programs use variables to work with data 62

C# uses familiar math symbols 64

Loops perform an action over and over again 65

Time to start coding 66

if/else statements make decisions 67

Set up conditions and see if they’re true 68

Download at WoweBook.Com

table of contents

xii

3 Making Code Make Sense
Every program you write solves a problem.
When you’re building a program, it’s always a good idea to start by thinking about what

problem your program’s supposed to solve. That’s why objects are really useful. They

let you structure your code based on the problem it’s solving, so that you can spend your

time thinking about the problem you need to work on rather than getting bogged down in

the mechanics of writing code. When you use objects right, you end up with code that’s

intuitive to write, and easy to read and change.

objects get oriented

new Navigator()

new
 Na

vig
ato

r()

new Navigator()

How Mike thinks about his problems 86

How Mike’s car navigation system thinks about his problems 87

Mike’s Navigator class has methods to set and modify routes 88

Use what you’ve learned to build a simple application 89

Mike gets an idea 90

Mike can use objects to solve his problem 91

You use a class to build an object 92

When you create a new object from a class,
it’s called an instance of that class 93

A better solution… brought to you by objects! 94

An instance uses fields to keep track of things 98

Let’s create some instances! 99

Thanks for the memory 100

What’s on your program’s mind 101

You can use class and method names to make your code intuitive 102

Give your classes a natural structure 104

Class diagrams help you organize your classes so they make sense 106

Build a class to work with some guys 110

Create a project for your guys 111

Build a form to interact with the guys 112

There’s an even easier way to initialize objects 115

A few ideas for designing intuitive classes 116

Download at WoweBook.Com

table of contents

xiii

4 It’s 10:00. Do you know where your data is?
Data type, database, Lieutenant Commander Data…
it’s all important stuff. Without data, your programs are useless. You

need information from your users, and you use that to look up or produce new

information, to give back to them. In fact, almost everything you do in programming

involves working with data in one way or another. In this chapter, you’ll learn the

ins and outs of C#’s data types, how to work with data in your program, and even

figure out a few dirty secrets about objects (psstt… objects are data, too).

types and references

The variable’s type determines what kind of data it can store 124

A variable is like a data to-go cup 126

10 pounds of data in a 5 pound bag 127

Even when a number is the right size,
you can’t just assign it to any variable 128

When you cast a value that’s too big, C# will adjust it automatically 129

C# does some casting automatically 130

When you call a method, the variables must
match the types of the parameters 131

Combining = with an operator 136

Objects use variables, too 137

Refer to your objects with reference variables 138

References are like labels for your object 139

If there aren’t any more references, your object gets garbage collected 140

Multiple references and their side effects 142

Two references means TWO ways to change an object’s data 147

A special case: arrays 148

Arrays can contain a bunch of reference variables, too 149

Welcome to Sloppy Joe’s Budget House o’ Discount Sandwiches! 150

Objects use references to talk to each other 152

Where no object has gone before 153

fido

Luck
y

fido
Luck

y

Download at WoweBook.Com

table of contents

xiv

Joe, Bob, and Al love going to the track, but they’re
tired of losing all their money. They need you to build a
simulator for them so they can figure out winners before
they lay their money down. And, if you do a good job,
they’ll cut you in on their profits.

C# Lab 1
A Day at the Races

The Spec: Build a Racetrack Simulator 164

The Finished Product 172

Download at WoweBook.Com

table of contents

xv

5 Keep your privates… private

Ever wished for a little more privacy?�

Sometimes your objects feel the same way. Just like you don’t want anybody you

don’t trust reading your journal, or paging through your bank statements, good objects

don’t let other objects go poking around their properties. In this chapter, you’re going

to learn about the power of encapsulation. You’ll make your object’s data private,

and add methods to protect how that data is accessed.

encapsulation

Kathleen is an event planner 174

What does the estimator do? 175

Kathleen’s Test Drive 180

Each option should be calculated individually 182

It’s easy to accidentally misuse your objects 184

Encapsulation means keeping some of the data in a class private 185

Use encapsulation to control access to your class’s methods and fields 186

But is the realName field REALLY protected? 187

Private fields and methods can only be accessed from inside the class 188

A few ideas for encapsulating classes 191

Encapsulation keeps your data pristine 192

Properties make encapsulation easier 193

Build an application to test the Farmer class 194

Use automatic properties to finish the class 195

What if we want to change the feed multiplier? 196

Use a constructor to initialize private fields 197

Download at WoweBook.Com

table of contents

xvi

6 Your object’s family tree
Sometimes you DO want to be just like your parents.
Ever run across an object that almost does exactly what you want your object to do?

Found yourself wishing that if you could just change a few things, that object would

be perfect? Well that’s just one reason that inheritance is one of the most powerful

concepts and techniques in the C# language. Before you’re through this chapter, you’ll

learn how to subclass an object to get its behavior, but keep the flexibility to make

changes to that behavior. You’ll avoid duplicate code, model the real world more

closely, and end up with code that’s easier to maintain.

inheritance

Kathleen does birthday parties, too 206

We need a BirthdayParty class 207

One more thing... can you add a $100 fee for parties over 12? 213

When your classes use inheritance,
you only need to write your code once 214

Build up your class model by starting general
and getting more specific 215

How would you design a zoo simulator? 216

Use inheritance to avoid duplicate code in subclasses 217

Different animals make different noises 218

Think about how to group the animals 219

Create the class hierarchy 220

Every subclass extends its base class 221

Use a colon to inherit from a base class 222

We know that inheritance adds the base class fields,
properties, and methods to the subclass... 225

A subclass can override methods to change or
replace methods it inherited 226

Any place where you can use a base class,
you can use one of its subclasses instead 227

A subclass can access its base class using the base keyword 232

When a base class has a constructor, your subclass needs one too 233

Now you’re ready to finish the job for Kathleen! 234

Build a beehive management system 239

First you’ll build the basic system 240

Use inheritance to extend the bee management system 245

Download at WoweBook.Com

table of contents

xvii

7 Making classes keep their promises

Actions speak louder than words.
Sometimes you need to group your objects together based on the things they can

do rather than the classes they inherit from. That’s where interfaces come in—they

let you work with any class that can do the job. But with great power comes great

responsibility, and any class that implements an interface must promise to fulfill all of

its obligations... or the compiler will break their kneecaps, see?

interfaces and abstract classes

Let’s get back to bee-sics 252

We can use inheritance to create classes for different types of bees 253

An interface tells a class that it must implement
certain methods and properties 254

Use the interface keyword to define an interface 255

Get a little practice using interfaces 256

Now you can create an instance of NectarStinger that does both jobs 257

Classes that implement interfaces have to include ALL of
the interface’s methods 258

You can’t instantiate an interface, but you can reference an interface 260

Interface references work just like object references 261

You can find out if a class implements a certain interface with “is” 262

Interfaces can inherit from other interfaces 263

The RoboBee 4000 can do a worker bee’s job
without using valuable honey 264

is tells you what an object implements,
as tells the compiler how to treat your object 265

A CoffeeMaker is also an Appliance 266

Upcasting works with both objects and interfaces 267

Downcasting lets you turn your appliance back into a coffee maker 268

Upcasting and downcasting work with interfaces, too 269

There’s more than just public and private 273

Access modifiers change scope 274

Some classes should never be instantiated 277

An abstract class is like a cross between a class and an interface 278

Like we said, some classes should never be instantiated 280

An abstract method doesn’t have a body 281

Polymorphism means that one object can take many different forms 289

Download at WoweBook.Com

table of contents

xviii

8 Storing lots of data
When it rains, it pours.
In the real world, you don’t get to handle your data in tiny little bits and pieces.

No, your data’s going to come at you in loads, piles and bunches. You’ll need

some pretty powerful tools to organize all of it, and that’s where collections

come in. They let you store, sort and manage all the data that your programs

need to pore through. That way you can think about writing programs to work

with your data, and let the collections worry about keeping track of it for you.

enums and collections

Strings don’t always work for storing categories of data 310

Enums let you enumerate a set of valid values 311

Enums let you represent numbers with names 312

We could use an array to create a deck of cards... 315

Arrays are hard to work with 316

Lists make it easy to store collections of... anything 317

Lists are more flexible than arrays 318

Lists shrink and grow dynamically 321

List objects can store any type 322

Collection initializers work just like object initializers 326

Let’s create a list of Ducks 327

Lists are easy, but SORTING can be tricky 328

Two ways to sort your ducks 329

Use IComparer to tell your List how to sort 330

Create an instance of your comparer object 331

IComparer can do complex comparisons 332

Use a dictionary to store keys and values 335

The Dictionary Functionality Rundown 336

Your key and value can be different types, too 337

You can build your own overloaded methods 343

And yet MORE collection types... 355

A queue is FIFO — First In, First Out 356

A stack is LIFO — Last In, First Out 357

poof!

Download at WoweBook.Com

table of contents

xix

C# Lab 2
The Quest

Your job is to build an adventure game where a mighty
adventurer is on a quest to defeat level after level of
deadly enemies. You’ll build a turn-based system, which
means the player makes one move and then the enemies
make one move. The player can move or attack, and then
each enemy gets a chance to move and attack. The game
keeps going until the player either defeats all the enemies
on all seven levels or dies.

The spec: build an adventure game 364

The fun’s just beginning! 484

Download at WoweBook.Com

table of contents

xx

9 Save the byte array, save the world
Sometimes it pays to be a little persistent.
So far, all of your programs have been pretty short-lived. They fire up, run for

a while, and shut down. But that’s not always enough, especially when you’re

dealing with important information. You need to be able to save your work. In

this chapter, we’ll look at how to write data to a file, and then how to read that

information back in from a file. You’ll learn about the .NET stream classes,

and also take a look at the mysteries of hexadecimal and binary.

reading and writing files

69 117 114 101 107 97 33

C# uses streams to read and write data 386

Different streams read and write different things 387

A FileStream writes bytes to a file 388

Reading and writing takes two objects 393

Data can go through more than one stream 394

Use built-in objects to pop up standard dialog boxes 397

Dialog boxes are objects, too 399

Use the built-in File and Directory classes to
work with files and directories 400

Use File Dialogs to open and save files 403

IDisposable makes sure your objects are disposed properly 405

Avoid file system errors with using statements 406

Writing files usually involves making a lot of decisions 412

Use a switch statement to choose the right option 413

Add an overloaded Deck() constructor that reads
a deck of cards in from a file 415

What happens to an object when it’s serialized? 417

But what exactly IS an object’s state? What needs to be saved? 418

When an object is serialized, all of the objects it refers to
get serialized too... 419

Serialization lets you read or write a whole object all at once 420

If you want your class to be serializable,
mark it with the [Serializable] attribute 421

.NET converts text to Unicode automatically 425

C# can use byte arrays to move data around 426

Use a BinaryWriter to write binary data 427

You can read and write serialized files manually, too 429

StreamReader and StreamWriter will do just fine 433

Download at WoweBook.Com

table of contents

xxi

10 Putting out fires gets old
Programmers aren’t meant to be firefighters.
You’ve worked your tail off, waded through technical manuals and a few engaging

Head First books, and you’ve reached the pinnacle of your profession: master

programmer. But you’re still getting pages from work because your program

crashes, or doesn’t behave like it’s supposed to. Nothing pulls you out of

the programming groove like having to fix a strange bug . . . but with exception

handling, you can write code to deal with problems that come up. Better yet, you

can even react to those problems, and keep things running.

exception handling

Brian needs his excuses to be mobile 440

When your program throws an exception,
.NET generates an Exception object. 444

Brian’s code did something unexpected 446

All exception objects inherit from Exception 448

The debugger helps you track down and
prevent exceptions in your code 449

Use the IDE’s debugger to ferret out exactly
what went wrong in the excuse manager 450

Uh-oh—the code’s still got problems... 453

Handle exceptions with try and catch 455

What happens when a method you want to call is risky? 456

Use the debugger to follow the try/catch flow 458

If you have code that ALWAYS should run, use a finally block 460

Use the Exception object to get information about the problem 465

Use more than one catch block to handle multiple types of exceptions 466

One class throws an exception, another class catches the exception 467

Bees need an OutOfHoney exception 468

An easy way to avoid a lot of problems:
using gives you try and finally for free 471

Exception avoidance: implement IDisposable
to do your own clean up 472

The worst catch block EVER: comments 474

Temporary solutions are okay (temporarily) 475

A few simple ideas for exception handling 476

Brian finally gets his vacation... 481

Download at WoweBook.Com

table of contents

xxii

11 What your code does when you’re not looking
events and delegates

Your objects are starting to think for themselves.
You can’t always control what your objects are doing. Sometimes things...happen. And

when they do, you want your objects to be smart enough to respond to anything that

pops up. And that’s what events are all about. One object publishes an event, other

objects subscribe, and everyone works together to keep things moving. Which is

great, until you’ve got too many objects responding to the same event. And that’s when

callbacks will come in handy.

Ever wish your objects could think for themselves? 484

But how does an object KNOW to respond? 484

When an EVENT occurs... objects listen 485

One object raises its event, others listen for it... 486

Then, the other objects handle the event 487

Connecting the dots 488

The IDE creates event handlers for you automatically 492

The forms you’ve been building all use events 498

Connecting event senders with event receivers 500

A delegate STANDS IN for an actual method 501

Delegates in action 502

Any object can subscribe to a public event... 505

Use a callback instead of an event to hook up
exactly one object to a delegate 507

Callbacks use delegates, but NOT events 508

Download at WoweBook.Com

table of contents

xxiii

12 Knowledge, power, and building cool stuff
review and preview

Learning’s no good until you BUILD something.
Until you’ve actually written working code, it’s hard to be sure if you really get some

of the tougher concepts in C#. In this chapter, we’re going to learn about some new

odds and ends: timers and dealing with collections using LINQ (to name a couple).

We’re also going to build phase I of a really complex application, and make sure

you’ve got a good handle on what you’ve already learned from earlier chapters. So

buckle up... it’s time to build some cool software.

You’ve come a long way, baby 516

We’ve also become beekeepers 517

The beehive simulator architecture 518

Building the beehive simulator 519

Life and death of a flower 523

Now we need a Bee class 524

Filling out the Hive class 532

The hive’s Go() method 533

We’re ready for the World 534

We’re building a turn-based system 535

Giving the bees behavior 542

The main form tells the world to Go() 544

We can use World to get statistics 545

Timers fire events over and over again 546

The timer’s using a delegate behind the scenes 547

Let’s work with groups of bees 554

A collection collects... DATA 555

LINQ makes working with data in collections and databases easy 557

Download at WoweBook.Com

table of contents

xxiv

13 Make it pretty
controls and graphics

Sometimes you have to take graphics into your own hands.
We’ve spent a lot of time on relying on controls to handle everything visual in our

applications. But sometimes that’s not enough—like when you want to animate a picture.

And once you get into animation, you’ll end up creating your own controls for your .NET

programs, maybe adding a little double buffering, and even drawing directly onto your

forms. It all begins with the Graphics object, Bitmaps, and a determination to not accept

the graphics status quo.

You’ve been using controls all along to interact with your programs 564

Form controls are just objects 565

Add a renderer to your architecture 568

Controls are well-suited for visual display elements 570

Build your first animated control 573

Your controls need to dispose their controls, too! 577

A UserControl is an easy way to build a control 578

Add the hive and field forms to the project 582

Build the Renderer 583

Let’s take a closer look at those performance issues 590

You resized your Bitmaps using a Graphics object 592

Your image resources are stored in Bitmap objects 593

Use System.Drawing to TAKE CONTROL of graphics yourself 594

A 30-second tour of GDI+ graphics 595

Use graphics to draw a picture on a form 596

Graphics can fix our transparency problem... 601

Use the Paint event to make your graphics stick 602

A closer look at how forms and controls repaint themselves 605

Double buffering makes animation look a lot smoother 608

Double buffering is built into forms and controls 609

Use a Graphics object and an event handler for printing 614

PrintDocument works with the print dialog and
print preview window objects 615

Download at WoweBook.Com

table of contents

xxv

14 CAPTAIN AMAZING
THE DEATH

OF THE OBJECT

Captain Amazing, Objectville’s most amazing object
 pursues his arch-nemesis... 622

Your last chance to DO something... your object’s finalizer 628

When EXACTLY does a finalizer run? 629

Dispose() works with using, finalizers work with garbage collection 630

Finalizers can’t depend on stability 632

Make an object serialize itself in its Dispose() 633

Meanwhile, on the streets of Objectville... 636

A struct looks like an object... 637

..but isn’t on the heap 637

Values get copied, references get assigned 638

Structs are value types; objects are reference types 639

The stack vs. the heap: more on memory 641

Captain Amazing... not so much 645

Extension methods add new behavior to EXISTING classes 646

Extending a fundamental type: string 648

Download at WoweBook.Com

table of contents

xxvi

15 Get control of your data
LINQ

It’s a data-driven world... you better know how to live in it.
Gone are the days when you could program for days, even weeks, without dealing with

loads of data. But today, everything is about data. In fact, you’ll often have to work

with data from more than one place... and in more than one format. Databases, XML,

collections from other programs... it’s all part of the job of a good C# programmer. And

that’s where LINQ comes in. LINQ not only lets you query data in a simple, intuitive way,

but it lets you group data, and merge data from different data sources.

An easy project... 654

...but the data’s all over the place 655

LINQ can pull data from multiple sources 656

.NET collections are already set up for LINQ 657

LINQ makes queries easy 658

LINQ is simple, but your queries don’t have to be 659

LINQ is versatile 662

LINQ can combine your results into groups 667

Combine Jimmy’s values into groups 668

Use join to combine two collections into one query 671

Jimmy saved a bunch of dough 672

Connect LINQ to a SQL database 674

Use a join query to connect Starbuzz and Objectville 678

Download at WoweBook.Com

table of contents

xxvii

C# Lab 3
Invaders

In this lab you’ll pay homage to one of the most popular,
revered and replicated icons in video game history, a
game that needs no further introduction. It’s time to
build Invaders.

The grandfather of video games 682

And yet there’s more to do... 701

Download at WoweBook.Com

table of contents

xxviii

i The top 5 things we wanted to include
in this book

leftovers

The fun’s just beginning!�

We’ve shown you a lot of great tools to build some really powerful software with C#. But

there’s no way that we could include every single tool, technology or technique in this

book—there just aren’t enough pages. We had to make some really tough choices about

what to include and what to leave out. Here are some of the topics that didn’t make the

cut. But even though we couldn’t get to them, we still think that they’re important and

useful, and we wanted to give you a small head start with them.

#1 LINQ to XML 704

#2 Refactoring 706

#3 Some of our favorite Toolbox components 708

#4 Console Applications 710

#5 Windows Presentation Foundation 712

Did you know that C# and the .NET Framework can... 714

Download at WoweBook.Com

xxix

how to use this book

Intro
I can’t believe they

put that in a C#
programming book!

In this section, we answer the burning question:

“So why DID they put that in a C# programming book?”

Download at WoweBook.Com

xxx intro

how to use this book

1

2

3

Who is this book for?

Who should probably back away from this book?

If you can answer “yes” to all of these:

If you can answer “yes” to any of these:

this book is for you.

this book is not for you.

[Note from marketing: this book is for anyone with a credit card.]

Do you want to learn C#?

Do you like to tinker—do you learn by doing, rather than
just reading?

Do you prefer stimulating dinner party conversation
to dry, dull, academic lectures?

1

2

3

Does the idea of writing a lot of code make you bored
and a little twitchy?

Are you a kick-butt C++ or Java programmer looking for
a reference book?

Are you afraid to try something different? Would
you rather have a root canal than mix stripes with
plaid? Do you believe that a technical book can’t be
serious if C# concepts are anthropomorphized?

Download at WoweBook.Com

you are here 4 xxxi

the intro

Great. Only
700 more dull,

dry, boring pages.

We know what you’re thinking.

And we know what your brain is thinking.

“How can this be a serious C# programming book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

Your brain craves novelty. It’s always searching, scanning, waiting for
something unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with the
brain’s real job—recording things that matter. It doesn’t bother saving
the boring things; they never make it past the “this is obviously not
important” filter.

How does your brain know what’s important? Suppose you’re out for
a day hike and a tiger jumps in front of you, what happens inside your
head and body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows...

This must be important! Don’t forget it!
But imagine you’re at home, or in a library. It’s a safe, warm, tiger-free zone.
You’re studying. Getting ready for an exam. Or trying to learn some
tough technical topic your boss thinks will take a week, ten days at
the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying
to make sure that this obviously non-important content doesn’t clutter
up scarce resources. Resources that are better spent storing the really
big things. Like tigers. Like the danger of fire. Like how you should
never have posted those “party” photos on your Facebook page.

And there’s no simple way to tell your brain, “Hey brain, thank you
very much, but no matter how dull this book is, and how little I’m
registering on the emotional Richter scale right now, I really do want
you to keep this stuff around.”

Your brain thinks THIS is important.

Your brain t
hinks

THIS isn’t worth
saving.

Download at WoweBook.Com

xxxii intro

how to use this book

We think of a “Head First” reader as a learner.

So what does it take to learn something?� First, you have to get it, then make sure

you don’t forget it. It’s not about pushing facts into your head. Based on the

latest research in cognitive science, neurobiology, and educational psychology,

learning takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and

make learning much more effective (up to 89% improvement in recall and

transfer studies). It also makes things more understandable. Put the

words within or near the graphics they relate to, rather than on

the bottom or on another page, and learners will be up to twice as likely to

solve problems related to the content.

Use a conversational and personalized style. In recent studies,

students performed up to 40% better on post-learning tests if the content spoke

directly to the reader, using a first-person, conversational style rather than

taking a formal tone. Tell stories instead of lecturing. Use casual language.

Don’t take yourself too seriously. Which would you pay more attention to: a

stimulating dinner party companion, or a lecture?

Get the learner to think more deeply. In other words, unless you

actively flex your neurons, nothing much happens in your head. A reader

has to be motivated, engaged, curious, and inspired to solve problems, draw

conclusions, and generate new knowledge. And for that, you need challenges,

exercises, and thought-provoking questions, and activities that involve both

sides of the brain and multiple senses.

Get—and keep—the reader’s attention. We’ve all had the “I really want to learn this but

I can’t stay awake past page one” experience. Your brain pays attention to things that are out of

the ordinary, interesting, strange, eye-catching, unexpected. Learning a new, tough,

technical topic doesn’t have to be boring. Your brain will learn much more quickly if

it’s not.

Touch their emotions. We now know that your ability to remember

something is largely dependent on its emotional content. You remember what

you care about. You remember when you feel something. No, we’re not talking

heart-wrenching stories about a boy and his dog. We’re talking emotions like

surprise, curiosity, fun, “what the...?” , and the feeling of “I Rule!” that comes when

you solve a puzzle, learn something everybody else thinks is hard, or realize you

know something that “I’m more technical than thou” Bob from engineering doesn’t.

Download at WoweBook.Com

you are here 4 xxxiii

the intro

If you really want to learn, and you want to learn more quickly and more deeply,
pay attention to how you pay attention. Think about how you think. Learn how you
learn.

Most of us did not take courses on metacognition or learning theory when we were
growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn how to
build programs in C#. And you probably don’t want to spend a lot of time. If you
want to use what you read in this book, you need to remember what you read. And
for that, you’ve got to understand it. To get the most from this book, or any book or
learning experience, take responsibility for your brain. Your brain on this content.

The trick is to get your brain to see the new material you’re learning
as Really Important. Crucial to your well-being. As important as
a tiger. Otherwise, you’re in for a constant battle, with your brain
doing its best to keep the new content from sticking.

Metacognition: thinking about thinking

I wonder how I
can trick my brain

into remembering
this stuff...

So just how DO you get your brain to treat C# like
it was a hungry tiger?
There’s the slow, tedious way, or the faster, more effective way.
The slow way is about sheer repetition. You obviously know that
you are able to learn and remember even the dullest of topics
if you keep pounding the same thing into your brain. With enough
repetition, your brain says, “This doesn’t feel important to him, but he keeps looking
at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning.

Download at WoweBook.Com

xxxiv intro

how to use this book

Here’s what WE did:
We used pictures, because your brain is tuned for visuals, not text. As far as your
brain’s concerned, a picture really is worth a thousand words. And when text and
pictures work together, we embedded the text in the pictures because your brain
works more effectively when the text is within the thing the text refers to, as opposed
to in a caption or buried in the text somewhere.

We used redundancy, saying the same thing in different ways and with different media types,
and multiple senses, to increase the chance that the content gets coded into more than one area
of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,
and we used pictures and ideas with at least some emotional content, because your brain
is tuned to pay attention to the biochemistry of emotions. That which causes you to feel
something is more likely to be remembered, even if that feeling is nothing more than a little
humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening
to a presentation. Your brain does this even when you’re reading.

We included more than 80 activities, because your brain is tuned to learn and remember
more when you do things than when you read about things. And we made the exercises
challenging-yet-do-able, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures,
while someone else wants to understand the big picture first, and someone else just
wants to see an example. But regardless of your own learning preference, everyone
benefits from seeing the same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you
engage, the more likely you are to learn and remember, and the longer you can stay focused.
Since working one side of the brain often means giving the other side a chance to rest, you
can be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view,
because your brain is tuned to learn more deeply when it’s forced to make evaluations and
judgments.

We included challenges, with exercises, and by asking questions that don’t always have
a straight answer, because your brain is tuned to learn and remember when it has to work at
something. Think about it—you can’t get your body in shape just by watching people at the
gym. But we did our best to make sure that when you’re working hard, it’s on the right things.
That you’re not spending one extra dendrite processing a hard-to-understand example,
or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, because you’re a person.
And your brain pays more attention to people than it does to things.

When you define a class, you define
its methods, just like a blueprint
defines the layout of the house.

You can use one blueprint to
make any number of houses,
and you can use one class to
make any number of objects.

Download at WoweBook.Com

you are here 4 xxxv

the intro

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

1

3

4

5 Drink water. Lots of it.
Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

Make this the last thing you read before
bed. Or at least the last challenging thing.

6

7

9 Write a lot of software!
There’s only one way to learn to program: writing
a lot of code. And that’s what you’re going to do
throughout this book. Coding is a skill, and the only
way to get good at it is to practice. We’re going to
give you a lot of practice: every chapter has exercises
that pose a problem for you to solve. Don’t just skip
over them—a lot of the learning happens when
you solve the exercises. We included a solution to
each exercise—don’t be afraid to peek at the
solution if you get stuck! (It’s easy to get snagged on
something small.) But try to solve the problem before
you look at the solution. And definitely get it working
before you move on to the next part of the book.

Listen to your brain.

8 Feel something.
Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke
is still better than feeling nothing at all.

Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim
the surface or forget what you just read, it’s time
for a break. Once you go past a certain point, you
won’t learn faster by trying to shove more in, and
you might even hurt the process.

Talk about it. Out loud.
Speaking activates a different part of the brain.
If you’re trying to understand something, or
increase your chance of remembering it later, say
it out loud. Better still, try to explain it out loud
to someone else. You’ll learn more quickly, and
you might uncover ideas you hadn’t known were
there when you were reading about it.

Part of the learning (especially the transfer to
long-term memory) happens after you put the
book down. Your brain needs time on its own, to
do more processing. If you put in something new
during that processing time, some of what you
just learned will be lost.

Read the “There are No Dumb Questions”
That means all of them. They’re not optional
sidebars—they’re part of the core content!
Don’t skip them.

Slow down. The more you understand,
the less you have to memorize.
Don’t just read. Stop and think. When the
book asks you a question, don’t just skip to the
answer. Imagine that someone really is asking
the question. The more deeply you force your
brain to think, the better chance you have of
learning and remembering.

Cut this out and stick it on your refrigerator.

Here’s what YOU can do to bend
your brain into submission

2 Do the exercises. Write your own notes.
We put them in, but if we did them for you,
that would be like having someone else do
your workouts for you. And don’t just look at
the exercises. Use a pencil. There’s plenty of
evidence that physical activity while learning
can increase the learning.

Download at WoweBook.Com

xxxvi intro

how to use this book

We wrote this book using Visual C# 2008 Express Edition, which uses C# 3.0 and .NET Framework 3.5. All
of the screenshots that you see throughout the book were taken from that edition, so we recommend that you
use it. If you’re using Visual Studio 2008 Standard, Professional, or Team System editions, you’ll see some small
differences, which we’ve pointed out wherever possible. You can download the Express Edition for free from
Microsoft’s website—it installs cleanly alongside other editions, as well as previous versions of Visual Studio.

 SETTING UP VISUAL STUDIO 2008 EXPRESS EDITION
�	 It’s	easy	enough	to	download	and	install	Visual	C#	2008	Express	Edition.	Here’s	the	link	to	the	Visual	Studio	

2008	Express	Edition	download	page:	
	
http://www.microsoft.com/express/download/
	
Make	sure	that	you	check	all	of	the	options	when	you	install	it.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

�	 Download	the	installation	package	for	Visual	C#	2008	Express	Edition.	Make	sure	you	do	a	complete	
installation.	That	should	install	everything	that	you	need:	the	IDE	(which	you’ll	learn	about),	SQL	Server	
Express	Edition,	and	.NET	Framework	3.5.

�	 Once	you’ve	got	it	installed,	you’ll	have	a	new	Start	menu	option:	Microsoft Visual C# 2008 Express Edition.	
Click	on	it	to	bring	up	the	IDE,	and	you’re	all	set.

What you need for this book:

If you absolutely must use an
older version of Visual Studio,
C# or the .NET Framework,
then please keep in mind that
you’ll come across topics in this
book that won’t be compatible
with your version. The C# team
at Microsoft has added some
pretty cool features to the
language. We’ll give you warnings
when we talk about any of
these topics. But definitely
keep in mind that if you’re not
using the latest version, there
will be some code in this book
that won’t work.

Download at WoweBook.Com

you are here 4 xxxvii

the intro

Read me
This is a learning experience, not a reference book. We deliberately stripped out
everything that might get in the way of learning whatever it is we’re working on at
that point in the book. And the first time through, you need to begin at the beginning, 
because the book makes assumptions about what you’ve already seen and learned.

The activities are NOT optional.
The exercises and activities are not add-ons; they’re part of the core content of the
book. Some of them are to help with memory, some for understanding, and some to
help you apply what you’ve learned. Don’t skip the written problems. The pool
puzzles are the only things you don’t have to do, but they’re good for giving your brain a
chance to think about twisty little logic puzzles.

The redundancy is intentional and important.
One distinct difference in a Head First book is that we want you to really get it. And we
want you to finish the book remembering what you’ve learned. Most reference books 
don’t have retention and recall as a goal, but this book is about learning, so you’ll see
some of the same concepts come up more than once.

Do all the exercises!
The one big assumption that we made when we wrote this book is that you want to
learn how to program in C#. So we know you want to get your hands dirty right away,
and dig right into the code. We gave you a lot of opportunities to sharpen your skills
by putting exercises in every chapter. We’ve labeled some of them “Do this!”—when
you see that, it means that we’ll walk you through all of the steps to solve a particular
problem. But when you see the Exercise logo with the running shoes, then we’ve left
a big portion of the problem up to you to solve, and we gave you the solution that we
came up with. Don’t be afraid to peek at the solution—it’s not cheating! But you’ll
learn the most if  you try to solve the problem first.

We’ve also placed all the exercise solutions’ source code on the web so you can download
it. You’ll find it at http://www.headfirstlabs.com/books/hfcsharp/

The “Brain Power” exercises don’t have answers.
For some of them, there is no right answer, and for others, part of the learning
experience of the Brain Power activities is for you to decide if and when your answers
are right.  In some of  the Brain Power exercises you will find hints to point you in the 
right direction.

We use a lot of diagrams to
make tough concepts easier
to understand.

You should do ALL of the
“Sharpen your pencil” activities

Activities marked with the Exercise (running shoe) logo are really important! Don’t skip them if you’re serious about learning C#.

If you see the Pool Puzzle logo,
the activity is optional, and if
you don’t like twisty logic, you
won’t like these either.

 mi5Agent

 ciaAgent

†

Download at WoweBook.Com

xxxviii intro

Bill MietelskiPeter Ritchie

Joe Albahari Jay Hilyard

Andy ParkerTheodore Casser

The technical review team

the review team

Lisa Kellner Daniel Kinnaer

Technical Reviewers:

When we wrote this book, it had a bunch of mistakes, issues, problems, typos, and
terrible arithmetic errors. Okay, it wasn’t quite that bad. But we’re still really grateful for
the work that our technical reviewers did for the book. We would have gone to press with
errors (including one or two big ones) had it not been for the most kick-ass review team
EVER...

First of all, we really want to thank Joe Albahari for the enormous amount of technical
guidance. He really set us straight on a few really important things, and if it weren’t
for him you’d be learning incorrect stuff. We also want to thank Lisa Kellner—this
is our third book that she’s reviewed for us, and she made a huge difference in the
readability of the final product. Thanks, Lisa! And special thanks to Jay Hilyard
and Daniel Kinnaer for catching and fixing a whole lot of our mistakes, and
Aayam Singh for actually going through and doing every one of these exercises before
we fixed them and corrected their problems. Aayam, you’re really dedicated. Thanks!

And special thanks to our favorite readers, David Briggs and Jaime Moreno, for going
above and beyond the call of duty by finding and reporting many errors that we didn’t
catch in the first printing, and to Jon Skeet for going through the whole book carefully
and helping us fix a bunch of errors.

Aayam Singh

Krishna Pala

Giuseppe Turitto

Not pictured (but
just as awesome):
Wayne Bradney,
Dave Murdoch,
and Bridgette
Julie Landers

Download at WoweBook.Com

you are here 4 xxxix

the intro

Acknowledgments
Our editor:

We want to thank our editor, Brett McLaughlin, for editing this
book. He helped with a lot of the narrative, and the comic idea in
Chapter 14 was completely his, and we think it turned out really well.
Thanks, Brett!

Lou Barr

Brett McLaughlin

There are so many people at O’Reilly we want to thank
that we hope we don’t forget anyone. First of all, the Head
First team rocks—Laurie Petrycki, Catherine Nolan,
Sanders Kleinfeld (the most super production editor ever!),
Caitrin McCullough, Keith McNamara, and Brittany
Smith. Special thanks to Colleen Gorman for her sharp
proofread, Ron Bilodeau for volunteering his time and
preflighting expertise, and Adam Witwer for offering one
last sanity check—all of whom helped get this book from
production to press in record time. And as always, we love
Mary Treseler, and can’t wait to work with her again! And
a big shout out to our other friends and editors, Andy Oram,
Isabel Kunkle, and Mike Hendrickson. And if
you’re reading this book right now, then you can thank the
greatest publicity team in the industry: Marsee Henon,
Sara Peyton, Mary Rotman, Jessica Boyd, Kathryn
Barrett, and the rest of the folks at Sebastopol.

The O’Reilly team:

Lou Barr is an amazing graphic designer who went above and
beyond on this one, putting in unbelievable hours and coming up
with some pretty amazing visuals. If you see anything in this book
that looks fantastic, you can thank her (and her mad InDesign
skillz) for it. She did all of the monster and alien graphics for the
labs, and the entire comic book. Thanks so much, Lou! You are
our hero, and you’re awesome to work with.

Sanders Kleinfeld

Download at WoweBook.Com

xl intro

Safari® Books Online
When you see a Safari® icon on the cover of your favorite technology book that means the book is
available online through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily search thousands of top tech
books, cut and paste code samples, download chapters, and find quick answers when you need the most accurate, 
current information. Try it for free at http://safari.oreilly.com.

safari books online

Download at WoweBook.Com

this is a new chapter 1

Don’t worry, Mother. With Visual
Studio and C#, you’ll be able to
program so fast that you’ll never

burn the pot roast again.

get productive with c#1

Visual Applications, in 10
minutes or less

Want to build great programs really fast?�

With C#, you’ve got a powerful programming language and a valuable tool

at your fingertips. With the Visual Studio IDE, you’ll never have to spend hours

writing obscure code to get a button working again. Even better, you’ll be able

to focus on getting your work done, rather than remembering which method

parameter was for the name for a button, and which one was for its label.

Sound appealing? Turn the page, and let’s get programming.

Want to build great programs really fast?�

With C#, you’ve got a powerful programming language and a valuable tool

at your fingertips. With the Visual Studio IDE, you’ll never have to spend hours

writing obscure code to get a button working again. Even better, you’ll be able

to focus on getting your work done, rather than remembering which method

parameter was for the name for a button, and which one was for its label.

Sound appealing? Turn the page, and let’s get programming.

Download at WoweBook.Com

2 Chapter 1

Why you should learn C#
C# and the Visual Studio IDE make it easy for you to get to the business
of writing code, and writing it fast. When you’re working with C#, the
IDE is your best friend and constant companion.

c# makes it easy

What you get with Visual Studio and C#…
With a language like C#, tuned for Windows
programming, and the Visual Studio IDE, you can focus
on what your program is supposed to do immediately:

Here’s what the IDE automates for you...
Every time you want to get started writing a program,
or just putting a button on a form, your program needs
a whole bunch of repetitive code.

using System;

using System.C
ollections.Gen

eric;

using System.W
indows.Forms;

namespace A_Ne
w_Program

{
 static cla

ss Program

 {
 /// <s

ummary>

 /// Th
e main entry p

oint for the a
pplication.

 /// </
summary>

 [STATh
read]

 static
 void Main()

 {
 Ap

plication.Enab
leVisualStyles

();

 Ap
plication.SetC

ompatibleTextR
enderingDefaul

t(false);

 Ap
plication.Run(

new Form1());

 }
 }
}

private void InitializeComponent(){
 this.button1 = new System.Windows.Forms.Button();
 this.SuspendLayout(); //
 // button1 //
 this.button1.Location = new System.Drawing.Point(105, 56);
 this.button1.Name = “button1”; this.button1.Size = new System.Drawing.Size(75, 23);
 this.button1.TabIndex = 0; this.button1.Text = “button1”; this.button1.UseVisualStyleBackColor = true;
 this.button1.Click += new System.EventHandler(this.button1_Click);

 //
 // Form1
 //
 this.AutoScaleDimensions = new System.Drawing.SizeF(8F, 16F);
 this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;
 this.ClientSize = new System.Drawing.Size(292, 267);
 this.Controls.Add(this.button1); this.Name = “Form1”; this.Text = “Form1”; this.ResumeLayout(false);}

It takes all this code just to draw a button on a form. Adding a few more visual elements to the form could take ten times as much code.

Data access

C# and the Visual Studio
IDE have pre-built
structures that handle t

he

tedious code that’s part
 of

most programming tasks.

.NET Framework
solutions

The result is a better looking application that takes less time to write.

Form Obje
ct

s

The IDE—or Visual Studio Integrated
Development Environment—is an
important part of working in C#. It’s
a program that helps you edit your
code, manage your files, and publish your
projects.

Download at WoweBook.Com

you are here 4 3

get productive with c#

 Build an application, FAST. Creating programs in C# is a snap. The
language is powerful and easy to learn, and the Visual Studio IDE does a lot
of work for you automatically. You can leave mundane coding tasks to the IDE
and focus on what your code should accomplish.

11

 Create and interact with databases. The IDE includes a simple
interface for building databases, and integrates seamlessly with SQL Server
Express, as well as several other popular database systems.

33

 Design a great looking user interface. The Form Designer in the
Visual Studio IDE is one of the easiest design tools to use out there. It
does so much for you that you’ll find that making stunning user interfaces
is one of the most satisfying parts of developing a C# application. You can
build full-featured professional programs without having to spend hours
writing a graphical user interface entirely from scratch.

22

 Focus on solving your REAL problems. The IDE does a lot for you, but
you are still in control of what you build with C#. The IDE just lets you focus on
your program, your work (or fun!), and your customers. But the IDE handles all the
grunt work, such as:

Keeping track of all of your projects

Making it easy to edit your project’s code

Keeping track of your project’s graphics, audio, icons, and other resources

Managing and interacting with databases

All this means you’ll have all the time you would’ve spent doing this routine
programming to put into building killer programs.

≥

≥

≥

≥

44

When you use C# and Visual Studio, you get all of
these great features, without having to do any extra
work. Together, they let you:

You’re going to see exactly
what we mean next.

C# and the Visual Studio IDE make
lots of things easy

Download at WoweBook.Com

4 Chapter 1

Name:

Company:

Telephone:

Email:

Client: Last call:

Laverne Smith

 XYZ Industries

(212)555-8129
Laverne.Smith@XyZindustriescom

Yes 05/26/07

The Objectville Paper Company just hired a new CEO. He loves hiking,
coffee, and nature... and he’s decided that to help save forests. He wants
to become a paperless executive, starting with his contacts. He’s heading
to Aspen to go ski for the weekend, and expects a new address book
program by the time he gets back. Otherwise… well… it won’t be just
the old CEO who’s looking for a job.

Help the CEO go paperless

the boss needs your help

You’d better find a way
to get this data onto the
CEO’s laptop quick.

Download at WoweBook.Com

you are here 4 5

get productive with c#

Windows installer

SQL
Database

The CEO wants to be able to run his
program on his desktop and laptop, so
an installer is a must.

We already know that Visual C#

makes working with databases

easy. Having contacts in a

database lets the C
EO and

the sales team all access the

information, even though t
here’s

only one copy of the
 data.

Get to know your users’ needs before you
start building your program
Before we can start writing the address book application—or any
application—we need to take a minute and think about who’s going to
be using it, and what they need from the application.

 The CEO needs to be able to run his address book program
at work and on his laptop too. He’ll need an installer to
make sure that all of the right files get onto each machine.

11

 The Objectville Paper company sales team wants to
access his address book, too. They can use his data to
build mailing lists and get client leads for more paper
sales.

The CEO figures a database would be the best way that
everyone in the company to see his data, and then he
can just keep up with one copy of all his contacts.

22

Download at WoweBook.Com

6 Chapter 1

here’s your goal

SELECT command

INSERT command

UPDATE command

DELETE command

PictureBox o
b

je
c

t

TableAdapte
r

o
b

je
ct

BindingSour
ce

 o
b

je
ct

.NET Visual Objects .NET Database Objects

Database

diagram

Here’s what you’re going to build

You’ll be building
a Windows form with a

bunch of visual c
ontrols on it.

The application has a separate data layer that interacts with the database.

You’re going to need an application with a graphical user
interface, objects to talk to a database, the database itself, and
an installer. It sounds like a lot of work, but you’ll build all of
this over the next few pages.

Here’s the structure of the program we’re going to create:

Each of these objects
represents a control
on the address book
form we’ll create. We’ll need objects to talk to our tables, a diagram to let our application know what the database structure is, and more.

System.Window
s.

Fo
rm

 o
b

je
c

t

ToolBar o

bj
ec

t

data entry
 o

bj
ec

ts

DataSet o
bj

ec
t

BindingNavig
at

or
 o

b
je

ct

Download at WoweBook.Com

you are here 4 7

get productive with c#

SQL
Database

Table

DB diagram
support objects

Data Storage Deployment Package

Windows installer

Database

.exe

Program
file

The data is all stored in a table in a SQL Server Express database.
Once the program’s built,
it’ll be packaged up into a
Windows installer.

Here’s the database itself, which
Visual Studio will help us create
and maintain.

The sales
department will just need to point and click to install and then use his program.

Download at WoweBook.Com

8 Chapter 1

let’s get started

C#

Form1.Designer.cs

C#

Form1.cs

The code that
defines the form and its objects lives here.

This file contains the C#
code that defines the
behavior of the form.

What you do in Visual Studio…
Go ahead and start up Visual Studio, if you haven’t already. Skip over
the start page and select New Project from the File menu. Name your
project “Contacts” and click OK.

C#

Program.cs

This has the code
that starts up
the program and
displays the form.

What Visual Studio does for you…
As soon as you save the project, the IDE creates a Form1.cs, Form1.
Designer.cs, and Program.cs file when you create a new project. It adds
these to the Solution Explorer window, and by default, puts those files in My
Documents\Visual Studio 2008\Projects\Contacts\.

Visual Studio creates all three of
these files automatically.

 Things may
look a bit
different in
your IDE.

This is what
the “New Project” window
looks like in Visual
Studio 2008 Express
Edition. If you’re using
the Professional or Team
Foundation edition, it
might be a bit different. But
don’t worry, everything still
works exactly the same.

Make sure that you save your project
as soon as you create it by selecting
“Save All” from the File menu—that’ll
save all of the project files out to
the folder. If you select “Save”, it
just saves the one you’re working on.

Download at WoweBook.Com

you are here 4 9

get productive with c#

Below is what your screen probably looks like right now. You should be
able to figure out what most of these windows and files are based on
what you already know. In each of the blanks, try and fill in an annotation
saying what that part of the IDE does. We’ve done one to get you started.

This toolbar has buttons that apply to what you’re currently doing in the IDE.

We’ve blown up this
window below so you
have more room.

If your IDE doesn’t look exactly like this
picure, you can select “Reset Window Layout”
from the Window menu.

You can also bring up these windows by
selecting Solution Explorer, Properties, or
Error List from the View menu.

Download at WoweBook.Com

10 Chapter 1

We’ve filled in the annotations about the different sections of the Visual
Studio C# IDE. You may have some different things written down, but you
should have been able to figure out the basics of what each window and
section of the IDE is used for.

This toolbar has buttons that apply to what you’re currently doing in the IDE.

know your ide

This window
shows all of the
properties of
the controls on
your form.

This is the
toolbox. It
has a bunch
of visual
controls
that you can
drag onto
your form.

This bottom pane is for
debugging. It shows you
when there are errors in
your code.

The Form1.cs and Program.cs files that the IDE created for you when you added the new project appear in the Solution Explorer.

You can switch between files using the Solution Explorer in the IDE.

Download at WoweBook.Com

you are here 4 11

get productive with c#

Q: So if the IDE writes all this code
for me, is learning C# just a matter of
learning how to use the IDE?

A:	No.	The	IDE	is	great	at	automatically	
generating	some	code	for	you,	but	it	can	
only	do	so	much.	There	are	some	things	it’s	
really	good	at,	like	setting	up	good	starting	
points	for	you,	and	automatically	changing	
properties	of	controls	on	your	forms.	But	
the	hard	part	of	programming—figuring	
what	your	program	needs	to	do	and	making	
it	do	it—is	something	that	no	IDE	can	do	
for	you.	Even	though	the	Visual	Studio	IDE	
is	one	of	the	most	advanced	development	
environments	out	there,	it	can	only	go	so	far.	
It’s	you—not	the	IDE—who	writes	the	code	
that	actually	does	the	work.

Q: I created a new project in Visual
Studio, but when I went into the “Projects”
folder under My Documents, I didn’t see it
there. What gives?

A:	First	of	all,	you	must	be	using	Visual	
Studio	2008—in	2005,	this	doesn’t	happen.	
When	you	first	create	a	new	project	in	
Visual	Studio	2008,	the	IDE	creates	the	
project	in	your	Local	Settings\
Application	Data\Temporary	
Projects	folder.	When	you	save	the	
project	for	the	first	time,	it	will	prompt	you	
for	a	new	filename,	and	save	it	in	the	My
Documents\Visual	Studio
2008\Projects	folder.	If	you	try	to	
open	a	new	project	or	close	the	temporary	
one,	you’ll	be	prompted	to	either	save	or	
discard	the	temporary	project.

Q: What if the IDE creates code I don’t
want in my project?

A:	You	can	change	it.	The	IDE	is	set	up	to	
create	code	based	on	the	way	the	element	
you	dragged	or	added	is	most	commonly	
	

	
used.	But	sometimes	that’s	not	exactly	what	
you	wanted.	Everything	the	IDE	does	for	
you—every	line	of	code	it	creates,	every	file	
it	adds—can	be	changed,	either	manually	by	
editing	the	files	directly	or	through	an	easy-
to-use	interface	in	the	IDE.

Q: Is it OK that I downloaded and
installed Visual Studio Express? Or do
I need to use one of the versions of
Visual Studio that isn’t free in order to do
everything in this book?

A:	There’s	nothing	in	this	book	that	you	
can’t	do	with	the	free	version	of	Visual	Studio	
(which	you	can	download	from	Microsoft’s	
website).	The	main	differences	between	
Express	and	the	other	editions	(Professional	
and	Team	Foundation)	aren’t	going	to	get	
in	the	way	of	writing	C#	and	creating	fully	
functional,	complete	applications.	

Q: Can I change the names of the files
the IDE generates for me?

A:	Absolutely.	When	you	create	a	new	
project,	the	IDE	gives	you	a	default	form	
called	Form1	(which	has	files	called	Form1.cs,	
Form1.Designer.cs	and	Form1.resx).	But	you	
can	use	the	Solution	Explorer	to	change	the	
names	of	the	files	to	whatever	you	want.	By	
default,	the	names	of	the	files	are	the	same	
as	the	name	of	the	form.	If	you	change	the	
names	of	the	files,	you’ll	be	able	to	see	in	
the	Properties	window	that	form	will	still	be	
called	Form1.	You	can	change	the	name	of	
the	form	by	changing	the	“(Name)”	line	in	the	
Properties	window.	If	you	do,	the	filenames	
won’t	change.	
	
C#	doesn’t	care	what	names	you	choose	for	
your	files	or	your	forms	(or	any	other	part	of	
the	program).	But	if	you	choose	good	names,	
it	makes	your	programs	easier	to	work	with.	
For	now,	don’t	worry	about	names—we’ll	talk	
a	lot	more	about	how	to	choose	good	names	
for	parts	of	your	program	later	on.

Q: I’m looking at the IDE right now,
but my screen doesn’t look like yours! It’s
missing some of the windows, and others
are in the wrong place. What gives?

A:	If	you	click	on	the	“Reset	Window	
Layout”	command	under	the	“Window”	menu,	
the	IDE	will	restore	the	default	window	layout	
for	you.	Then	your	screen	will	look	just	like	
the	ones	in	this	chapter.

Visual Studio will
generate code
you can use as a
starting point for
your applications.

Making sure
the application
does what it’s
supposed to do is
still up to you.

Download at WoweBook.Com

12 Chapter 1

Adding controls and polishing the user interface is as easy as
dragging and dropping with the Visual Studio IDE. Let’s add a
logo to the form:

Develop the user interface

a picturebox is worth a thousand words

 Use the PictureBox control to add a picture.
Click on the PictureBox control in the Toolbox, and drag it
onto your form. In the background, the IDE added code to
Form1.Designer.cs for a new picture control.

11

C#

Form1.Designer.cs

Every time you make a change to a control’s properties on the form, the code in Form1.Designer.cs is getting changed by the IDE.

If you don’t see
the toolbox, try
hovering over the
word “Toolbox”
that shows up
in the upper
left-hand corner
of the IDE. If it’s
not there, select

“Toolbox” from
the View menu to
make it appear.

 It’s OK if you’re not a pro at user
interface design.

We’ll talk a lot more about designing
good user interfaces later on. For now,

just get the logo and other controls on your form, and
worry about behavior. We’ll add some style later.

Download at WoweBook.Com

you are here 4 13

get productive with c#

You are Here

 Set the PictureBox to Zoom mode.
Every control on your form has properties that you can
set. Click the little black arrow for a control to access
these properties. Change the PictureBox’s Size property
to “Zoom” to see how this works:

22

Click on this little
black arrow to access
a control’s properti

es.

Choose “Zoom” so that the PictureBox frame will change to match the size of the picture you put in it.

 Download the Objectville Paper Company logo.
Download the Objectville Paper Co. logo from Head First Labs (http://
www.headfirstlabs.com/books/hfcsharp) and save it to your hard drive.
Then click the PictureBox properties arrow, and select Choose Image. You’ll see a
Select Resources window pop up. Click the “Local Resource” radio button to enable the

“Import…” button at the top of the form. Click that button, find your logo, and you’re all set.

33

Here’s the OPC logo,
and the PictureBox
zooms to get the size

just right.

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

You can also use the
“Properties” window in
the IDE to set the
Size property. The
little black arrow is
just there to make
it easy to access
the most common
properties of any
control.

Then click “Choose Image” to bring up the Select Resource dialog box so you can import a local resource.

Download at WoweBook.Com

14 Chapter 1

Every time you do something in the Visual Studio IDE, the IDE is
writing code for you. When you created the logo and told Visual
Studio to use the image you downloaded, Visual Studio created a resource
and associated it with your application. A resource is any graphics file,
audio file, icon, or other kind of data file that gets bundled with your
application. The graphic file gets integrated into the program, so that
when it’s installed on another computer, the graphic is installed along with
it and the PictureBox can use it.

When you dragged the PictureBox control onto your form, the IDE
automatically created a resource file called Form1.resx to store that
resource and keep it in the project. Double-click on this file, and you’ll be
able to see the newly imported image.

Visual Studio, behind the scenes

This image is now a resource of the
Contact List application.

C#

Form1.Designer.csC#

Form1.cs C#

Program.cs

C#

Form1.resx

Here are the file
s

Visual Studio
created earlier.

conserving c#’s natural resources

When you imported the image, the
IDE created this file for you.
It contains all of the resources
(graphics, video, audio and other
stored data) associated with Form1.

Go to the Solution Explorer and click on the plus icon next to Form1.cs to expand it (if it’s not already expanded). This will display two files: Form1.Designer.cs and Form1.resx. Double-click on Form1.resx, click on the arrow next to “Strings”, and select “Images” from the drop-down list (or hit Ctrl-2) to see the logo that you imported. That file is what links it to the PictureBox, and the IDE added code to do the linking.
If you chose the other
“Import...” button from the
Select Resource dialog on
the last page, then your
image will show up in the
Resources folder in the
Solution Explorer instead.
Don’t worry—just go back
to Select Resources, choose
“Local Resource,” and
reimport the image into the
resources, and it’ll show up
here.

Download at WoweBook.Com

you are here 4 15

get productive with c#

Add to the auto-generated code
The IDE creates lots of code for you, but you’ll still want to get
into this code and add to it. Let’s set the logo up to show an About
message when the users run the program and click on the logo.

When you’re editing a form in the IDE, double-clicking on any of
the toolbox controls causes the IDE to automatically add code to
your project. Make sure you’ve got the form showing in the IDE,
and then double-click on the PictureBox control. The IDE will
add code to your project that gets run any time a user clicks on the
PictureBox. You should see some code pop up that looks like this:

public partial class Form1 : Form
{

 public Form1()
 {

 InitializeComponent();

 }

 private void pictureBox1_Click(object sender, EventArgs e)

 {

 MessageBox.Show(“Contact List 1.0.\nWritten by: Your Name”, “About”);

 }
}

When you double-clicked on the PictureBox control,
the IDE created this method. It will run every time
a user clicks on the logo in the running application.

When you double-click on the
PictureBox, it will open this
code up with a cursor blinking
right here. Ignore any windows
the IDE pops up as you type;
it’s trying to help you, but we
don’t need that right now.

Type in this line of code. It causes a message box to popup with the text you provide. The box will be titled “About”.

Q: What’s a method?

A:	A	method	is	just	a	named block of code.	
We’ll	talk	a	lot	more	about	methods	in	Chapter	2.

Q: What does that \n thing do?

A:	That’s	a	line	break.	It	tells	C#	to	put	
“Contact	List	1.0.”	on	one	line,	and	then	start	a	
new	line	for	“Written	by:”.

This method name gives you a
good idea about when it runs:
when someone clicks on this
PictureBox control.

Once you’ve typed in the line
of code, save it using the Save
icon on the IDE toolbar or
by selecting “Save” from the
File menu. Get in the habit of
doing “Save All” regularly!

Download at WoweBook.Com

16 Chapter 1

run the app (already!)

Press the F5 key on your keyboard, or click the green
arrow button () on the toolbar to check out what you’ve
done so far. (This is called “Debugging”, which just means
running your program using the IDE.) You can stop
debugging by selecting “Stop Debugging” from the Debug
menu or clicking this toolbar button: .

You can already run your application

Clicking on the
OPC logo brings up
the About box you
just coded.

All three of these buttons work—and you didn’t have to write any code to make them work.

Q: In my IDE, the green arrow is marked as
“Debug”. Is that a problem?

A:	No.	Debugging,	at	least	for	our	purposes	
right	now,	just	means	running	your	application	
inside	the	IDE.	We’ll	talk	a	lot	more	about	
debugging	later,	but	for	now,	you	can	simply	think	
about	it	as	a	way	to	run	your	program.

Q: I don’t see the Stop Debugging button
on my toolbar. What gives?

A:	The	Stop	Debugging	button	only	shows	
up	in	a	special	toolbar	that	only shows up	
when	your	program	is	running.	Try	starting	the	
application	again,	and	see	if	it	appears.

When you run your program, Visual Studio copies
all of your files to My Documents\Visual	
Studio	2008\Projects\Contacts\
Contacts\bin\debug. You can even hop over
to that directory and run your program by double-
clicking on the .exe file the IDE creates.

Where are my files?

C#

Form1.
Designer.cs

C#

Form1.resx

C#

Form1.cs

C#

Program.cs

C#

bin

Properties

Contacts.csproj

This isn’t a mistake; there are two levels of folders. The inner folder has the actual C# code files.

C# turns your
program into a
file that you can
run, called an
executable. You’ll
find it in here, in
the debug folder.

Download at WoweBook.Com

you are here 4 17

get productive with c#

We’ve built a form and created a PictureBox object that pops up a
message box when it’s clicked on. Next, we need to add all the other
fields from the card, like the contact’s name and phone number.

Let’s store that information in a database. Visual Studio can connect
fields directly to that database for us, which means we don’t have to
mess with lots of database access code (which is good). But for that
to work, we need to create our database so that the controls on the
form can hook up to it. So we’re going to jump from the .NET Visual
Objects straight to the Data Storage section.

Here’s what we’ve done so far

SQL
Database

Visual Studio can generate code to connect your
form to a database, but you need to have the
database in place BEFORE generating that code.

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

Here’s what we’ve already done… …but we still need some
objects to interact
with the data we’ll put

in our database.

This step is about connecting our form to the database, so we’re not ready for it yet, since we don’t have a database.

So we need to focus
on this step next:
creating our database,
and putting some
initial data into it.

Download at WoweBook.Com

18 Chapter 1

 If you’re not using
the Express edition,
you’ll see “Server
Explorer” instead of
“Database Explorer”.

The Visual Studio 2008 Professional
and Team Foundation editions don’t
have a Database Explorer window.
Instead, they have a Server Explorer
window, which does everything the
Database Explorer does, but also lets
you explore data on your network.

Before we add the rest of the fields to the form, we need
to create a database to hook the form up to. The IDE
can create lots of the code for connecting our form to
our data, but we need to define the database itself first.

Make sure you’ve stopped debugging before you continue.

We need a database to store our information

 Add a new SQL database to your project.
In the Solution Explorer, right-click the Contacts project,
select Add, and then choose New Item. Choose the SQL
Database icon, and name it ContactDB.mdf.

11

 Cancel the Data Source Configuration Wizard.
For now, we want to skip configuring a data source, so
click the Cancel button. We’ll come back to this once
we’ve set up our database structure.

33

The SQL
Database icon
only works if you
have SQL Server
Express installed.
Flip back to the
README if
you’re not sure
how to do this.

 View your database in the Solution Explorer.
Go to the Solution Explorer, and you’ll see that
ContactDB has been added to the file list. Double click
ContactDB.mdf in the Solution Explorer and look at the
left side of your screen. The Toolbox has changed to a
Database Explorer.

44

save it for later

SQL

ContactDB.mdf

This file is our
new database.

Pick the
right icon for
the version
you’re using.
Choose SQL
Database if
you’re using
Visual Studio
Express 2005
and Service-
Based
Database if
you’re using
2008.

 Click on the Add button in the Add New Item
window.

22

Download at WoweBook.Com

you are here 4 19

get productive with c#

SQL

ContactDB.mdf

The SQL database is in this file.
We’re just about to define tables
and data for it, and all of that
will be stored in here too.

When you told the IDE to add a new SQL database to
your project, the IDE created a new database for you. A
SQL database is a system that stores data for you in an
organized, interrelated way. The IDE gives you all the
tools you need to maintain your data and databases.

Data in a SQL database lives in tables. For now, you
can think of a table like a spreadsheet. It organizes your
information into columns and rows. The columns are the
data categories, like a contact’s name and phone number,
and each row is the data for one contact card.

The IDE created a database

Tables Stored Procedures

SQL
Database

SQL stands for Structured Query Language.
It’s a programming language for accessing data in
databases. It’s got its own syntax, keywords, and
structure. SQL code takes the form of statements
and queries, which access and retrieve the data.
A SQL database can hold stored procedures,
which are a bunch of SQL statements and queries
that are stored in the database and can be run at
any time. The IDE generates SQL statements and
stored procedures for you automatically to let your
program access the data in the database.

SQL is its own language

A SQL database stores your data, and has information about how it’s structured and SQL code to help you access it.
Your data’s stored in a
table with columns and
rows, like in a spreadsheet.

Stored procedures are
statements that let you
work with your data easily.

[note from marketing: Can we get a plug
for Head First SQL in here?]

You are Here

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

Download at WoweBook.Com

20 Chapter 1

data storage made easy

Creating the table for the Contact List
We have a database, and now we need to store information
in it. But our information actually has to go into a table, the
data structure that databases use to hold individual bits of
data. For our application, let’s create a table called “People”
to store all the contact information:

 Add a table to the ContactDB database.
Right click on Tables in the Database Explorer, and select
Add New Table. This will open up a window where you can
define the columns in the table you just created.

11

Now we need to add columns to our table. First, let’s add a
column called ContactID to our new People table, so that
each Contact record has its own unique ID.

 Add a ContactID column to the People table.
Type “ContactID” in the Column Name field, and
select Int from the Data Type dropdown box. Be sure to
uncheck the Allow Nulls checkbox.

Finally, let’s make this the primary key of our table.
Highlight the ContactID column you just created, and
click the Primary Key button. This tells the database
that each entry will have a unique primary key entry.

22

This is the Primary Key button. A primary key helps
your database look up records quickly.

Q: What’s a column again?

A:	A	column	is	one	field	of	a	table.	
So	in	a	People	table,	you	might	have	a	
FirstName	and	LastName	column.	It	will	
always	have	a	data	type,	too,	like	String	or	
Date	or	Bool.

Q: Why do we need this ContactID
column?

A:	It	helps	to	have	a	unique	ID	for	each	
record	in	most	database	tables.	Since	
we’re	storing	contact	information	for	
individual	people,	we	decided	to	create	a	
column	for	that,	and	call	it	ContactID.

Q: What’s that Int from Data Type
mean?

A:	The	data	type	tells	the	database	what	
type	of	information	to	expect	for	a	column.	
Int	stands	for	integer,	which	is	just	a	whole	
number.	So	the	ContactID	column	will	have	
whole	numbers	in	it.

Q: This is a lot of stuff. Should I be
getting all of this?

A:	No,	it’s	OK	if	you	don’t	understand	
everything	right	now.	Focus	on	the	basic	
steps,	and	we’ll	spend	a	lot	more	time	on	
databases	in	the	later	chapters	of	the	book.	
And	if	you’re	dying	to	know	more	right	away,	
you	can	always	pick	up	Head First SQL	to	
read	along	with	this	book.

Download at WoweBook.Com

you are here 4 21

get productive with c#

This will make it so that the ContactID field updates automatically whenever a new record is added.

It’s important
that you leave this
unchecked. Since
the primary key is
the main way your
program will locate
records, it always
needs to have a
value.

 Tell the database to auto-generate IDs.
Since ContactID is a number for the database, and not
our users, we can tell our database to handle creating and
assigning IDs for us automatically. That way, we don’t have
to worry about writing any code to do this.

In the properties below your table, scroll down to Identity
Specification, click the + button, and select Yes next to the
(Is Identity) property.

33

This window is what you use
to define your table and
the data it will store.

You are Here

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

You’ll need to click on the right column and
select Yes from the dropdown next to IsIdentity
to designate ContactID as your record
Identifier.

Download at WoweBook.Com

22 Chapter 1

let’s table this discussion

The blanks on contact card are
columns in our People table
Now that you’ve created a primary key for the table, you need
to define all of the fields you’re going to track in the database.
Each field on our written contact card should become a
column in the People table.

Each blank on the card should map to a column in the people table.

People

For each person, we want to store data, her name, company, phone number, email address, if she’s an OPC client, and date of the last time she was called.

What kinds of problems could result from having
multiple rows stored for the same person?

Name:

Company:

Telephone:

Email:

Client: Last call:

Laverne Smith

 XYZ Industries

(212)555-8129
Laverne.Smith@XyZindustries.com

Yes 05/26/07

Download at WoweBook.Com

you are here 4 23

get productive with c#

Now that you’ve created a People table and a primary key column, you need to add columns for all of the data
fields. See if you can work out which data type goes with each of the columns in your table, and also match the
data type to the right description.

Last Call

Name

ContactID

Client?

int

bit

nvarchar(50)

datetime

Column Name

This type stores a date
and time

A Boolean true/false type

A string of letters,
numbers and other
characters with a
maximum length of 50

A whole number

DescriptionData Type

Download at WoweBook.Com

24 Chapter 1

it’s just my type

Now that you’ve created a People table and a primary key column, you need to add columns for all of the data
fields. See if you can work out which data type goes with each of the columns in your table, and also match the
data type to the right description.

Last Call

Name

ContactID

Client?

int

bit

nvarchar(50)

datetime

Column Name

This type stores a date
and time

A Boolean true/false type

A string of letters,
numbers and other
characters with a
maximum length of 50

A whole number

DescriptionData Type

Download at WoweBook.Com

you are here 4 25

get productive with c#

If you uncheck
Allow Nulls, the
column must
have a value.

Click on the Save button on the toolbar to save your new table. You’ll be
asked for a name. Call it “People” and click OK.

Bit fields
hold True or
False values
and can be
represented
as a checkbox.

Finish building the table
Go back to where you entered the ContactID column
and add the other five columns from the contact card.
Here’s what your database table should look like
when you’re done:

Some cards might have some missing information, so we’ll let certain columns be blank.

We’ve been talking about t
his

table as the “People” tab
le, but

it’s not until this step th
at you

give it an official name. ContactDB

People

This creates a People table, which goes in the ContactDB database.

You are Here

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

Download at WoweBook.Com

26 Chapter 1

map it out

The Visual Studio IDE is built to work with databases, and it
comes with a lot of built-in tools that help you when you’re
handling a lot of data. One of the most powerful tools you
have is the database diagram, which you can use to view
and edit complex relationships between the tables in your
database. So let’s go ahead and build a database diagram for
your database.

Diagram your data

 Create a new database diagram.
Go to the Database Explorer window and right-click on the
Database Diagrams node. Select Add New Diagram.

11

 Let the IDE generate access code.
Before you tell the IDE about your specific table, it needs to
create some basic stored procedures for interacting with your
database. Just click Yes here, and let the IDE go to work.

22

The IDE creates several

stored procedures

that allow your code

to interact with the

database you crea
ted.

 Select the tables you want to work with.
Select the People table from the window that pops up, and
click Add. Now the IDE is ready to generate code specific
to your table.

33

When you have databases with multiple tables, each table will show up as an entry on this window.

Remember, these options
are all under ContactDB,
so they all apply to that
specific database.

 In very rare cases, a few
people sometimes have
problems getting the SQL
database to work.

If you run into any trouble, don’t worry—go
to the Head First C# forum at http://
www.headfirstlabs.com/ for help
troubleshooting the problem.

Download at WoweBook.Com

you are here 4 27

get productive with c#

This is just a pictur
e of the

database design y
ou’ve just done.

It marks the ContactID field as

your primary key and lists
off all

of the columns in the table.

If you had any other
tables in the database you
wanted diagrammed, they
would appear here, too.

A database diagram describes your tables
to the Visual Studio IDE. The IDE will
read your database and build a database
diagram for you automatically.

 Name your diagram PeopleDiagram.
Select File>Save Diagram. You’ll be asked to name your
new database diagram. Call it PeopleDiagram, and you’re
all set.

44

You are Here

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

The database diagram is
shown here visually. It’s a
very simple representation
of your table.

If you’re using Visual
Studio 2005, select
File>Save All instead.

Download at WoweBook.Com

28 Chapter 1

Now you’re ready to start entering cards into the database.
Here are some of the boss’s contacts—we’ll use those to
set up the database with a few records.

adding your data

Type “True” or “F
alse”

in the Client colu
mn.

That’s how
 SQL stores

yes or no
info.

Once you see the Table grid in the
main window, go ahead and add all of
the data below. (You’ll see all NULL
values at first—just type over them
when you add your first row. And
ignore the exclamation points that
appear next to the data.) You don’t
need to fill in the ContactID column,
that happens automatically.

22

Expand Tables and then right click
on the People Table in the Database
Explorer (or Server Explorer) and
select Show Table Data.

11

Insert your card data into the database

Your job is to enter the data
from all six of these cards
into the People table.

Name:

Company:

Telephone:

Email:

Client: Last call:

Liz Nelson

JTP

(419)555-2578

LizNelson@JTP.ORg

Yes
03/04/06

Name:

Company:

Telephone:

Email:

Client: Last call:

Lucinda Ericson

Ericson Events

(212)555-9523
Lucy@EricsonEvents.info

No 05/17/07

Name:

Company:

Telephone:

Email:

Client: Last call:

Lloyd Jones

Black Box inc.

(718)555-5638

LJones@Xblackboxinc.com

Yes 05/26/07

Download at WoweBook.Com

you are here 4 29

get productive with c#

Name:

Company:

Telephone:

Email:

Client: Last call:

Laverne Smith

 XYZ Industries

(212)555-8129
Laverne.Smith@XyZindustries.com

Yes 05/26/07

“Save All” tells the IDE to save
everything in your application.
That’s different from “Save”, which
just saves the file you’re working on.

Once you’ve entered all six records,
select Save All from the File menu
again. That should save the records
to the database.

33

Q: So what happened to the data after I entered it? Where
did it go?

A:	The	IDE	automatically	stored	the	data	you	entered	into	the	
People	table	in	your	database.	The	table,	its	columns,	the	data	
types,	and	all	of	the	data	inside	it	is	all	stored	in	the	SQL	Server	
Express	file,	ContactDB.mdf.	That	file	is	stored	as	part	of	your	
project,	and	the	IDE	updates	it	just	like	it	updates	your	code	files	
when	you	change	them.

Q: Okay, I entered these six records. Will they be part of
my program forever?

A:	Yes,	they’re	as	much	a	part	of	the	program	as	the	code	
that	you	write	and	the	form	that	you’re	building.	The	difference	
is	that	instead	of	being	compiled	into	an	executable	program,	
the	ContactDB.mdf	file	is	copied	and	stored	along	with	the	
executable.	When	your	application	needs	to	access	data,	it	reads	
and	writes	to	ContactDB.mdf,	in	the	program’s	output	directory.

SQL

ContactDB.mdf

This file is actually a SQL database, and your program can use it with the code the IDE generated for you.

Name:

Company:

Telephone:

Email:

Client: Last call:

Sarah Kalter
 Kalter, Riddle, and Stoft

(614)555-5641
Sarah@KRS.org

no 12/10/05

Name:

Company:
Telephone:

Email:

Client: Last call:

Matt Franks

 XYZ Industries

(212)555-8125
Matt.Franks@XyZindustries.com

Yes 05/26/07

Objectville Paper Company is in the
United States, so the CEO writes
dates so that 05/26/07 means May
26, 2007. If your machine is set to
a different location, you may need to
enter dates differently; you might
need to use 26/05/07 instead.

Download at WoweBook.Com

30 Chapter 1

We’re finally ready to build the .NET database objects that our
form will use to talk to your database. We need a data source,
which is really just a collection of SQL statements your program
will use to talk to the ContactDB database.

You need to close both the data grid and the diagram to get back to your form.

the data’s all in there

The data source you’re creating will handle all the interactions between your form and your database.

Connect your form to your database
objects with a data source

 Go back to your application’s form.
Close out the People table and the ContactDB database
diagram. You should now have the Form1.cs [Design] tab visible.

11

 Add a new data source to your application.
This should be easy by now. Click the Data menu, and then
select Add New Data Source… from the drop down.

22

Download at WoweBook.Com

you are here 4 31

get productive with c#

C#

ContactDBDataSet.
Designer.cs

XML

ContactDBDataSet.xsd

These steps connect your new data source with the People table in the ContactDB database.

SQL

ContactDB.mdf

These files are what’s
generated by the data
source you just setup.

Here’s your existing form.

This file is your database.

Now your form can use the data
source to interact with the
ContactDB database.

You are Here

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

 Configure your new data source.
Now you need to setup your data source to use the ContactDB
database. Here’s what to do:

Select Database and click the Next button.

Click Next in the “Choose your Data Connection”
screen.

Make sure the Save the connection checkbox is checked
in the “Save the Connection” screen that follows and
click Next.

In the “Choose Your Objects” screen, click the Table
checkbox.

In the Dataset Name field, make sure it says
“ContactDBDataSet” and click Finish.

≥

≥

≥

≥

≥

33

Download at WoweBook.Com

32 Chapter 1

All of the columns you created should show up here.

Click this arrow and choose Details to

tell the IDE to add individual controls

to your form rather than one large

spreadsheet-like data control.

Now we can go back to our form, and add some more controls. But
these aren’t just any controls, they are controls that are bound to our
database, and the columns in the People table. That just means that
a change to the data in one of the controls on the form automatically
changes the data in the matching column in the database.

Here’s how to create several database-driven controls:

Add database-driven controls to your form

bind it all together

It took a little work, but now we’re back to creating form objects that interact with our data storage.

 Select the data source you want to use.
Select Show Data Sources from the Data pull down menu. This
will bring up the Data Sources window, showing the sources you
have setup for your application.

11

This window shows you all your data sources. We’ve only got one setup, but you could have more for different tables or databases.

You can also
look for, and
click on, the
Data Sources
tab along the
bottom of your
Database
Explorer window.

 Select the People table.
Under the ContactDBDataSet, you should see the People table and all of the columns in
it. Click the plus sign next to the People table to expand it—you’ll see the columns that you
added to your table. When you click on the People table in the Data Sources window and drag
it onto your form, the IDE automatically adds data controls to your form that the user can use
to browse and enter data. By default it adds a DataGridView, which lets the user work with
the data using one big spreadsheet-like control. Click the arrow next to the People table and
select Details—that tells the IDE to add individual controls to your form for each column in
the table.

22

If you don’t see this tab,
select “Show Data Sources”
from the Data menu.

Download at WoweBook.Com

you are here 4 33

get productive with c#

When you dragged
the People table
onto the form, a
control was created
for each column in
the table.

These won’t
show up on
your form, but
represent the
data set the
IDE created to
interact with
the People table
and ContactDB
database.

The IDE
creates this
toolbar for
navigating
through the
People table.

This object connects the form to your People table. This adapter allows your
controls to interact
with SQL commands
that the IDE and data
source generated for you.

The binding navigator connects the toolbar controls to your table.

 Create controls that bind to the People table.
Drag and drop the People table onto your form. You should see
controls appear for each column in your database. Don’t worry
too much about how they look right now; just make sure that
they all appear on the form.

33

If you accidentally click out of the form you’re working on, you
can always get back to it by clicking the “Form1.cs [Design]”
tab, or opening Form1.cs from the Solution Explorer.

You are Here

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

Download at WoweBook.Com

34 Chapter 1

Right now, the form works. But it doesn’t look that great. Your
application has to do more than be functional. It should be
easy to use. With just a few simple steps, you can make the
form look a lot more like the paper cards we were using at the
beginning of the chapter.

make it pretty

Blue lines will show
up on the form as
you drag controls
around. They’re
there to help you
line the fields up.

Good programs are intuitive to use

Our form would
be more intuitive
if it looked
a lot like the
contact card.

Line up your fields and labels.
Line up your fields and labels along the left edge of
the form. Your form will look like other applications,
and make your users feel more comfortable using it.

11

Change the Text Property on the Client checkbox.
When you first drag the fields onto the form your Client
Checkbox will have a label to the right that needs to be
deleted. Right below the Solution Explorer, you’ll see the
properties window. Scroll down to the Text property and
delete the “checkbox1” label.

22

Delete this word to make
the label go away.

Name:

Company:

Telephone:

Email:

Client: Last call:

Laverne Smith

 XYZ Industries

(212)555-8129
Laverne.Smith@XyZindustriescom

Yes 05/26/07

Download at WoweBook.Com

you are here 4 35

get productive with c#

The Text property controls the heading on your form’s title bar.

Make the application look professional.
You can change the name of the form by clicking on any space
within the form, and finding the Text property in the Properties
window of your IDE. Change the name of the form to

“Objectville Paper Co. - Contact List.”

You can also turn off the Maximize and Minimize buttons
in this same window, by looking for the MaximizeBox and
MinimizeBox properties. Set these both to False.

33

The Properties window

should be right be
low

Solution Explorer, in

the lower right pane of

your IDE.

A good application not only works, but is easy
to use. It’s always a good idea to make sure it
behaves as a typical user would expect it to.

You are Here

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

The reason you want to turn off the Maximize button is that maximizing your form won’t change the positions of the controls, so it’ll look weird.

If you don’t have a Properties window, you can turn
it on by selecting it from the View drop-down menu.

Download at WoweBook.Com

36 Chapter 1

Okay, just one more thing to do… run your program and make sure
it works the way you think it should! Do it the same way you did
before—press the F5 key on your keyboard, or click the green arrow
button on the toolbar (or choose “Run” from the Debug menu).

You can always run your programs at any time, even when they’re not
done—although if there’s an error in the code, the IDE will tell you
and stop you from executing it.

Click the X box in the corner to stop the program so you can move on to the next step.

The IDE builds first, then runs.
When you run your program in the IDE it actually does two things. First it
builds your program, then it executes it. This involves a few distinct parts.
It compiles the code, or turns it into an executable file. Then it places the
compiled code, along with any resources and other files, into a subdirectory
underneath the bin folder.

In this case, you’ll find the executable and SQL database file in bin/
debug. Since it copies the database out each time, any changes you
make will be lost the next time you run inside the IDE. But if you run the
executable from Windows, it’ll save your data—until you build again, at
which point the IDE will overwrite the SQL database with a new copy that
contains the data you set up from inside the Database Explorer.

okay, one last thing…

Test drive

Building your
program
overwrites
the data in
your database.

These controls
let you page
through the
different records
in the database.

We’ll spend more time
on this in the next
chapter.

 Every time you
build your
program, the
IDE puts a
fresh copy of
the database
in the bin

folder. This will overwrite
any data you added when
you ran the program.

When you debug your program,
the IDE rebuilds it if the
code has changed—which
means that your database will
sometimes get overwritten
when you run your program in
the IDE. If you run the program
directly from the bin/debug or
bin/release folder, or if you
use the installer to install it on
your machine, then you won’t
see this problem.

Download at WoweBook.Com

you are here 4 37

get productive with c#

At this point, you’ve got a great program. But it only runs
on your machine. That means that nobody else can use the
app, pay you for it, see how great you are and hire you…
and your boss and customers can’t see the reports you’re
generating from the database.

C# makes it easy to take an application you’ve created, and
deploy it. Deployment is taking an application and installing
it onto other machines. And with the Visual C# IDE, you
can set up a deployment with just two steps.

How to turn YOUR application
into EVERYONE’S application

1 Select Publish Contacts from the
Build menu.

Building the solution just copies the files to your
local machine. Publish
creates a Setup executable and a configuration file
so that any machine could install your program.

2 Just accept all of the defaults in the
Publish Wizard by clicking Finish.
You‘ll see it package up your
application and then show you a
folder that has your Setup.exe in it.

You are Here

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

Download at WoweBook.Com

38 Chapter 1

This is how your users will install the program on their computers!This file tells the insta
ller

everything that needs

to be included when the

program is installed.

This is where all of the

supporting files for t
he

installer are stored.

Once you’ve created a deployment, you’ll have a new folder
called publish/. That folder has several things in it, all
used for installation. The most important for your users is
setup, a program that will let them install your program on
their own computers.

Give your users the application

My secretary just told me that you’ve
got the new contact database working
already. Pack your bags—we’ve got room on
the jet to Aspen for a go-getter like you!

Sounds like the boss is pleased. G
ood job!

There’s just one more thing to do before

you can jet off to the slopes, th
ough…

share the love

Download at WoweBook.Com

you are here 4 39

get productive with c#

You are Here

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

The six records you initially entered are all there. They’re part of the
ContactDB.mdf database file, which gets installed along with your program.

You can use the
arrows and the
text field to switch between records.

Go ahead…make
some changes.
You’ve deployed
it so this time,
they’ll stick.

You’re NOT done: test
your installation
Before you pop the cork on any champagne bottles, you need
to test your deployment and installation. You wouldn’t give
anyone your program without running it first, would you?

Close the Visual Studio IDE. Click the setup program,
and select a location on your own computer to install the
program. Now run it from there, and make sure it works like
you expect. You can add and change records, too, and they’ll
be saved to the database. Now you can add, change, and delete records, and they’ll get saved to the database.

TEST EVERYTHING!
Test your program, test
your deployment, test the
data in your application.

Download at WoweBook.Com

40 Chapter 1

From this

You built a complete
data-driven application
The Visual Studio IDE made it pretty easy to create
a Windows application, create and design a database,
and hook the two together. You even were able to
build an installer with a few extra clicks.

to this

in no time flat.

The power of Visual C# is that you can quickly
get up and running, and then focus on your
what your program’s supposed to do… not lots
of windows, buttons, and SQL access code.

.NET
Database
Objects

.NET Visual
Objects

Data Storage Deployment
Package

Name:

Company:

Telephone:

Email:

Client: Last call:

Lloyd Jones

Black Box inc.

(718)555-5638

LJones@Xblackboxinc.com

Yes 05/26/07

super fast!

Download at WoweBook.Com

you are here 4 41

get productive with c#

CSharpcross
Take some time to sit back and exercise your C# vocabulary with
this crossword; all of the solution words are from this chapter.

1 2 3 4

5

6

7 8

9 10

11

12 13

14 15 16

17

18

Across
1. When you do this from inside the IDE, it's called "debugging".
3. The ______ explorer is where you edit the contents of your
SQL tables and bind them to your program.
5. The "About" box in the Daily Scoop was one of these.
6. You build one of these so you can deploy your program to
another computer.
9. An image, sound, icon or file that's attached to your project in
a way that your objects can access easily.
11. Before you can run your program, the IDE does this to
create the executable and move files to the output directory.
14. The database ____________ gives the IDE information
about your database so it can generate SQL statements
automatically.
16. The ___________ explorer in the IDE is where you'll find the
files in your project.

Down
2. What's happening when code is turned into an executable.
4. A SQL database can use many of these to store its data.
7. What you change to alter the appearance or behavior of
objects on your form.
8. What you're doing to your program when you run it from
inside the IDE.
10. Every row in a database contains several of these, and all of
them can have different data types.
12. Before you start building any application, always think about
the users and their ________.
13. You drag objects out of this and onto your form.
15. When you double-clicked on a visual control, the IDE
created this for you and you added code to it.

Contact	List	program	was	one	of	these	

17.	Drag	one	of	these	objects	onto	your	form	to	display	an	
image.
18.	A	stored	___________	is	a	way	for	a	SQL	database	to	
save	queries	and	statements	that	you	can	reuse	later.

Download at WoweBook.Com

42 Chapter 1

crossword solution

CSharpcross Solution

E
1

X E C
2

U T E D
3

A T
4

A B A S E

O A

M
5

E S S A G E B O X

P L

I
6

N S T A L L E R

L P
7

D
8

R
9

E S O U R C
10

E R E

O O B

B
11

U I L D P U

N
12

U T
13

E G

E M O R G

E N O T I

D
14

I A G R A M
15

S
16

O L U T I O N

S E B E G

P
17

I C T U R E B O X S

H X

O

P
18

R O C E D U R E

Across
1. When you do this from inside the IDE, it's called "debugging".
[EXECUTE]
3. The ______ explorer is where you edit the contents of your
SQL tables and bind them to your program. [DATABASE]
5. The "About" box in the Daily Scoop was one of these.
[MESSAGEBOX]
6. You build one of these so you can deploy your program to
another computer. [INSTALLER]
9. An image, sound, icon or file that's attached to your project in
a way that your objects can access easily. [RESOURCE]
11. Before you can run your program, the IDE does this to
create the executable and move files to the output directory.
[BUILD]
14. The database ____________ gives the IDE information
about your database so it can generate SQL statements
automatically. [DIAGRAM]

Down
2. What's happening when code is turned into an executable.
[COMPILE]
4. A SQL database can use many of these to store its data.
[TABLE]
7. What you change to alter the appearance or behavior of
objects on your form. [PROPERTIES]
8. What you're doing to your program when you run it from
inside the IDE. [DEBUGGING]
10. Every row in a database contains several of these, and all of
them can have different data types. [COLUMNS]
12. Before you start building any application, always think about
the users and their ________. [NEEDS]
13. You drag objects out of this and onto your form. [TOOLBOX]
15. When you double-clicked on a visual control, the IDE
created this for you and you added code to it. [METHOD]

Download at WoweBook.Com

this is a new chapter 43

it’s all just code2

Under the Hood

You’re a programmer, not just an IDE-user.
You can get a lot of work done using the IDE. But there’s only so far it

can take you. Sure, there are a lot of repetitive tasks that you do when

you build an application. And the IDE is great at doing those things for

you. But working with the IDE is only the beginning. You can get your

programs to do so much more—and writing C# code is how you do it.

Once you get the hang of coding, there’s nothing your programs can’t do.

You’re a programmer, not just an IDE-user.
You can get a lot of work done using the IDE. But there’s only so far it

can take you. Sure, there are a lot of repetitive tasks that you do when

you build an application. And the IDE is great at doing those things for

you. But working with the IDE is only the beginning. You can get your

programs to do so much more—and writing C# code is how you do it.

Once you get the hang of coding, there’s nothing your programs can’t do.

One of these days
I’ll figure out what’s
going on under there…

Download at WoweBook.Com

44 Chapter 2

When you’re doing this…
The IDE is a powerful tool—but that’s all it is, a tool for you to use. Every time
you change your project or drag and drop something in the IDE, it creates code
automatically. It’s really good at writing boilerplate code, or code that can be
reused easily without requiring much customization.

Let’s look at what the IDE does in typical application development, when you’re...

The Properties window in the IDE is a really easy way to edit a specific chunk of code in Form1.Designer.cs automatically. It would take a lot longer to do it by hand.

at your service

Creating a new Windows Application solution
There are several kinds of applications the IDE lets
you build, but we’ll be concentrating on Windows
applications for now. Those are programs that have
visual elements, like forms and buttons.

11

Dragging a button out of the toolbox and
onto your form, and then double-clicking it
Buttons are how you make things happen in your form.
We’ll use a lot of buttons to explore various parts of the
C# language. They’re also a part of almost every C#
application you’ll write.

22

Setting a property on your form
The Properties window in the IDE is a really
powerful tool that you can use to change attributes of
just about everything in your program: all visual and
functional properties for the controls on your form,
attributes of your databases, and even options on your
project itself.

33

All of these tasks have to
do with standard actions,
and boilerplate code. Those
are the things the IDE is
great for helping with.

Make sure you always create a Windows Forms Application project—that tells the IDE to create an empty form and add it to your new project.

Download at WoweBook.Com

you are here 4 45

it’s all just code

…the IDE does this

private void button1_Click(object sender, EventArgs e)
{

}

Form1.cs

WindowsApplication1
.csproj

Form1.cs Form1.Designer.cs Program.cs Properties

The IDE knows how to add an empty method
to handle a button click. But it doesn’t know
what to put inside it—that’s your job.

Form1.Designer.cs

Form1.Designer.cs

partial class Form1
{ . . .
 this.Text = “Objectville Paper Company contact list”; . . .
}

The IDE went into this file…

…and updated this line of code.

These files are created from a predefined template that contains the basic code to create and display a form.

... the IDE opens the Form1.Designer.cs file and
updates a line of code.

33

... the IDE adds code to the Form1.Designer.cs file that adds
the button to the form, and then adds code to the Form1.cs
file to handle the button click.

22

... the IDE creates the files and
folders for the project.

11

Every time you make a change in the IDE, it makes a
change to the code, which means it changes the files that
contain that code. Sometimes it just modifies a few lines,
but other times it adds entire files to your project.

This code gets added to Form1.cs.

Download at WoweBook.Com

46 Chapter 2

Where programs come from
A C# program may start out as statements in a bunch of
files, but it ends up as a program running in your computer.
Here’s how it gets there.

The .NET Framework gives you the right tools for the job
C# is just a language—by itself, it can’t actually do anything. And that’s where
the .NET Framework comes in. Remember that Maximize button you turned
off for the Contacts form? When you click the Maximize button on a window,
there’s code that tells the window how to maximize itself and take up the whole
screen. That code is part of the .NET Framework. Buttons, checkboxes, lists...
those are all pieces of the .NET framework. So are the internal bits that hooked
your form up to the database. It’s got tools to draw graphics, read and write files,
manage collections of things... all sorts of tools for a lot of jobs that programmers
have to do every day.

The tools in the .NET Framework are divided up into namespaces. You’ve
seen these namespaces before, at the top of your code in the “using” lines. One
namespace is called System.Windows.Forms—it’s where your buttons, checkboxes,
and forms come from. Whenever you create a new Windows Forms Application
project, the IDE will add the necessary files so that your project contains a form,
and those files have the line “using System.Windows.Forms;” at the top.

great, the “talk”

Every program starts out as source code files
You’ve already seen how to edit a program, and how the IDE saves your program
to files in a folder. Those files are your program—you can copy them to a new
folder and open them up, and everything will be there: forms, resources, code, and
anything else you added to your project.

You can think of the IDE as a kind of fancy file editor. It automatically does the
indenting for you, changes the colors of the keywords, matches up brackets for you,
and even suggests what words might come next. But in the end, all the IDE does is
edit the files that contain your program.

The IDE bundles all of the files for your program into a solution by creating a
solution (.sln) file and a folder that contains all of the other files for the program.
The solution file has a list of the project files (which end in .csproj) in the
solution, and the project files contain lists of all the other files associated with
the program. In this book, you’ll be building solutions that only have one project
in them, but you can easily add other projects to your solution using the IDE’s
Solution Explorer.

There’s no reason you
couldn’t build your
programs in Notepad,
but it’d be a lot
more time-consuming.

Download at WoweBook.Com

you are here 4 47

it’s all just code

Build the program to create an executable
When you select “Build Solution” from the Build menu, the IDE
compiles your program. It does this by running the compiler, which
is a tool that reads your program’s source code and turns it into an
executable. The executable is a file on your disk that ends in .exe—
that’s what you double-click on to run your program. When you build
the program, it creates the executable inside the bin folder, which
is inside the project folder. When you publish your solution, it copies
the executable (and any other files necessary) into the folder you’re
publishing to.

When you select “Start Debugging” from the Debug menu, the IDE
compiles your program and runs the executable. It’s got some more
advanced tools for debugging your program, which just means running
it and being able to pause (or “break”) it so you can figure out what’s
going on.

Your program runs inside the CLR
When you double-click on the executable, Windows runs your program.
But there’s an extra “layer” between Windows and your program called
the Common Language Runtime, or CLR. Once upon a time, not
so long ago (but before C# was around), writing programs was harder,
because you had to deal with hardware and low-level machine stuff. You
never knew exactly how someone was going to configure his computer.
The CLR—often referred to as a virtual machine—takes care of all
that for you by doing a sort of “translation” between your program and
the computer running it.

You’ll learn about all sorts of things the CLR does for you. For example,
it tightly manages your computer’s memory by figuring out when your
program is finished with certain pieces of data and getting rid of them
for you. That’s something programmers used to have to do themselves,
and it’s something that you don’t have to be bothered with. You won’t
know it at the time, but the CLR will make your job of learning C# a
whole lot easier.

You don’t really have to worry
about the CLR much right
now. It’s enough to know
it’s there, and takes care
of running your program for
you automatically. You’ll learn
more about it as you go.

Download at WoweBook.Com

48 Chapter 2

The IDE helps you code
You’ve already seen a few of the things that the IDE can do.
Let’s take a closer look at some of the tools it gives you.

The Solution Explorer shows you everything in your project
You’ll spend a lot of time going back and forth between classes, and the easiest
way to do that is to use the solution explorer. It’s got two views: a Solution
Explorer view (which shows you the files in your project) and a Class View
(which shows you how your code logically breaks down into classes).

≥≥

Use the tabs to switch between open files
Since your program is split up into more than one file, you’ll usually have several
code files open at once. When you do, each one will be in its own tab in the code
editor. The IDE displays an asterisk (*) next to a filename if it hasn’t been saved yet.

≥≥

When you’re working on a form, you can have two tabs for
it at the same time—one for the form designer, and one
to view the form’s code.

The Solution
Explorer shows
you how the
different files
in the solution
folder.

You’ll learn
more about
classes in a
minute.

Here’s the form’s
resource file that
you added the
Objectville Paper
Company logo to.

mother’s little helper

Download at WoweBook.Com

you are here 4 49

it’s all just code

The Error List helps you troubleshoot compiler errors
If you haven’t already discovered how easy it is to make typos in a C#
program, you’ll find out very soon! Luckily, the IDE gives you a great tool for
troubleshooting them. When you build your solution, any problems that keep it
from compiling will show up in the Error List window at the bottom of the IDE:

Double-click on an error, and the IDE will jump to the problem in the code:

≥≥

The IDE helps you write code
Did you notice little windows popping up as you typed code into the IDE? That’s
a feature called IntelliSense, and it’s really useful. One thing it does is show you
possible ways to complete your current line of code. If you type MessageBox and
then a period, it knows that there are three valid ways to complete that line:

If you select Show and type (, the IDE’s IntelliSense will show you information
about how you can complete the line:

The IDE also has shortcuts called snippets that let you type an abbreviation to tell
it to fill in the rest of the code. Here’s a useful one: type mbox and press the tab key
twice, and the IDE will fill in the MessageBox.Show method for you:

≥≥

The IDE knows that MessageBox has three methods called Equals, ReferenceEquals, and Show. If you type S, it selects Show. Press the Tab or Enter key to tell the IDE to fill it in for you. That can be a real timesaver if you’re typing a lot of really long method names.

This means that there
are 21 different ways
that you can call the
MessageBox’s Show
method (like ways to
display different buttons
or icons).

When you use Start Debugging
to run your program inside
the IDE, the first thing it
does is build your program. If
it compiles, then your program
runs. If not, it won’t run, and
will show you errors in the
Error List.

The IDE will show a red
underscore where it finds
you’re missing a semicolon.

Download at WoweBook.Com

50 Chapter 2

The IDE is great at writing visual code for you. But don’t
take our word for it. Open up Visual Studio, create a new
Windows Application project, and see for yourself.

Open up the designer code
Open the Form1.Designer.cs file in the IDE. But this time, instead of opening it in
the Form Designer, open up its code by right-clicking on it in the Solution Explorer and
selecting “View Code”. Look for the Form1 class declaration:

11

 Windows Form Designer generated code+

partial class Form1
Notice how it’s a partial class?

Find and expand the designer-generated code for the PictureBox control
Then go back to the Form1.Designer.cs tab in the IDE. Scroll down and look for this line in
the code:

Click on the + on the left-hand side of the line to expand the code. Scroll down and find these lines:

22

//
// pictureBox1
//

this.pictureBox1.Location = new System.Drawing.Point(276, 28);

this.pictureBox1.Name = “pictureBox1”;

this.pictureBox1.Size = new System.Drawing.Size(100, 50);

this.pictureBox1.TabIndex = 1;

this.pictureBox1.TabStop = false;

Don’t worry if the
numbers in your code
for the Location and
Size lines are a little
different than these…

let’s dig in

When you change things in the IDE,
you’re also changing your code

Do this!

When you see a “Do this!”, pop open the IDE
and follow along. We’ll tell you exactly what
to do, and point out what to look for to get
the most out of the example we show you.

Click on the plus sign

Open up the Form designer and add a PictureBox to your form
Get used to working with more than one tab. Go to the Solution Explorer and open up the
Form designer by double-clicking on Form1.cs. Drag a new PictureBox onto a new form.

22

Download at WoweBook.Com

you are here 4 51

it’s all just code

/// <summary>
/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// </summary>

There’s nothing more attractive to a kid than a big sign that says, “Don’t
touch this!” Come on, you know you’re tempted… let’s go modify the
contents of that method with the code editor! Add a button to your
form, and then go ahead and do this:

Change the code that sets the button1.Text property. What
do you think it will do to the Properties window in the IDE?
Give it a shot—see what happens! Now go back to the form designer and
check the Text property. Did it change?

11

Stay in the designer, and use the Properties window to
change the Name property to something else.
See if you can find a way to get the IDE to change the Name property. It’s
in the Properties window at the very top, under “(Name)”. What happened
to the code? What about the comment in the code?

22

Change the code that sets the Location property to (0,0) and
the Size property to make the button really big.
Did it work?

33

Go back to the designer, and change the button’s BackColor
property to something else.
Look closely at the Form1.Designer.cs code. Were any lines added?

44

You don’t have to save the
form or run the program
to see the changes. Just
make the change in the code
editor, and then click on
the tab labeled “Form1.cs
[Design]” to flip over to the
form designer—the changes
should show up immediately.

It’s always easier to use the IDE to change your form’s
Designer‑generated code. But when you do, any change you
make in the IDE ends up as a change to your projects’ code.

Wait, wait! What did that say?
Scroll back up for a minute. There it is, at the top of the Windows
Form Designer generated code section. Most comments only start

with two slashes (//).
But the IDE sometimes
adds these three-slash
comments.

Download at WoweBook.Com

52 Chapter 2

Anatomy of a program

Namespace
Class

Method 1
statement
statement

Method 2
statement
statement

Every time you make a new program, you define a namespace for it so that its code is separate from the .NET Framework classes.

A class has one or more methods. Your methods always have to
live inside a class. And methods
are made up of statements—like
the ones you’ve already seen.

A class contains a piece of your
program (although some very small
programs can have just one class).

The code file starts by using the .NET Framework tools
You’ll find a set of using lines at the top of every program file. They tell C# which parts of
the .NET Framework to use. If you use other classes that are in other namespaces, then you’ll
add using lines for them too. Since forms often use a lot of different tools from the .NET
Framework, the IDE automatically adds a bunch of using lines when it creates a form and
adds it to your project.

11

Every C# program’s code is structured in exactly the
same way. All programs use namespaces, classes,
and methods to make your code easier to manage.

Let’s take a closer look at your code
Open up the code from your Contact project’s Form1.cs so
we can go through it piece by piece.

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

These using lines are at the top of every code file. They tell C# to use all of those .NET Framework classes. Each one tells your program that the classes in this particular .cs file will use all of the classes in one specific .NET Framework namespace.

your program makes a statement

You’ll see slightly different using
lines if you’re using Visual Studio
2005.

Download at WoweBook.Com

you are here 4 53

it’s all just code

namespace Contacts

{

 public partial class Form1 : Form

 {

 public Form1()

 {

 InitializeComponent();

 }

C# programs are organized into classes
Every C# program is organized into classes. A class can do anything, but most classes do one
specific thing. When you created the new program, the IDE added a class called Form1 that
displays a form.

22

Classes contain methods that perform actions
When a class needs to do something, it uses a method. A method takes an input, performs
some action, and sometimes produces an output. The way you pass input into a method is by
using parameters. Methods can behave differently depending on what input they’re given.
Some methods produce output. When they do, it’s called a return value. If you see the
keyword void in front of a method, that means it doesn’t return anything.

33

A statement performs one single action
When you added the MessageBox.Show() line to your program, you were adding a statement.
Every method is made up of statements. When your program calls a method, it executes the
first statement in the method, then the next, then the next, etc. When the method runs out of
statements or hits a return statement, it ends, and the program resumes after the statement
that originally called the method.

44

 private void pictureBox1_Click(object sender, EventArgs e)

 {

 MessageBox.Show(“Contact List 1.0”, “About”);

 }

 }

}

This is a class called Form1. It contains all of the code to draw the
form and the Toolbox controls on it. The IDE created it when you
told it to create a new Windows Forms Application project.

This is a method called pictureBox1_Click() that

gets called when the user clicks on the picture box.

This line calls a method named
InitializeComponent(), which the
IDE also created for you.

This method has two parameters called
sender and e.

This is a statement. You already
know what it does—it pops up a
little message box window.

Look for the
matching pairs
of brackets.
Every { is
eventually
paired up with
a }. Some
pairs can be
inside others.

Your statement called the Show() method,
which is part of the MessageBox class, which
is inside the System.Windows.Forms namespace.

Your statement passed two parameters to the Show()
method. The first one was a string of text to display
in the message box, and the second one was a string to
display in its title bar.

When you called your program Contacts, the IDE created a
namespace for it called Contacts by adding the namespace
keyword at the top of your code file. Everything inside its
pair of curly brackets is part of the Contacts namespace.

Download at WoweBook.Com

54 Chapter 2

Your program knows where to start

using System;
using System.Linq;
using System.Collections.Generic;
using System.Windows.Forms;

namespace Contacts
{

 static class Program
 {

 /// <summary>
 /// The main entry point for the application.
 /// </summary>

 [STAThread]

 static void Main()
 {

 Application.EnableVisualStyles();

 Application.SetCompatibleTextRenderingDefault(false);

 Application.Run(new Form1());

 }

 }

}

When you created the new Windows Application solution, one of the files the
IDE added was called Program.cs. Go to the Solution Explorer and double-
click on it. It’s got a class called Program, and inside that class is a method called
Main(). That method is the entry point, which means that it’s the very first thing
that’s run in your program.

This statement creates and
displays the Contacts form, and
ends the program when the
form’s closed.

I do declare!
The first line of every class or method is called the declaration.

Remember, this is just a starting point for you to dig into the code. But before you do, you’ll need to know what you’re looking at.

a closer look

1

2

3

4

5

Your Code Up Close

The namespace for all this code is
Contacts. We’ll talk about namespaces

more in a few pages.

Every time you run your program, it starts here, at the entry point.

Here’s some code the IDE built for you
automatically in the last chapter. You’ll
find it in Program.cs.

Every C# program can only have one entry point method, and it’s always called Main(). That’s how it knows where to start when you run it.

Lines that begin with slashes are comments, which you can add anywhere you want. The slashes tell C# to ignore them.

Download at WoweBook.Com

you are here 4 55

it’s all just code

Every C# program must
have exactly one method
called Main. That method
is the entry point for
your code.
When you run your code,
the code in your Main()
method is executed FIRST.

Namespaces let you use the same name in different programs, as long as those programs aren’t also in the same namespace.

C# and .NET have lots of built-in features.
You’ll find lines like this at the top of almost every C# class
file. System.Windows.Forms is a namespace. The
using System.Windows.Forms line makes everything
in that namespace available to your program. In this case, that
namespace has lots of visual elements in it like buttons and
forms.

11

The IDE chose a namespace for your code.
Here’s the namespace the IDE created for you—it chose
Contacts based on your project’s name. All of the code in
your program lives in this namespace.

22

Your code is stored in a class.
This particular class is called Program. The IDE created it
and added the code that starts the program and brings up the
Contacts form.

33

This code has one method, and it
contains three statements.
A namespace has classes in it, and classes have methods.
Inside each method is a set of statements. In this
program, the statements handle starting up the Contacts
form. Methods are where the action happens—every
method does something.

44

Each program has a special kind of
method called the entry point.
Every C# program must have exactly one
method called Main. Even though your
program has a lot of methods, only one can be
the first one that gets executed, and that’s your
Main method. C# checks every class in your
code for a method that reads static void
Main(). Then, when the program is run, the
first statement in this method gets executed, and
everything else follows from that first statement.

55

You can have multiple
classes in a single namespace.

Your programs will use more and more
namespaces like this one as you learn
about C# and .NET’s other built-in
features throughout the book.

Technically, a program can have more
than one Main() method, and you can

tell C# which one is the entry point...

but you won’t need to do that now.”

Download at WoweBook.Com

56 Chapter 2

You can change your
program’s entry point
As long as your program has an entry point, it doesn’t
matter which class your entry point method is in, or
what that method does. Open up the program you
wrote in Chapter 1, remove the Main method in
Program.cs, and create a new entry point.

Go back to Program.cs and change the name of the Main method to
NotMain. Now try to build and run the program. What happens?

11

Now let’s create a new entry point. Add a new class called AnotherClass.
cs. You add a class to your program by right-clicking on the project name
in the Solution Explorer and selecting “Add>>Class…”. Name your class
file AnotherClass.cs. The IDE will add a class to your program called
AnotherClass. Here’s the file the IDE added:

22

Write down what happened
when you changed the
method name, and why you
think that happened.

Add a new using line to the top of the file: using System.Windows.Forms;
Don’t forget to end the line with a semicolon!

33

class AnotherClass
{
 public static void Main()
 {
 MessageBox.Show(“Pow!”);
 }
}

using System;
using System.Linq;
using System.Collections.Generic;
using System.Text;

namespace Contacts
{
 class AnotherClass
 {
 }
}

These four standard using
lines were added to the file.

The IDE automatically named the class based on the filename.

This class is in the same Contacts namespace
that the IDE added when you first created
the Windows Application project.

Add this method to the AnotherClass class by typing it in between the curly brackets:44

MessageBox is a class that lives
in the System.Windows.Forms
namespace, which is why you had
to add the using line in step #3.
Show() is a method that’s part of
the MessageBox class.

classy things

Do this!

Right-click on the
project in Properties
and select “Add” and
“Class…”

Download at WoweBook.Com

you are here 4 57

it’s all just code

using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace SomeNamespace

{

 class MyClass {

 public static void DoSomething() {

 MessageBox.Show(“This is a message”);

 }

 }

}

Now run it!

So what happened?
Instead of popping up the Contacts application, your
program now shows this MessageBox. When you made
the new Main() method, you gave your program a new
entry point. Now the first thing the program does is run
the statements in that method—which means running that
MessageBox.Show() statement. There’s nothing else in that
method, so once you click the OK button, the program
runs out of statements to execute and then it ends.

Figure out how to fix your program so it pops up Contacts again.55 Hint: you only have
to change two lines in
two files to do it.

Fill in the annotations so they describe the lines in this C# file
that they’re pointing to. We’ve filled in the first one for you.

C# classes have these “using”
lines to add methods from
other namespaces

Download at WoweBook.Com

58 Chapter 2

using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace SomeNamespace

{

 class MyClass {

 public static void DoSomething() {

 MessageBox.Show(“This is a message”);

 }

 }

}

get some answers

Fill in the annotations so they describe the lines in this C# file
that they’re pointing to. We’ve filled in the first one for you.

C# classes have these “using”
lines to add methods from
other namespaces.

All of the code lives in
classes, so the program
needs a class here.

This is a method. Every
method in the program
does something. Methods
are used to group
statements together.

This is a statement.
When it’s executed,
it pops up a little
window with a
message inside of it.

Q: What’s with all the curly brackets?

A:		C#	uses	curly	brackets	(or	“braces”)	to	
group	statements	together	into	blocks.	Curly	
brackets	always	come	in	pairs.	You’ll	only	
see	a	closing	curly	bracket	after	you	see	an	
opening	one.	The	IDE	helps	you	match	up	
curly	brackets—just	click	on	one,	and	you’ll	
see	it	and	its	match	get	shaded	darker.

Q: I don’t quite get what the entry
point is. Can you explain it one more
time?

A:	Your	program	has	a	whole	lot	of	
statements	in	it,	but	they’re	not	all	run	at	
once.	The	program	starts	with	the	first	
statement	in	the	program,	executes	it,	and	
then	goes	on	to	the	next	one,	and	the	next	
one,	etc.	Those	statements	are	usually	
organized	into	a	bunch	of	classes.	So	when	
you	run	your	program,	how	does	it	know	
which	statement	to	start	with?	
	
That’s	where	the	entry	point	comes	in.	The	
compiler	will	not	build	your	code	unless	there	
is	exactly one method called Main()	which	
we	call	the	entry	point.	The	program	starts	
running	with	the	first	statement	in	Main().

Q: How come I get errors in the
Error List window when I try to run my
program? I thought that only happened
when I did “Build Solution.”

A:	Because	the	first	thing	that	happens	
when	you	choose	“Start	Debugging”	from	
the	menu	or	press	the	toolbar	button	to	
start	your	program	running	is	that	it	saves	
all	the	files	in	your	solution	and	then	tries	to	
compile	them.	And	when	you	compile	your	
code—whether	it’s	when	you	run	it,	or	when	
you	build	the	solution—if	there	are	errors,	
the	IDE	will	display	them	in	the	Error	List	
instead	of	running	your	program.

Download at WoweBook.Com

you are here 4 59

it’s all just code

Set properties for a label

Match each of these fragments of code generated by the IDE to what it does.
(Some of these are new—take a guess and see if you got it right!)

partial class Form1
{ . . .
 this.BackColor = Color.DarkViolet; . . .
}

partial class Form1
{ . . .
 this.MaximizeBox = false; . . .
}

number_of_pit_stopsLabel.Name
 = “number_of_pit_stopsLabel”;
number_of_pit_stopsLabel.Size
 = new System.Drawing.Size(135, 17);
number_of_pit_stopsLabel.Text
 = “Number of pit stops:”;

partial class Form1
{
 private void InitializeComponent()
 { . . . }
}

 // This loop gets executed three times

 /// <summary>
 /// Bring up the picture of Rover when
 /// the button is clicked
 /// </summary>

Nothing—it’s a comment that the
programmer added to explain the code
to anyone who’s reading it

Disable the maximize icon () in the
title bar of the Form1 window

A special kind of comment that the IDE
uses to explain what an entire block of
code does

Change the background color of the
Form1 window

A block of code that executes whenever
a program opens up a Form1 window

Download at WoweBook.Com

60 Chapter 2

Set properties for a label

partial class Form1
{ . . .
 this.BackColor = Color.DarkViolet; . . .
}

partial class Form1
{ . . .
 this.MaximizeBox = false; . . .
}

number_of_pit_stopsLabel.Name
 = “number_of_pit_stopsLabel”;
number_of_pit_stopsLabel.Size
 = new System.Drawing.Size(135, 17);
number_of_pit_stopsLabel.Text
 = “Number of pit stops:”;

partial class Form1
{
 private void InitializeComponent()
 { . . . }
}

 // This loop gets executed three times

 /// <summary>
 /// Bring up the picture of Rover when
 /// the button is clicked
 /// </summary>

Nothing—it’s a comment that the
programmer added to explain the code
to anyone who’s reading it

A special kind of comment that the IDE
uses to explain what an entire block of
code does

Change the background color of the
Form1 window

A block of code that executes whenever
a program opens up a Form1 window

Match each of these fragments of code generated by the IDE to what it does.
(Some of these are new—take a guess and see if you got it right!)

exercise solution

Disable the maximize icon () in the
title bar of the Form1 window

Download at WoweBook.Com

you are here 4 61

it’s all just code

Since these classes are in the same
namespace, they can all “see” each
other—even though they’re in
different files. A class can span
multiple files too, but you need to
use the “partial” keyword when you
declare it.

MoreClasses.cs

namespace PetFiler2 {

 public class Fish {

 public void Swim() {
 // statements
 }

 }

 public partial class Cat {

 public void Purr() {
 // statements
 }

 }
 }

SomeClasses.cs

namespace PetFiler2 {

 public class Dog {

 public void Bark() {
 // statements go here
 }

 }

 public partial class Cat {

 public void Meow() {
 // more statements
 }

 }
}

Take a look at these two class files from a
program called PetFiler2. They’ve got three
classes: a Dog class, a Cat class, and a Fish
class. Since they’re all in the same PetFiler2
namespace, statements in the Dog.Bark()
method can call Cat.Meow() and Fish.Swim().
It doesn’t matter how the various namespaces
and classes are divided up between files. They
still act the same when they’re run.

When a class is “public”
it means every other
class in the program can
access its methods.

Two classes can be in the
same namespace

You can only split a class up into different
files if you use the partial keyword.
You probably won’t do that in any of the
code you write in this book, but the IDE
used it to split your form up into two files,
Form1.cs and Form1.Designer.cs.

Download at WoweBook.Com

62 Chapter 2

Declare your variables
Whenever you declare a variable, you tell your program its type and its name.
Once C# knows your variable’s type, it’ll keep your program from compiling
if you make a mistake and try to do something that doesn’t make sense, like
subtract “Fido” from 48353.

 int maxWeight;

 string message;

 bool boxChecked;

These are the names of these variables.These are the var
iable types.

These names are for YOU.
Like methods and classes, use
names that make sense and
describe the variable’s usage.

C# uses the variable type to limit what data these variables can hold.

your mileage may vary

Your programs use variables to work with data
When you get right down to it, every program is basically a data cruncher.
Sometimes the data is in the form of a document, or an image in a
video game, or an instant message. But it’s all just data. And that’s where
variables come in. A variable is what your program uses to store data.

Variables vary
A variable is equal to different values at different times while your
program runs. In other words, a variable’s value varies. (Which is
why “variable” is such a good name.) This is really important, because
that idea is at the core of every program that you’ve written or will ever
write. So if your program sets the variable myHeight equal to 63:

 int myHeight = 63;

any time myHeight appears in the code, C# will replace it with its
value, 63. Then, later on, if you change its value to 12:

 myHeight = 12;

C# will replace myHeight with 12—but the variable is still called
myHeight.

Whenever your
program needs to
work with numbers,
text, true/false
values, or any other
kind of data, you’ll
use variables to keep
track of them.

Download at WoweBook.Com

you are here 4 63

it’s all just code

var-i-a-ble, adjective.
able to be changed or adapted.
The drill’s variable speed bit let
Bob change the drill speed from slow
to fast based on the job he had to do.

If you write code
that uses a variable
that hasn’t been
assigned a value,
your code won’t
compile. It’s easy
to avoid that error
by combining your
variable declaration
and assignment into a
single statement.

You have to assign values to variables before
you use them
Try putting these statements into a C# program:

 int z;
 MessageBox.Show(“The answer is ” + z);

Go ahead, give it a shot. You’ll get an error, and the IDE
will refuse to compile your code. That’s because the IDE
checks each variable to make sure that you’ve assigned it a
value before you use it. The easiest way to make sure you
don’t forget to assign your variables values is to combine
the statement that declares a variable with a statement that
assigns its value:

 int maxWeight = 25000;

 string message = “Hi!”;

 bool boxChecked = true;

These values
are assigned to
the variables.

Each declaration has a type,
exactly like before.

Once you’ve assigned a value to your variable, that value can change. So there’s no disadvantage to assigning a variable an initial value when you declare it.

A few useful types
Every variable has a type that tells C# what kind of data it can
hold. We’ll go into a lot of detail about the many different types
in C# in Chapter 4. In the meantime, we’ll concentrate on the
three most popular types. int holds integers (or whole numbers),
string holds text, and bool holds Boolean true/false values.

Download at WoweBook.Com

64 Chapter 2

int number = 15;

number = number + 10;

number = 36 * 15;

number = 12 - (42 / 7);

number += 10;

number *= 3;

number = 71 / 3;

int count = 0;

count ++;

count --;

string result = “hello”;

result += “ again ” + result;

MessageBox.Show(result);

result = “the value is: ” + count;

result = “”;

bool yesNo = false;

bool anotherBool = true;

yesNo = !anotherBool;

operators are standing by

C# uses familiar math symbols
Once you’ve got some data stored in a variable, what can you
do with it? Well, if it’s a number, you’ll probably want to add,
subtract, multiply, or divide it. And that’s where operators come
in. You already know the basic ones. Let’s talk about a few more.
Here’s a block of code that uses operators to do some simple math:

We declared a new
int variable called
number and set it
to 15. Then we added
10 to it. After the
second statement,
number is equal to 25.

The third statement changes the
value of number, setting it equal
to 36 times 15, which is 540. Then
it resets it again, setting it equal
to 12 - (42 / 7), which is 6.

This operator is a little different. +=
means take the value of number
and add 10 to it. Since number is
currently equal to 6, adding 10 to it
sets its value to 16.

The *= operator
is similar to +=,
except it multiplies
the current value of
number by 3, so it
ends up set to 48.

71 divided by 3 is 23.666666. Since number is an integer, it can only store whole numbers, so it gets rounded to 23.

You’ll use int a lot for counting, and when you do the ++
and -- operators come in handy. ++ increments count
by adding one to the value, and -- decrements count
by subtracting one from it, so it ends up equal to zero.

 Don’t worry about
memorizing these
operators now.

You’ll get to know them
because you’ll see ’em over and over again.

A bool stores true
or false. The !
operator means NOT.
It flips true to
false, and vice versa.

When you use the + operator
with a string, it just puts
two strings together. It’ll
automatically convert
numbers to strings for you.

This MessageBox
will pop up a box
that says “hello
again hello”

The “” is an empty string.
It has no characters.
(It’s kind of like a zero
for adding strings.)

Download at WoweBook.Com

you are here 4 65

it’s all just code

That’s a big part of why
booleans are so important. A
loop uses a test to figure
out if it should keep looping.

Here’s a peculiar thing about most large programs: they almost always
involve doing certain things over and over again. And that’s what
loops are for– they tell your program to keep executing a certain set
of statements as long as some condition is true (or false!).

Loops perform an action over and over again

while (x > 5)

{

 x = x - 3;

}

for (int i = 0; i < 8; i = i + 2)

{

 MessageBox.Show(“I’ll pop up 4 times”);

}

Every for loop has three statements. The first sets
up the loop. The statement will keep looping as long as
the second one is true. And the third statement gets
executed after each time through the loop.

In a while loop, all of
the statements inside
the curly brackets get
executed as long as
the condition in the
parentheses is true.

Use a code snippet to write simple for loops
You’ll be typing for loops in a just a minute, and the IDE can
help speed up your coding a little. Type for followed by two
tabs, and the IDE will automatically insert code for you. If you
type a new variable, it’ll automatically update the rest of the
snippet. Press tab again, and the cursor will jump to the length.

If you change the variable to
something else, the snippet
automatically changes the
other two occurrences of it.

Press tab to get the cursor to jump to the length. The number of times this loop runs is determined by whatever you set length to. You can change length to a number or a variable.

Download at WoweBook.Com

66 Chapter 2

private void button1_Click(object sender, EventArgs e)

{

 // this is a comment

 String name = “Quentin”;

 int x = 3;

 x = x * 17;

 double d = Math.PI / 2;

 MessageBox.Show(“name is “ + name

 + “\nx is “ + x

 + “\nd is “ + d);

}

Time to start coding
The real work of any program is in its statements. But
statements don’t exist in a vacuum. So let’s set the stage
for digging in and getting some code written. Create a
new Windows Forms Application project.

Build this form

Add statements to show a message
Get started by double-clicking on the first button. Then add
these 6 statements to the button1_Click() method.
Look closely at the code, and the output it produces.

± Each statement must end in a semicolon.

 x = x + 1;

± A single-line comment begins with two
forward slashes.

 // this line is ignored

± Most white space doesn’t matter.

 x = 3 ;

is the same as

 x = 3;

± Variables are declared with a name and a
type (there are plenty of types that you’ll
learn about in chapter 4).

 int weight;
 // weight is an integer

± Classes and methods must be defined
within a pair of curly braces.

 public void go() {
 // amazing code here
 }

Syntax 101

x is a variable. The “int”
part tells C# that it’s
an integer, and the rest
of the statement sets
its value to 3.

There’s a built-in class called Math, and it’s got a member called PI. Math lives in the System namespace, so the file this code came from needs to have a using System; line at the top.

ready, set, code!

The \n is an escape sequence
to add a line break to the
message box.

This will tell the IDE to create a new project with a blank form and an entry point. You might want to name it something like “Chapter 2 program 1”—you’ll be building a whole lot of programs throughout the book.

Download at WoweBook.Com

you are here 4 67

it’s all just code

if/else statements make decisions
Use if/else statements to tell your program to do certain
things only when the conditions you set up are (or aren’t)
true. A lot of if/else statements check if two things are equal.
That’s when you use the == operator. That’s different from the
single equal sign (=) operator, which you use to set a value.

 Don’t confuse the two equal sign operators!

You use one equal sign (=) to set a variable’s value, but two equal signs
(==) to compare two variables. You won’t believe how many bugs in
programs—even ones made by experienced programmers!—were
caused by using = instead of ==. If you see the IDE complain that you

“cannot implicitly convert type ‘int’ to ‘bool’”, that’s probably what happened.

if (someValue == 24)

{

 // You can have as many statements
 // as you want inside the brackets

 MessageBox.Show(“The value was 24.”);

} else {

 MessageBox.Show(“The value wasn’t 24.”);

}

if (someValue == 24)

{

 MessageBox.Show(“The value was 24.”);

}

Every if statement
starts with a
conditional test.

The statement inside
the curly brackets is
executed only if the
test is true.

if/else statements are
pretty straightforward.
If the conditional
test is true, the
program executes the
statements between the
first set of brackets.
Otherwise, it executes
the statements between
the second set.

Always use two equal signs to check if

two things are equal to each othe
r.

Download at WoweBook.Com

68 Chapter 2

Set up conditions and see if they’re true
Use if/else statements to tell your program to do certain
things only when the conditions you set up are (or aren’t) true.

private void button2_Click(object sender, EventArgs e)
{
 int x = 5;
 if (x == 10)
 {
 MessageBox.Show(“x must be 10”);
 }
 else
 {
 MessageBox.Show(“x isn’t 10”);
 }
}

Set a variable and then check its value
Here’s the code for the second button. It’s an if/else statement
that checks an integer variable called x to see if it’s equal to 10.

Here’s the output. See if you can tweak one line
of code and get it to say “x must be 10” instead.

the things you can do

First we set
up a variable
called x and
make it equal
to 5. Then we
check if it’s
equal to 10.

Make sure you stop your program before you do this—the IDE won’t let you edit the code while the program’s running. You can stop it by closing the window, using the stop button on the toolbar, or selecting “Stop Debugging” from the Debug menu.

Use logical operators to check conditions
You’ve just looked at the == operator, which you use to test whether two
variables are equal. There are a few other operators, too. Don’t worry about
memorizing them right now—you’ll get to know them over the next few
chapters:

The != operator works a lot like == except it’s true if the two things
you’re comparing are not equal.

You can use > and < to compare numbers and see if one is bigger or
smaller than the other.

The ==, !=, >, and < are called conditional operators. When
you use them to test two variables or values, it’s called performing a
conditional tests.

You can combine individual conditional tests into one long test using
the && operator for AND and the || operator for OR. So to check if
i equals 3 or j is less than 5, do (i == 3) || (j < 5).

≥

≥

≥

≥

When you use
a conditional
operator to
compare two
numbers, it’s
called a
conditional test.

Download at WoweBook.Com

you are here 4 69

it’s all just code

private void button3_Click(object sender, EventArgs e)

{

 int someValue = 4;

 String name = “Bobbo Jr.”;

 if ((someValue == 3) && (name.Equals(“Joe”)))

 {

 MessageBox.Show(“x is 3 and the name is Joe”);

 }

 MessageBox.Show(“this line runs no matter what”);

}

Add another conditional test
The third button makes this output. Now make a change to
two lines of code so that it pops up both message boxes.

This line checks someValue to
see if it’s equal to 3, and then
it checks to make sure name
is “Joe”.

Add loops to your program
Here’s the code for the last button. It’s got two loops. The first is a while loop, which
repeats the statements inside the brackets as long as the condition is true—do something
while this is true. The second one is a for loop. Take a look and see how it works.

Before you click on the button, read through the code and try to figure out what the
message box will show. Then click the button and see if you were right!

private void button4_Click(object sender, EventArgs e)
{
 int count = 0;

 while (count < 10)
 {
 count = count + 1;
 }

 for (int i = 0; i < 5; i++)
 {
 count = count - 1;
 }

 MessageBox.Show(“The answer is ” + count);
}

The second part of the for statement is
the test. It says “for as long as i is les

s than

five the loop should keep on going”. The test

is run before the code block, and the b
lock

is executed only if the test is true.

This sets up the loop.
It just assigns a
value to the integer
that’ll be used in it.

This is where the loop actually
does something. In this case, it
adds one to i. So every time the
loop executes, it will add 1 to i.
This is called the iterator, and
it’s run immediately after all the
statements in the code block.

This loop keeps
repeating as long as
the count variable
is less than 10.

Download at WoweBook.Com

70 Chapter 2

More about conditional tests
You can do simple conditional tests by checking the value of a variable using a comparison operator. Here’s how you compare two numbers, x and y:
 x < y (less than)
 x > y (greater than)
 x == y (equals—and yes, with two equals signs)

These are the ones you’ll use most often.

int result = 0; // this variable will hold the final result

int x = 6; // declare a variable x and

while (x > 3) {

 // execute these statements as long as

 result = result + x; // add x

 x = x - 1; // subtract

}

for (int z = 1; z < 3; z = z + 1) {

 // start the loop by

 // keep looping as long as

 // after each loop,

 result = result + z; //

}

// The next statement will pop up a message box that says

//

MessageBox.Show(“The result is ” + result);

Let’s get a little more practice with conditional tests and loops. Take a
look at the code below. Circle the conditional tests, and fill in the blanks
so that the comments correctly describe the code that’s being run.

set it to 6
We filled in the
first one for you.

over and over and over and…

Download at WoweBook.Com

you are here 4 71

it’s all just code

Wait up! There’s a flaw in your
logic. What happens to my loop if I

write a conditional test that never
becomes false?

Then your loop runs forever!
Every time your program runs a conditional test, the result
is either true or false. If it’s true, then your program
goes through the loop one more time. Every loop should
have code that, if it’s run enough times, should cause
the conditional test to eventually return false. But if it
doesn’t then the loop will keep running until you kill the
program or turn the computer off !

Can you think of a reason that you’d want to write a
loop that never stops running?

Here are a few loops. Write down if each loop will repeat forever or
eventually end. If it’s going to end, how many times will it loop?

Loop #1
int count = 5;
while (count > 0) {
 count = count * 3;
 count = count * -1;
}

Loop #2
int i = 0;
while (i == 0) {
 count = count * 3;
 count = count * -1;
}

Loop #3
int j = 2;
for (int i = 1; i < 100;
 i = i * 2)
{
 j = j - i;
 while (j < 25)
 {
 j = j + 5;
 }
}

Loop #5
int p = 2;
for (int q = 2; q < 32;
 q = q * 2)
{
 while (p < q)
 {
 p = p * 2;
 }
 q = p - q;
}

Loop #4

while (true) { int i = 1;}

Sometimes you call
this an infinite loo

p.

Remember, a for loop always
runs the conditional test at the
beginning of the block, and the
iterator at the end of the block.

Hint: q starts out equal to zero. Think about when the iterator “q = q * 2” is executed.

Download at WoweBook.Com

72 Chapter 2

int result = 0; // this variable will hold the final result

int x = 6; // declare a variable x and

while (x > 3) {

 // execute these statements as long as

 result = result + x; // add x

 x = x - 1; // subtract

}

for (int z = 1; z < 3; z = z + 1) {

 // start the loop by

 // keep looping as long as

 // after each loop,

 result = result + z; //

}

// The next statement will pop up a message box that says

//

MessageBox.Show(“The result is ” + result);

set it to 6

x is greater than 3

to the result variable

1 from the value of x

declaring a variable z and setting it to 1
z is less than 3

add 1 to z

The result is 18

add the value of z to result

Let’s get a little more practice with conditional tests and loops. Take a
look at the code below. Circle the conditional tests, and fill in the blanks
so that the comments correctly describe the code that’s being run.

Here are a few loops. Write down if each loop will repeat forever or
eventually end. If it’s going to end, how many times will it loop?

Loop #1
This loop executes once

Loop #2
This loop runs forever

Loop #3
This loop executes 7 times

Loop #4
Another infinite loop

Loop #5
This loop
executes 8 times.

if only, but only if

This loop runs twice—first with z set to 1, and
then a second time with z set to 2. Once it hits
3, it’s no longer less than 3, so the loop stops.

After iteration #1, q equals 2. Then it equals 0, then 4, then 0, 8, 0, 16, 0, and the loop stops when it hits 32.
Take the time to really figure this one out. It might help to paste the code into the IDE and add messageboxes that
pop up the values of p and q.

Download at WoweBook.Com

you are here 4 73

it’s all just code

Q: Is every piece of code always in a class?

A:	Yes.	Any	time	a	C#	program	does	something,	it’s	because	
statements	were	executed.	Those	statements	are	a	part	of	classes,	
and	those	classes	are	a	part	of	namespaces.	Even	when	it	looks	
like	something	is	not	a	statement	in	a	class—like	when	you	use	
the	designer	to	set	a	property	on	an	object	on	your	form—if	you	
search	through	your	code	you’ll	find	that	the	IDE	added	or	changed	
statements	inside	a	class	somewhere.

Q: Are there any namespaces I’m not allowed to use? Are
there any I have to use?

A:	Yes,	there	are	a	few	namespaces	you’re	not	allowed	to	use.	
Notice	how	all	of	the	using	lines	at	the	top	of	your	C#	class	
files	always	said	System?	That’s	because	there’s	a	System	
namespace	that’s	used	by	the	.NET	Framework.	It’s	where	you	
find	all	of	your	important	tools	to	add	power	to	your	programs.	Like	
System.Data,	which	lets	you	work	with	tables	and	databases,	
and	System.IO,	which	lets	you	work	with	files	and	data	streams.	
But	for	the	most	part,	you	can	choose	any	name	you	want	for	a	
namespace	(as	long	as	only	has	letters,	numbers	and	underscores).	
When	you	create	a	new	program,	the	IDE	will	automatically	choose	a	
namespace	for	you	based	on	the	program’s	name.

Q: I still don’t get why I need this partial class stuff.

A:	Partial	classes	are	how	you	can	spread	the	code	for	one	
class	between	more	than	one	file.	The	IDE	does	that	when	it	
creates	a	form—it	keeps	the	code	you	edit	in	one	file	(like	Form1.
cs),	and	the	code	it	modifies	automatically	for	you	in	another	file	
(Form1.Designer.cs).	You	don’t	need	to	do	that	with	a	namespace,	
though.	One	namespace	can	span	two,	three	or	a	dozen	or	more	
files.	Just	put	the	namespace	declaration	at	the	top	of	the	file,	and	
everything	within	the	curly	brackets	after	the	declaration	is	inside	
the	same	namespace.	One	more	thing:	you	can	have	more	than	one	
class	in	a	file.	And	you	can	have	more	than	one	namespace	in	a	file.		
You’ll	learn	a	lot	more	about	classes	in	the	next	few	chapters.

Q: Let’s say I drag something onto my form, so the IDE
generates a bunch of code automatically. What happens to that
code if I click “Undo”?

A:	The	best	way	to	answer	this	question	is	to	try	it!	Give	it	a	
shot—do	something	where	the	IDE	generates	some	code	for	you.	

	
Drag	a	button	on	a	form,	change	properties.	Then	try	to	undo	it.	What	
happens?	Well,	for	simple	things	what	you’ll	see	is	that	the	IDE	is	
smart	enough	to	undo	it	itself.	But	for	more	complex	things,	like	
adding	a	new	SQL	database	to	your	project,	you’ll	be	given	a	warning	
message.	It	still	knows	how	to	undo	the	action,	but	it	may	not	be	able	
to	redo	it.

Q: So exactly how careful do I have to be with the code that’s
automatically generated by the IDE?

A:	You	should	generally	be	pretty	careful.	It’s	really	useful	to	
know	what	the	IDE	is	doing	to	your	code,	and	once	in	a	while	you’ll	
need	to	know	what’s	in	there	in	order	to	solve	a	serious	problem.	But	
in	almost	all	cases,	you’ll	be	able	to	do	everything	you	need	to	do	
through	the	IDE.

You	tell	your	program	to	perform	actions	using	
statements.	Statements	are	always	part	of	classes,	and	
every	class	is	in	a	namespace.

Every	statement	ends	with	a	semicolon	(;)

When	you	use	the	visual	tools	in	the	Visual	Studio	IDE,	
it	automatically	adds	or	changes	code	in	your	program.

Code	blocks	are	surrounded	by	curly	braces	{ }.	
Classes,	while	loops,	if/else	statements	and	lots	of	
other	kinds	of	statements	use	those	blocks.

A	conditional	test	is	either	true	or	false.	You	use	
conditional	tests	to	determine	when	a	loop	ends,	and	
which	block	of	code	to	execute	in	an	if/else	statement.

Any	time	your	program	needs	to	store	some	data,	you	
use	a	variable.	Use	=	to	assign	a	variable,	and	==	to	
test	if	two	variables	are	equal.

A	while	loop	runs	everything	within	its	block	(defined	
by	curly	braces)	as	long	as	the	conditional test	is	
true.

If	the	conditional	test	is	false,	the	while	loop	code	
block	won’t	run,	and	execution	will	move	down	to	the	
code	immediately	after	the	loop	block.	

Download at WoweBook.Com

74 Chapter 2

Output:

This magnet didn’t fall off the fridge…

Answers on page 82.

your code… now in magnet form

Code Magnets
Part of a C# program is all scrambled up on the fridge. Can you rear-
range the code snippets to make a working C# program that produc-
es the message box? Some of the curly braces fell on the floor and
they were too small to pick up, so feel free to add as many of those
as you need!

if (x == 2) {

Result = Result + “b c”;

}

x = x - 1;

Result = Result + “-”;

if (x == 1) {
Result = Result + “d”;x = x - 1;

}

if (x > 2) {

Result = Result +
 “a”;

}

string Result = “”;

int x = 3;

while (x > 0) {

MessageBox.Show(Result);

The “” is an empty string—it means
Result has no characters in it yet.

Download at WoweBook.Com

you are here 4 75

it’s all just code

Time	to	get	some	practice	using	if/else	statements.	Can	you	build	this	program?

Here’s the form.

This is a label.
You can use the properties to change the
font size and make it boldface. Use the
BackColor property to set to red—choose

“Red” from the selection of web colors.

Add this checkbox.
Drag it out of the toolbox and onto your
form. Use the Text property to change the
text that’s next to it. (You also use the Text
property to change the button and label text.)

Pop up this message if the user clicks the button but the
box IS NOT checked.
If your checkbox is named checkBox1 (you can change the Name property
if you want), then here’s the conditional test to see if it’s checked:

checkBox1.Checked == true

If the user clicks the button and the box IS checked, change the
background color of the label.
If the label background color is red, change it to blue when the button is clicked. If it’s blue,
change it back to red. Here’s a statement that sets the background color of a label called label1:

label1.BackColor = Color.Red;

(Hint: The conditional test to check whether a label’s background color is red looks a lot like that
statement—but with one important difference!)

We’ll give you a lot of exercises like this throughout the book. We’ll give you the answer in a couple of pages. If you get stuck, don’t be afraid to peek at the answer—it’s not cheating!

You’ll be creating a lot of applications
throughout this book, and you’ll need to give
each one a different name. We recommend
naming this one “2 Fun with if-else
statements” based on the chapter number
and the text in the title bar of the form.

Download at WoweBook.Com

76 Chapter 2

this.BackColor = Color.FromArgb(c, 255 - c, c);

Application.DoEvents();

Here’s the form to build11

Make the form background go all psychedelic!
When the button’s clicked, make the form’s background
color cycle through a whole lot of colors! Create a loop that
has a variable c go from 0 to 253. Here’s the block of code
that goes inside the curly brackets:

22

Make it slower
Slow down the flashing by adding this line after the
Application.DoEvents() line:

33

Color me impressed!

.NET has a bunch o
f predefined

colors like Blue and Red, but it also

lets you make your own colors using

the Color.Fr
omArgb(

) method,

by specifying t
hree numbers: a red

value, a green v
alue, and a blu

e value.

This line tells the program to stop your loop momentarily and do the other things it needs to do, like refresh the form, check for mouse clicks, etc. Try taking out this line and seeing what happens. The form doesn’t redraw itself, because it’s waiting until the loop is done before it deals with those events.

System.Threading.Thread.Sleep(3); This statement inserts a 3 millisecond

delay in the loop. It’s a part
of

the .NET library, and it’s in the

System.Threadi
ng namespace.

Hint: If you declare a variable inside a for lo
op—for (int c = 0; …)—then

that variable’s only valid inside the loop’s c
urly brackets. So if you have

two for loops that both use the variable, you
’ll either declare it in each

loop or have one declaration outside the lo
op.

ooh, pretty!

Let’s	build	something	flashy!

Later on in the book, you’ll learn about a better way
to let your programs do more than one thing at a time!
But for now, use Application.DoEvents() to make sure
your form stays responsive while it’s in a loop.

Download at WoweBook.Com

you are here 4 77

it’s all just code

Make it smoother
Let’s make the colors cycle back to where they started. Add another loop that has
c go from 254 down to 0. Use the same block of code inside the curly brackets.

44

Keep it going
Surround your two loops with another loop that continuously executes and doesn’t
stop, so that when the button is pressed, the background starts changing colors and
then keeps doing it. (Hint: The while (true) loop will run forever!)

55 When one loop is inside another
one, we call it a “nested” loop.

Make it stop
Make the loop you added in step #5 stop when the program is
closed. Change your outer loop to this:

 while (Visible)

Now run the program and click the X box in the corner. The
window closes, and then the program stops! Except… there’s a
delay of a few seconds before the IDE goes back to edit mode.

66

Uh-oh! The program doesn’t stop!
Run your program in the IDE. Start it looping. Now close the window. Wait a
minute—the IDE didn’t go back into edit mode! It’s acting like the program
is still running. You need to actually stop the program using the square stop
button in the IDE (or select “Stop Debugging” from the Debug menu).

Can you figure out what’s causing that
delay? Can you fix it so the program ends
immediately when you close the window?

Hint: The && operator means “AND”. It’s how you string a bunch of conditional tests together into one big test that’s true only if the first test is true AND the second is true AND the third, etc. And it’ll come in handy to solve this problem.

When you’re checking a boolean value like Visible in an if statement or a loop, sometimes it’s tempting to test for (Visible == true). You can leave off the “== true”—it’s enough to include the boolean.
When you’re working with a
form or control, Visible is
true as long as the form or
control is being displayed. If
you set it to false, it makes
the form or control disappear.

Download at WoweBook.Com

78 Chapter 2

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace Fun_with_If_Else
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void button1_Click(object sender, EventArgs e)
 {
 if (checkBox1.Checked == true)
 {
 if (label1.BackColor == Color.Red)
 {
 label1.BackColor = Color.Blue;
 }
 else
 {
 label1.BackColor = Color.Red;
 }
 }
 else
 {
 MessageBox.Show(“The box is not checked”);
 }
 }
 }
}

Here’s the entire Form1.cs file for the “Fun with
If/Else Statements!” exercise. If we show you a
lot of code in a file like this, we’ll draw a grey
box behind the part that you should add.

Time	to	get	some	practice	using	if/else	statements.	Can	you	build	this	program?

Here’s the code for the form. We named our solution
“Fun with If Else”, so the IDE made the namespace
Fun_with_If_Else. If you gave your solution a
different name, it’ll have a different namespace.

The IDE added the method called button1_Click() to your form when you double-clicked on the button. The method gets run every time the button’s clicked.

The inner if statement
checks the label’s
color. If the label
is currently red, it
executes a statement
to turn it blue.

This MessageBox pops up if
the checkbox isn’t checked.

The outer if
statement checks
the checkbox to
see if it’s been
checked. Check!

This statement’s
run if the label’s
background color is
not red to make it
set back to red.

exercise solution

You can download the code for all of the exercise solutions
in this book from www.headfirstlabs.com/books/hfcsharp/

Download at WoweBook.Com

you are here 4 79

it’s all just code

private void button1_Click(object sender, EventArgs e) {

 while (Visible) {

 for (int c = 0; c < 254 && Visible; c++) {

 this.BackColor = Color.FromArgb(c, 255 - c, c);

 Application.DoEvents();

 System.Threading.Thread.Sleep(3);

 }

 for (int c = 254; c >= 0 && Visible; c--) {

 this.BackColor = Color.FromArgb(c, 255 - c, c);

 Application.DoEvents();

 System.Threading.Thread.Sleep(3);

 }

 }

}

Let’s	build	something	flashy!

Sometimes we won’t show you the entire code in the solution, just the bits that changed. All of the logic in the FlashyThing project is in this button1_Click() method that the IDE added when you double-clicked the button in the form designer.

Was your code a little different than ours? There’s more than one way
to solve any programming problem—like you could have used while loops
instead of for loops. If your program works, then you got the exercise right!

We fixed the extra delay by
using the && operator to make
each of the for loops also check
Visible. That way the loop ends
as soon as Visible turns false.

The outer loop
keeps running as
long as the form
is visible. As soon
as it’s closed,
Visible is false,
and the while
will stop looping.

The first for loop makes the colors cycle one way, and the second for loop reverses them so they look smooth.

When the IDE added this method, it added an extra
return before the curly bracket. Sometimes we’ll put the
bracket on the same line like this to save space—but C#
doesn’t care about extra space, so this is perfectly valid.

Can you figure out what’s causing that
delay? Can you fix it so the program ends
immediately when you close the window?

The delay happens because the for loops need to finish before the
while loop can check if Visible is still true. You can fix it by adding
&& Visible to the conditional test in each for loop.

We used “&&
Visible” instead
of “&& Visible
== true”. It’s
just like saying
“if it’s visible”
instead of “if
it’s true that
it’s visible”—they
mean the same
thing.

Download at WoweBook.Com

80 Chapter 2

Pool Puzzle
Your job is to take code snippets from

the pool and place them into
the blank lines in the code. You
may not use the same snippet
more than once, and you won’t
need to use all the snippets.
Your goal is to make a class

that will compile and run. Don’t
be fooled—this one’s harder than it
looks.

Note: each snippet
from the pool can only
be used once!

Poem = Poem + “ ”;
Poem = Poem + “a “;
Poem = Poem + “n“;
Poem = Poem + “an“;

x = x + 1;
x = x + 2;
x = x - 2;
x = x - 1;

x > 0
x < 1
x > 1
x > 3
x < 4

Poem = Poem + “noys “;
Poem = Poem + “oise “;
Poem = Poem + “ oyster “;
Poem = Poem + “annoys”;
Poem = Poem + “noise”;

using System;
using System.Windows.Forms;
namespace Chapter_2 {
 class Chapter2PoolPuzzle {
 public static void Main() {
 int x = 0;
 String Poem = “”;

 while (__________) {

 if (x < 1) {

 }

 if (__________) {

 }
 if (x == 1) {

 }
 if (___________) {

 }

 }

 }
 }
}

MessageBox.Show(Poem);

Output

this puzzle’s tougher than it looks

We included these “Pool Puzzle” exercises throughout the book
to give your brain an extra-tough workout. If you’re the kind
of person who loves twisty little logic puzzles, then you’ll love
this one. If you’re not, give it a shot anyway—but don’t be
afraid to look at the answer to figure out what’s going on.
And if you’re stumped by a pool puzzle, definitely move on.

Answers on page 83.
Download at WoweBook.Com

you are here 4 81

it’s all just code

Csharpcross
How does a crossword help you learn C#? Well, all the words are C#-
related and from this chapter. The clues also provide mental twists and
turns that will help you burn alternative routes to C# right into your brain

1

2 3

4 5

6 7

8 9 10

11 12

13 14

15

16

Across

3. You give information to a method using these
4. button1.Text and checkBox3.Name are examples of
8. Every statement ends with one of these
10. The name of every C# program's entry point
11. Contains methods
12. Your statements live here
14. A kind of variable that's either true or false
15. A special method that tells your program where to
start
16. This kind of class spans multiple files

Down

1. The output of a method is its _________ value
2. System.Windows.Forms is an example of one of
these
5. A tiny piece of a program that does something
6. A block of code is surrounded by
7. The kind of test that tells a loop when to end
9. You can call _________.Show() to pop up a simple
Windows dialog box
13. The kind of variable that contains a whole number

Across
3.	You	give	information	to	a	method	using	these	
4.	button1.Text	and	checkBox3.Name	are	examples	of	
8.	Every	statement	ends	with	one	of	these	
10.	The	name	of	every	C#	program’s	entry	point	
11.	Contains	methods	
12.	Your	statements	live	here	
14.	A	kind	of	variable	that’s	either	true	or	false	
15.	A	special	method	that	tells	your	program	where	to	
start	
16.	This	kind	of	class	spans	multiple	files	

Down	
1.	The	output	of	a	method	is	its	_________	value	
2.	System.Windows.Forms	is	an	example	of	one	of	
these	
5.	A	tiny	piece	of	a	program	that	does	something	
6.	A	block	of	code	is	surrounded	by	
7.	The	kind	of	test	that	tells	a	loop	when	to	end	
9.	You	can	call	_________.Show()	to	pop	up	a	simple	
Windows	dialog	box	
13.	The	kind	of	variable	that	contains	a	whole	number

Download at WoweBook.Com

82 Chapter 2

exercise solutions

Output:

This magnet didn’t fall off the fridge…

Code Magnets Solution
Part of a C# program is all scrambled up on the fridge. Can you
rearrange the code snippets to make a working C# program that
produces the message box? Some of the curly braces
fell on the floor and they were too small to pick up,
so feel free to add as many of those as you need!

string Result = “”;

MessageBox.Show(Result);

int x = 3;

while (x > 0) {

if (x > 2) {

Result = Result +
 “a”;

}

x = x - 1;

Result = Result + “-”;

if (x == 2) {

Result = Result + “b c”;

}

if (x == 1) {
Result = Result + “d”;x = x - 1;

}

The first time through the
loop, x is equal to 3 so this
conditional test will be true.

This statement makes x equal to 2 the first time through the loop, and 1 the second time through.

Download at WoweBook.Com

you are here 4 83

it’s all just code

using System;
using System.Windows.Forms;
namespace Chapter_2 {
 class Chapter2PoolPuzzle {
 public static void Main() {
 int x = 0;
 String Poem = “”;

 while (x < 4) {

 Poem = Poem + “a”;
 if (x < 1) {

 Poem = Poem + “ ”;
 }

 Poem = Poem + “n”;

 if (x > 1) {

 Poem = Poem + “ oyster”;

 x = x + 2;
 }
 if (x == 1) {

 Poem = Poem + “noys ”;
 }

 if (x < 1) {

 Poem = Poem + “oise ”;
 }

 x = x + 1;
 }

 MessageBox.Show(Poem);
 }
 }
}

Pool Puzzle Solution
Your job was to take code snippets from the

pool and place them into the blank lines
in the code. Your goal was to make a
class that will compile and run.

Did you get a different
solution? Type it into the IDE
and see if it works! There’s
more than one correction
solution to the pool puzzle.

If you want a real challenge, see if you
can figure out what it is! Here’s a hint:
There’s another solution that keeps the
word fragments in order.

Download at WoweBook.Com

84 Chapter 2

Csharpcross Solution

R
1

N
2

P
3

A R A M E T E R S

A T

M P
4

R O P E R T I E S
5

U

B
6

E T R C
7

R S
8

E M
9

I C O L O N M
10

A I N O

A P E T N

C
11

L A S S M
12

E T H O D

K C S M I

E E A I
13

B
14

O O L E A N T

T G N N I

S E
15

N T R Y P O I N T O

B E N

O G A

X E P
16

A R T I A L

R

Across

3. You give information to a method using these
[parameters]
4. button1.Text and checkBox3.Name are examples of
[properties]
8. Every statement ends with one of these [semicolon]
10. The name of every C# program's entry point
[main]
11. Contains methods [class]
12. Your statements live here [method]
14. A kind of variable that's either true or false
[boolean]
15. A special method that tells your program where to
start [entry point]
16. This kind of class spans multiple files [partial]

Down

1. The output of a method is its _________ value
[return]
2. System.Windows.Forms is an example of one of
these [namespace]
5. A tiny piece of a program that does something
[statement]
6. A block of code is surrounded by [brackets]
7. The kind of test that tells a loop when to end
[conditional]
9. You can call _________.Show() to pop up a simple
Windows dialog box [MessageBox]
13. The kind of variable that contains a whole number
[integer]

crossword solution

Download at WoweBook.Com

this is a new chapter 85

objects: get oriented!3

Making Code Make Sense

Every program you write solves a problem.
When you’re building a program, it’s always a good idea to start by thinking about what

problem your program’s supposed to solve. That’s why objects are really useful. They

let you structure your code based on the problem it’s solving, so that you can spend your

time thinking about the problem you need to work on rather than getting bogged down in

the mechanics of writing code. When you use objects right, you end up with code that’s

intuitive to write, and easy to read and change.

Every program you write solves a problem.
When you’re building a program, it’s always a good idea to start by thinking about what

problem your program’s supposed to solve. That’s why objects are really useful. They

let you structure your code based on the problem it’s solving, so that you can spend your

time thinking about the problem you need to work on rather than getting bogged down in

the mechanics of writing code. When you use objects right, you end up with code that’s

intuitive to write, and easy to read and change.

... and that’s why my
Husband class doesn’t have a
HelpOutAroundTheHouse()
method or a
PullHisOwnWeight() method.

Download at WoweBook.Com

86 Chapter 3

How Mike thinks about his problems
Mike’s a programmer about to head out to a job
interview. He can’t wait to show off his C# skills, but
first he has to get there—and he’s running late!

This is Frank Loudly with
your eye-in-the-sky shadow traffic
report. It looks like a three-car
pileup on Liberty has traffic backed

up all the way to 32nd Street.

I’ll take the 31st Street
bridge, head up Liberty Avenue,
and go through Bloomfield.

No problem. If I take
Route 28 instead, I’ll
still be on time!

Mike figures out the route he’ll take to get to the interview.11

Good thing he had his radio on. There’s
a huge traffic jam that’ll make him late!

22

Mike comes up with a new route to get
to his interview on time.

33

Mike sets his destination, then comes up with a route.

Mike gets new
information about a

street he needs to
 avoid.

Now he can come up
with a new route to
the interview.

mike’s going places

Download at WoweBook.Com

you are here 4 87

objects: get oriented!

How Mike’s car navigation system thinks about his problems
Mike built his own GPS navigation system, which he
uses to help him get around town.

Navigator

SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

SetDestination(“Fifth Ave & Penn Ave”);
string route;
route = GetRoute();

“Take 31St Street Bridge to Liberty Avenue to Bloomfield”

string route;
route = GetRoute();

“Take Route 28 to the Highland Park Bridge to Washington Blvd”

ModifyRouteToAvoid(“Liberty Ave”);

The navigation system sets
a destination and comes up
with a route

Mike’s navigation system solves the street
navigation problem the same way he does

The navigation system gets new information about a street it needs to avoid.

Now it can come up with a new

route to the dest
ination.

Here’s the output from the
GetRoute() method—it’s
a string that contains the
directions Mike should follow.

GetRoute() gives a new route that doesn’t include the
street Mike wants to avoid.

Here’s a diagram of a class
in Mike’s program. It shows
the name on top, and the
methods on the bottom.

Download at WoweBook.Com

88 Chapter 3

Some methods have a return value
Every method is made up of statements that do things. Some methods just execute
their statements and then exit. But other methods have a return value, or a value
that’s calculated or generated inside the method, and sent back to the statement that
called that method. The type of the return value (like string or int) is called the
return type.

The return statement tells the method to immediately exit. If your method doesn’t
have a return value—which means it’s declared with a return type of void—then
the return statement just ends with a semicolon, and you don’t always have to
have one in your method. But if the method has a return type, then it must use the
return statement.

Here’s a statement that calls a method to multiply two numbers. It returns an int:

Mike’s Navigator class has methods to set and modify routes
Mike’s Navigator class has methods, which are where the action happens. But unlike
the button_Click() methods in the forms you’ve built, they’re all focused around
a single problem: navigating a route through a city. That’s why Mike stuck them
together into one class, and called that class Navigator.

Mike designed his Navigator class so that it’s easy to create and modify routes. To
get a route, Mike’s program calls the SetDestination() method to set the
destination, and then uses the GetRoute() method to put the route into a string.
If he needs to change the route, his program calls the ModifyRouteToAvoid()
method to change the route so that it avoids a certain street, and then calls the
GetRoute() method to get the new directions.

public class Navigator() {

 public void SetDestination(string destinationName) { ... };

 public void ModifyRouteToAvoid(string streetName) { ... };

 public string GetRoute() { ... };

} This is the return type of the method. It means that the statement calling the GetRoute() method can use it to set a string variable that will contain the directions. When it’s void, that means the method doesn’t return anything.

string route;
route = GetRoute();

Mike chose method names that
would make sense to someone
who was thinking about how to
navigate a route through a city.

public int MultiplyTwoNumbers(int firstNumber, int secondNumber) {

 int result = firstNumber * secondNumber;

 return result;

}

int myResult = MultiplyTwoNumbers(3, 5);

Here’s an example of a method
that has a return type—it
returns an int. The method
uses the two parameters to
calculate the result and uses
the return statement to pass
the value back to the statement
that called it.

Methods can take values
like

3 and 5. But you can also pass

variables to them.

set methods and modify routes

Download at WoweBook.Com

you are here 4 89

objects: get oriented!

Add this form to your project.

Then double-click on the button and have it run this code that calls
BlahBlahBlah() and assigns its return value to an integer called len:

 int len = Talker.BlahBlahBlah(textBox1.Text, (int) numericUpDown1.Value);
 MessageBox.Show(“The message length is ” + len);

33

Create a new Windows Application project in the IDE. Then add a class file to it called
Talker.cs by right-clicking on the project in the Solution Explorer and selecting “Class...”
from the Add menu. When you name your new class file “Talker.cs”, the IDE will automatically
name the class in the new file Talker. Then it’ll pop up the new file in a new tab inside the IDE.

11

This is a NumericUpDown
control. Set its Minimum
property to 1, its Maximum
property to 10, and its
Value property to 3.

Set the default text of the TextBox to
“Hello!” using its Text property.

This statement
declares a finalString
variable and sets it
equal to an empty
string.

Use what you’ve learned to build a simple application
Let’s hook up a form to a class, and make its button
call a method inside that class. Do this!

Add using System.Windows.Forms; to the top of the class file. Then add code to the class:

class Talker {
 public static int BlahBlahBlah(string thingToSay, int numberOfTimes) {
 string finalString = “”;
 for (int count = 1; count <= numberOfTimes; count++) {
 finalString = finalString + thingToSay + “\n”;
 }
 MessageBox.Show(finalString);
 return finalString.Length;
 }
}

The new class has one method called BlahBlahBlah() that takes two parameters. The first
parameter is a string that tells it something to say, and the second is the number of times to say it.
When it’s called, it pops up a MessageBox with the message repeated a number of times. Its return
value is the length of the string. The method needs a string for its thingToSay parameter and a number
for its numberOfTimes parameter. It’ll get those parameters from a form that lets the user enter text
using a TextBox control and a number using NumericUpDown control.

2222

The BlahBlahBlah() method’s return value is an integer that
has the total length of the message it displayed. You can add
“.Length” to any string to figure out how long it is.

Now run your program! Click the button and watch it pop up two
message boxes. The class pops up the first message box, and the
form pops up the second one.

44

The BlahBlahBlah() method
pops up this message box
based on what’s in its
parameters.

When the
method returns
a value, the form
pops it up in this
message box.

This line of code adds the
contents of thingToSay and a
linebreak onto the end of it to
the finalString variable.

This is called a property—every string
has a property called Length. When it
calculates the length of a string, \n
counts as one character.

Download at WoweBook.Com

90 Chapter 3

It’d be great if I
could compare a few
routes and figure out
which is fastest...

Mike gets an idea
The interview went great! But the traffic
jam this morning got Mike thinking about
how he could improve his navigator.

Navigator

SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

Navigator2

SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

Navigator3

SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

He could create three different Navigator classes…
Mike could copy the Navigator class code and paste it into two more classes.
Then his program could store three routes at once.

Whoa, that can’t be right!
What if I want to change a
method? Then I need to go
back and fix it in three places.

Right! Maintaining three copies of the same code
is really messy. A lot of problems you need to solve need a
way to represent one thing a bunch of different times. In this case,
it’s a bunch of routes. But it could be a bunch of turbines, or dogs,
or music files, or anything. All of those programs have one thing in
common: they always need to treat the same kind of thing in the
same way, no matter how many of the thing they’re dealing with.

introducing objects

This box is a class diagram. It lists
all of the methods in a class, and
it’s an easy way to see everything
that it does at a glance.

Download at WoweBook.Com

you are here 4 91

objects: get oriented!

new Navigator()

new
 Na

vig
ato

r()

Navigator obj
e c

tnavigator3

Mike can use objects to solve his problem
Objects are C#’s tool that you use to work with
a bunch of similar things. Mike can use objects
to program his Navigator class just once, but use
it as many times as he wants in a program.

Navigator obj
e c

tnavigator1

Navigator obj
e c

t

navigator2

new Navigator()

Navigator

SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

Navigator navigator1 = new Navigator();

navigator1.SetDestination(“Fifth Ave & Penn Ave”);

string route;

route = navigator1.GetRoute();

All you need to create an
object is the new keyword
and the name of a class.

Now you can use the object! When you
create an object from a class, that object
has all of the methods from that class.

This is the Navigator class

in Mike’s program. It lists

all of the methods that a

Navigator object
can use.

Mike needed to compare
three different routes
at once, so he used
three Navigator objects
at the same time.

Download at WoweBook.Com

92 Chapter 3

House object

House object

House object

A class is like a blueprint for an object. If you wanted to build
five identical houses in a suburban housing development, you
wouldn’t ask an architect to draw up five identical sets of
blueprints. You’d just use one blueprint to build five houses.

You use a class to build an object

When you define a class, you define
its methods, just like a blueprint
defines the layout of the house.

You can use one blueprint to
make any number of houses,
and you can use one class to
make any number of objects.

House

GiveShelter()	
AppreciateInValue()
GrowLawn()
MailDelivered()
ClogDrainPipes()
AccruePropertyTaxes()
NeedRepairs()

An object gets its methods from its class
Once you build a class, you can create as many objects as you want from
it using the new statement. When you do, every public method in your
class becomes part of the object.

115 Maple
Drive

38 Pine
Street

26A Elm
Lane

for instance…

Download at WoweBook.Com

you are here 4 93

objects: get oriented!

House object

115 Maple
Drive

When you create a new object from a class,
it’s called an instance of that class.

Check it out for yourself!
Open any project that uses a button called button1, and use
the IDE to search the entire project for the text “button1
= new”. You’ll find the code that the IDE added to the form
designer to create the instance of the Button class.

in-stance, noun.
an example or one occurrence
of something. The IDE search-and-
replace feature finds every instance
of a word and changes it to another.

Do this!

Guess what… you already know this stuff ! Everything in the toolbox
is a class: there’s a Button class, a TextBox class, a Label
class, etc. When you drag a button out of the toolbox, the IDE
automatically creates an instance of the Button class and calls
it button1. When you drag another button out of the toolbox,
it creates another instance called button2. Each instance of
Button has its own properties and methods. But every button acts
exactly the same way, because they’re all instances of the same class.

Before: Here’s a picture of your
computer’s memory when your
program starts.

After: Now it’s
got an instance
of the House
class in memory.

House 115MapleDrive = new House();

Your program executes a new statement.

Download at WoweBook.Com

94 Chapter 3

Navigator obj
e c

tnavigator3

4.2 miles

Navigator obj
e c

tnavigator1

3.5 miles

Navigator obj
e c

t

navigator2

3.8 miles

Navigator obj
e c

tnavigator1

3.5 miles

A better solution… brought to you by objects!
Mike came up with a new route comparison program that uses objects to find
the shortest of three different routes to the same destination. Here’s how he
built his program.

String destination = textBox1.Text;

Navigator navigator1 = new Navigator();

navigator1.SetDestination(destination);

route = navigator1.GetRoute();

Navigator

SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

He created a Navigator object and set its destination.22

Mike set up a GUI with a text box—textBox1 contains the destination for the three
routes. Then he added textBox2, which has a street that one of the routes should avoid; and
textBox3, which contains a different street that the third route has to include.

11

Then he added a second Navigator object called navigator2. He
called its SetDestination() method to set the destination, and
then he called its ModifyRouteToAvoid() method.

33

The third Navigator object is called navigator3. Mike set its
destination, and then called its ModifyRouteToInclude() method.

44

The SetDestination(),

ModifyRouteToAvoid() and

ModifyRouteToInclude()

methods all take a st
ring as a

parameter.

Now Mike can call each object’s TotalDistance() method to figure
out which route is the shortest. And he only had to write the code once,
not three times!

55

Any time you
create a new
object from
a class, it’s
called creating
an instance of
that class.

objects improve your code

GUI stands for Graphical User Interface, which is what you’re building when you make a form in the form designer.

The navigator1
object is an
instance of the
Navigator class.

Download at WoweBook.Com

you are here 4 95

objects: get oriented!

Follow the same steps that Mike followed on the facing page to write
the code to create Navigator objects and call their methods.

String destination = textBox1.Text;
String route2StreetToAvoid = textBox2.Text;
String route3StreetToInclude = textBox3.Text;

Navigator navigator1 = new Navigator();
navigator1.SetDestination(destination);
int distance1 = navigator1.TotalDistance();

1. Create the navigator2 object, set its destination, call its ModifyRouteToAvoid() method, and use its
TotalDistance() method to set an integer variable called distance2.

We gave you a head start. Here’s the code Mike wrote to get the destination and street names from the textboxes.

int shortestDistance = Math.Min(distance1, Math.Min(distance2, distance3));

The built-in C# Math.Min() method compares two numbers and returns the smallest
one. Mike used it to find the shortest distance to the destination.

2. Create the navigator3 object, set its destination, call its ModifyRouteToInclude() method, and use its
TotalDistance() method to set an integer variable called distance3.

And here’s the code to create the
navigator object, set its destination,
and get the distance.

Navigator navigator2 =

navigator2.

navigator2.

int distance2 =

Download at WoweBook.Com

96 Chapter 3

String destination = textBox1.Text;
String route2StreetToAvoid = textBox2.Text;
String route3StreetToInclude = textBox3.Text;

Navigator navigator1 = new Navigator();
navigator1.SetDestination(destination);
int distance1 = navigator1.TotalDistance();

We gave you a head start. Here’s the code to get the destination and street names, along with the code to create the first Navigator object, set its route, and get the distance.

static cling

Follow the same steps that Mike followed on the facing page to write
the code to create Navigator objects and call their methods.

1. Create the navigator2 object, set its destination, call its ModifyRouteToAvoid() method, and use its
TotalDistance() method to set an integer varable called distance2.

int shortestDistance = Math.Min(distance1, Math.Min(distance2, distance3));

The built-in C# Math.Min() method compares two numbers and returns the smallest
one. Mike used it to find the shortest distance to the destination.

2. Create the navigator3 object, set its destination, call its ModifyRouteToInclude() method, and use its
TotalDistance() method to set an integer varable called distance3.

Navigator navigator2 =

navigator2.

navigator2.

int distance2 =

new Navigator()

SetDestination(destination);

ModifyRouteToAvoid(route2StreetToAvoid);

navigator2.TotalDistance();

Navigator navigator3 = new Navigator()

navigator3.SetDestination(destination);

navigator3.ModifyRouteToInclude(route3StreetToInclude);

int distance3 = navigator3.TotalDistance();

Download at WoweBook.Com

you are here 4 97

objects: get oriented!

Yes! That’s why you used the static keyword in your methods.
Take another look at the declaration for the Talker class you built a few pages ago:

 class Talker
 {
 public static int BlahBlahBlah(String thingToSay, int numberOfTimes)
 {
 string finalString = “”;

When you called the method you didn’t create a new instance of Talker. You just did this:

 Talker.BlahBlahBlah(“Hello hello hello”, 5);

That’s how you call static methods, and you’ve been doing that all along. If you take away
the static keyword from the BlahBlahBlah() method declaration, then you’ll have to
create an instance of Talker in order to call the method. Other than that distinction, static
methods are just like object methods. You can pass parameters, they can return values, and
they live in classes.

There’s one more thing you can do with the static keyword. You can mark your whole
class as static, and then all of its methods must be static too. If you try to add a non-static
method to a static class, it won’t compile.

Hold it! I’ve written a few classes now, but I haven’t
used “new” to create an instance yet! So does that mean
I can call methods without creating objects?

Q: When I think of something that’s “static”, I think of
something that doesn’t change. Does that mean non-static
methods can change, but static methods don’t? Do they
behave differently?

A:	No,	both	static	and	non-static	methods	act	exactly	the	
same.	The	only	difference	is	that	static	methods	don’t	require	
an	instance,	while	non-static	methods	do.	A	lot	of	people	have	
trouble	remembering	that,	because	the	word	“static”	isn’t	really	
all	that	intuitive.

Q: So I can’t use my class until I create an instance of
an object?

A:	You	can	use	its	static	methods.	But	if	you	have	methods	
that	aren’t	static,	then	you	need	an	instance	before	you	can	
use	them.

Q: Then why would I want a method that needs an
instance? Why wouldn’t I make all my methods static?

A:	Because	if	you	have	an	object	that’s	keeping	track	of	
certain	data—like	Mike’s	instances	of	his	Navigator	class	that	
each	kept	track	of	a	different	route—then	you	can	use	each	
instance’s	methods	to	work	with	that	data.	So	when	Mike	called	
his	ModifyRouteToAvoid()	method	in	the	navigator2	instance,	
it	only	affected	the	route	that	was	stored	in	that	particular	
instance.	It	didn’t	affect	the	navigator1	or	navigator3	objects.	
That’s	how	he	was	able	to	work	with	three	different	routes	at	
the	same	time—and	his	program	could	keep	track	of	all	of	it.

Q: So how does an instance keep track of data?

A:	Turn	the	page	and	find	out!

Download at WoweBook.Com

98 Chapter 3

An instance uses fields to keep track of things
You change the text on a button by setting its Text property in the
IDE. When you do, the IDE adds code like this to the designer:

 button1.Text = “Text for the button”;

Now you know that button1 is an instance of the Button class.
What that code does is modify a field for the button1 instance.
You can add fields to a class diagram—just draw a horizontal line in
the middle of it. Fields go above the line, methods go underneath it.

Technically, it’s setting a property. A property is very similar to a field—but we’ll get into all that a little later on.

Class
Field1
Field2
Field3

Method1()
Method2()
Method3()

Methods are what an object does. Fields are what the object knows.
When Mike created three instances of Navigator classes, his program created three objects.
Each of those objects was used to keep track of a different route. When the program created the
navigator2 instance and called its SetDestination() method, it set the destination for that
one instance. But it didn’t affect the navigator1 instance or the navigator3 instance.

An object’s behavior is defined by its methods,
and it uses fields to keep track of its state.

This is where a class
diagram shows the
fields. Every instance
of the class uses
them to keep track
of its state.

Add this line to
separate the fields from the methods.

Navigator
Destination
Route

SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

Every instance of Navigator knows
its destination and its route.

What a Navigator object does is let you set a destination, modify its route, and get information about that route.

an object’s state of affairs

Download at WoweBook.Com

you are here 4 99

objects: get oriented!

Clown
Name
Height

TalkAboutYourself()

Let’s create some instances!
It’s easy to add fields to your class. Just declare
variables outside of any methods. Now every
instance gets its own copy of those variables.

public class Clown {
 public String Name;
 public int Height;

 public void TalkAboutYourself() {
 MessageBox.Show(“My name is ”
 + Name + “ and I’m ”
 + Height + “ inches tall.”);
 }
}

Write down the contents of each message box that will be displayed
after the statement next to it is executed.

Clown oneClown = new Clown();

oneClown.Name = “Boffo”;

oneClown.Height = 14;

oneClown.TalkAboutYourself();

Clown anotherClown = new Clown();

anotherClown.Name = “Biff”;

anotherClown.Height = 16;

anotherClown.TalkAboutYourself();

Clown clown3 = new Clown();

clown3.Name = anotherClown.Name;

clown3.Height = oneClown.Height - 3;

clown3.TalkAboutYourself();

anotherClown.Height *= 2;

anotherClown.TalkAboutYourself();

“My name is _______ and I’m ______ inches tall.”

“My name is _______ and I’m ______ inches tall.”

“My name is _______ and I’m ______ inches tall.”

“My name is _______ and I’m ______ inches tall.”

Remember, when you see “void” in front of a method, it means that it doesn’t return any value.

When you want to create instances
of your class, don’t use the static
keyword in either the class declaration or the method declaration.

Remember, the *= operator tells C#
to take whatever’s on the left of the
operator and multiply it by whatever’s
on the right.

Download at WoweBook.Com

100 Chapter 3

Write down the contents of each message box that will be displayed
after the statement next to it is executed.

Clown oneClown = new Clown();

oneClown.Name = “Boffo”;

oneClown.Height = 14;

oneClown.TalkAboutYourself();

Clown anotherClown = new Clown();

anotherClown.Name = “Biff”;

anotherClown.Height = 16;

anotherClown.TalkAboutYourself();

Clown clown3 = new Clown();

clown3.Name = anotherClown.Name;

clown3.Height = oneClown.Height - 3;

clown3.TalkAboutYourself();

anotherClown.Height *= 2;

anotherClown.TalkAboutYourself();

“My name is _______ and I’m ______ inches tall.”

“My name is _______ and I’m ______ inches tall.”

“My name is _______ and I’m ______ inches tall.”

“My name is _______ and I’m ______ inches tall.”

Each of these new statements creates an instance of the Clown class by reserving a chunk of memory on the heap for that object and filling it up with the object’s data.

Boffo

Biff

Biff

Biff

14

16

11

32

Thanks for the memory
When your program creates an object, it lives in a part of the
computer’s memory called the heap. When your code creates an
object with a new statement, C# immediately reserves space in the
heap so it can store the data for that object.

Let’s take a closer look at what happened here

Here’s a picture of the heap before the
project starts. Notice that it’s empty.

When your program creates a new object, it gets added to the heap.

a heaping helping of objects

Download at WoweBook.Com

you are here 4 101

objects: get oriented!

Clown object
 #

3

“Biff”

16

Clown object
 #

2

“Biff”

32

Clown object
 #

1
“Boffo”

14

Clown object
 #

3

“Biff”

11

Clown object
 #

2

“Biff”

16

Clown object
 #

1

“Boffo”

14

Clown object
 #

2

“Biff”

16

Clown object
 #

1

“Boffo”

14

Clown object
 #

1

Clown oneClown = new Clown();

oneClown.Name = “Boffo”;

oneClown.Height = 14;

oneClown.TalkAboutYourself();

11

Clown anotherClown = new Clown();

anotherClown.Name = “Biff”;

anotherClown.Height = 16;

anotherClown.TalkAboutYourself();

22

Clown clown3 = new Clown();

clown3.Name = anotherClown.Name;

clown3.Height = oneClown.Height - 3;

clown3.TalkAboutYourself();

33

anotherClown.Height *= 2;

anotherClown.TalkAboutYourself();

44

What’s on your program’s mind
Here’s how your program creates a new instance of the
Clown class:

 Clown myInstance = new Clown();

That’s actually two statements combined into one. The
first statement declares a variable of type Clown (Clown
myInstance;). The second statement creates a new
object and assigns it to the variable that was just created
(myInstance = new Clown();). Here’s what the heap
looks like after each of these statements:

The first objec
t

is created, an
d its

fields are set
.

These statements create
the second object and fill it
with data.

Then the third Clown object is

created and populated.

There’s no new command, which means
these statements don’t create a new
object. They’re just modifying one
that’s already in memory.

This object is an instance of the
Clown class.

“Boffo”

14

Download at WoweBook.Com

102 Chapter 3

You can use class and method names
to make your code intuitive

When you put code in a method, you’re making a choice about how to structure
your program. Do you use one method? Do you split it into more than one? Or do
you even need a method at all? The choices you make about methods can make your
code much more intuitive—or, if you’re not careful, much more convoluted.

int t = m.chkTemp();
if (t > 160) {
 T tb = new T();
 tb.clsTrpV(2);
 ics.Fill();
 ics.Vent();
 m.airsyschk();
}

Here’s a nice, compact chunk of code. It’s from a control program that
runs a machine that makes candy bars.

11

Those statements don’t give you any hints about why the code’s doing what it’s doing. In this case, the
programmer was happy with the results because she was able to get it all into one method. But making
your code as compact as possible isn’t really useful! Let’s break it up into methods to make it easier to
read, and make sure the classes are given names that make sense. But we’ll start by figuring out what the
code is supposed to do.

22

General Electronics Type 5 Candy Bar Maker

Specification Manual

The nougat temperature must be checked every 3 minutes by an

automated system. If the temperature exceeds 160°C, the candy

is too hot, and the system must perform the candy isolation

cooling system (CICS) vent procedure.

Close the trip throttle valve on turbine #2

Fill the isolation cooling system with a solid stream of water

Vent the water

Verify that there is no evidence of air in the system

•

•

•

•

How do you figure out what

your code is supposed to
 do?

Well, all code is written for

a reason. So it’s up to y
ou to

figure out that reason!
In this

case, we can look up the page

in the specification manual
that the programmer followed.

Take a second and look at that code. Can you figure out what it does?

The clsTrpV()
method has one
parameter, but we
don’t know what
it’s supposed to be.

The chkTemp() method returns an integer… but what does it do?

making methods make sense

“obj”, “ics”, and “m”
are terrible names!
We have no idea
what they do. And
what’s that T class
for?

Download at WoweBook.Com

you are here 4 103

objects: get oriented!

public void DoCICSVentProcedure() {
 Turbine turbineController = new Turbine();
 turbineController.CloseTripValve(2);
 IsolationCoolingSystem.Fill();
 IsolationCoolingSystem.Vent();
 Maker.CheckAirSystem();
}

public boolean IsNougatTooHot() {
 int temp = Maker.CheckNougatTemperature();
 if (temp > 160) {
 return true;
 } else {
 return false;
 }
}

That page from the manual made it a lot easier to understand the code. It also gave us some great
hints about how to make our code easier to understand. Now we know why the conditional test checks
the variable t against 160—the manual says that any temperature above 160°C means the nougat is
too hot. And it turns out that “m” was a class that controlled the candy maker, with static methods
to check the nougat temperature and check the air system. So let’s put the temperature check into a
method, and choose names for the class and the methods that make the purpose obvious.

33

You can make your code easier to read and write by thinking about
the problem your code was built to solve. If you choose names for your
methods that make sense to someone who understands that problem,
then your code will be a lot easier to decipher…and develop!

What does the specification say to do if the nougat is too hot? It tells us to perform the candy isolation
cooling system (or CICS) vent procedure. So let’s make another method, and choose an obvious
name for the “T” class (which turns out to control the turbine) and the “ics” class (which controls the
isolation cooling system, and has two static methods to fill and vent the system):

44

Now the code’s a lot more intuitive! Even if you don’t know that the CICS vent procedure needs to
be run if the nougat is too hot, it’s a lot more obvious what this code is doing:

55

if (IsNougatTooHot() == true) {
 DoCICSVentProcedure();
}

This method’s return type is boolean,
which means it returns a true or
false value.

A void return type means the method doesn’t return any value at all.

The IsNougatTooHot()
method’s return type By naming the class “Maker” and the

method “CheckNougatTemperature”,
the code is a lot easier to understand.

Download at WoweBook.Com

104 Chapter 3

Give your classes a natural structure
Take a second and remind yourself why you want to make your methods intuitive:
because every program solves a problem or has a purpose. It might not
be a business problem—sometimes a program’s purpose (like FlashyThing) is just to
be cool or fun! But no matter what your program does, the more you can make your
code resemble the problem you’re trying to solve, the easier your program will be to
write (and read, and repair, and maintain…).

CandyController

DoMaintenanceTests()
DoCICSVentProcedure()
IsNougatTooHot()

Let’s build a class diagram
Take another look at the if statement in #5 on the last page. You already know that statements
always live inside methods, which always live inside classes, right? In this case, that if statement was
in a method called DoMaintenanceTests(), which is part of the CandyController class.
Now take a look at the code and the class diagram. See how they relate to each other?

public class CandyController {

 public void DoMaintenanceTests() {
 ...
 if (IsNougatTooHot() == true) {
 DoCICSVentProcedure();
 }
 ...
 }

 public void DoCICSVentProcedure() ...

 public boolean IsNougatTooHot() ...

}

Use class diagrams to plan out your classes
A class diagram is a simple way to draw your
classes out on paper. It’s a really valuable tool
for designing your code BEFORE you start
writing it.
Write the name of the class at the top of
the diagram. Then write each method in the
box at the bottom. Now you can see all of the
parts of the class at a glance!

ClassName

Method()
Method()
Method()
...

classes au naturale

Download at WoweBook.Com

you are here 4 105

objects: get oriented!

t

Turbine

The code for the candy control system we built on the previous
page called three other classes. Flip back and look through the
code, and fill in their class diagrams.

Fill()

We filled in this class name for this one. What method goes here?

One of the classes had
a method called Fill().
Fill in its class name
and its other method.

There was one other class in the code on the previous page. Fill in its name and method.

Download at WoweBook.Com

106 Chapter 3

t

Turbine

CloseTripValve()
Fill()

IsolationCoolingSystem

Vent()

Maker

CheckNougatTemperature()

CheckAirSystem()

a few helpful tips

The code for the candy control system we built on the
previous page called three other classes. Flip back and
look through the code, and fill in their class diagrams.

Class diagrams help you organize your classes
so they make sense
Writing out class diagrams makes it a lot easier to spot potential problems in your
classes before you write code. Thinking about your classes from a high level before
you get into the details can help you come up with a class structure that will make
sure your code addresses the problems it solves. It lets you step back and make sure
that you’re not planning on writing unnecessary or poorly structured classes or
methods, and that the ones you do write will be intuitive and easy to use.

Dishwasher

CleanDishes()
AddDetergent()
SetWaterTemperature()
ParkTheCar()

Dishwasher

CleanDishes()
AddDetergent()
SetWaterTemperature()

The class is called
“Dishwasher”, so all the
methods should be about
washing dishes. But one

method—ParkTheCar()—has
nothing to do with dishes, so it
should be taken out and put in

another class.

You could figure out that
Maker is a class because it
appears in front of a dot in
Maker.CheckAirSystem().

Download at WoweBook.Com

you are here 4 107

objects: get oriented!

v

DeliveryGuy

AddAPizza()
PizzaDelivered()
TotalCash()
ReturnTime()

Each of these classes has a serious design flaw. Write down what
you think is wrong with each class, and how you’d fix it.

Class23

CandyBarWeight()
PrintWrapper()
GenerateReport()
Go()

These two classes are part of a system that a pizza parlor uses to
track the pizzas that are out for delivery.

This class is part of the candy manufacturing system from earlier.

CashRegister

MakeSale()
NoSale()
PumpGas()
Refund()
TotalCashInRegister()
GetTransactionList()
AddCash()
RemoveCash()

The CashRegister class is part of a program that’s used by an
automated convenience store checkout system.

DeliveryGirl

AddAPizza()
PizzaDelivered()
TotalCash()
ReturnTime()

Download at WoweBook.Com

108 Chapter 3

Here’s how we corrected the classes. They’re just one
possible way to fix the problems—but there are plenty of other ways
you could design these classes depending on how they’ll be used.

create a class

CandyMaker

CandyBarWeight()
PrintWrapper()
GenerateReport()
MakeTheCandy()

These two classes are part of a system that a pizza parlor uses to
track the pizzas that are out for delivery.

This class is part of the candy manufacturing system from earlier.

CashRegister

MakeSale()
NoSale()
Refund()
TotalCashInRegister()
GetTransactionList()
AddCash()
RemoveCash()

The CashRegister class is part of a program that’s used by an
automated convenience store checkout system.

DeliveryPerson

Gender

AddAPizza()
PizzaDelivered()
TotalCash()
ReturnTime()

The class name doesn’t describe what the class does. A programmer

who sees a line of code that calls Class23.Go() will have no idea what

that line does. We’d also rename the method to something that’s more

descriptive—we chose MakeTheCandy(), but it could be anything.

It looks like the DeliveryGuy class and the DeliveryGirl class

both do the same thing—they track a delivery person who’s out

delivering pizzas to customers. A better design would replace

them with a single class that adds a field for gender..

All of the methods in the class do stuff that has to do with

a cash register—making a sale, getting a list of transactions,

adding cash… except for one: pumping gas. It’s a good idea to

pull that method out and stick it in another class.

We added the Gender field because we
assumed there was a reason to track both
delivery guys and girls separately, and that’s
why there were two classes for them.

Download at WoweBook.Com

you are here 4 109

objects: get oriented!

x == 3
x == 4

x < 4
x < 5
x > 0
x > 1

public partial class Form1 : Form
{
 private void button1_Click(object sender, EventArgs e)
 {
 String result = “”;

 Echo e1 = new Echo();

 int x = 0;

 while (___________) {

 result = result + e1.hello() + “\n”;

 if (____________) {

 e2.count = e2.count + 1;

 }

 if (____________) {

 e2.count = e2.count + e1.count;

 }

 x = x + 1;

 }
 MessageBox.Show(result + “Count: ” + e2.count);
 }

 public class ____________ {
 public int _________ = 0;

 public string ___________ {

 return “helloooo...”;
 }
 }
}

Output

e1 = e1 + 1;
e1 = count + 1;
e1.count = count + 1;
e1.count = e1.count + 1;

e2 = e1;
Echo e2;
Echo e2 = e1;
Echo e2 = new Echo();

x
y
e2
count

Echo
Tester
echo()
count()
hello()

Bonus Question!

If the last line of output was
24 instead of 10 how would
you complete the puzzle ?
You can do it by changing
just one statement.

Answers on page 120.

Pool Puzzle
Your job is to take code snippets from the

pool and place them into the blank
lines in the code. You may use
the same snippet more than once,
and you won’t need to use all the
snippets. Your goal is to make
classes that will compile and run

and produce the output listed.

Note: Each
snippet from the
pool can be used
more than once!

Download at WoweBook.Com

110 Chapter 3

Build a class to work with some guys
Joe and Bob lend each other money all the
time. Let’s build a class to keep track of them.

Guy object #
2

Guy object #
1

Guy
Name
Cash

GiveCash()
ReceiveCash()

The new statements
that create the two
instances live in the
code that gets run as
soon as the form is
created. Here’s what
the heap looks like
after the form is
loaded.

We’ll create a Guy class and add two instances of it to a form
The form will have two fields, one called joe (to keep track of the first object),
and the other called bob (to keep track of the second object).

11

We’ll set each Guy object’s cash and name
The two objects represent different guys, so each one has its own name
and a different amount of cash in his pocket.

22

Guy object #
2

“Bob”

50

Guy object #
1

“Joe”

100

We’ll give cash to the guys and take cash from them
We’ll use each guy’s GiveCash() method to give cash to a guy, and
we’ll use his ReceiveCash() method to take cash back from him.

33

Guy object #
1

“Joe”

75

Guy object #
1

“Joe”

100
joe.ReceiveCash(25);

Each guy has a Name
field that keeps track of
his name, and a Cash field
that has the number of
bucks in his pocket. When you take an instance

of Guy and call its
ReceiveCash() method, you
pass the amount of cash
to take as a parameter. So
calling joe. ReceiveCash(25)
takes 25 bucks from Joe.

The form calls the object’s
ReceiveCash() method.

The method returns the
number of bucks that
were taken.

working class guys

Download at WoweBook.Com

you are here 4 111

objects: get oriented!

Do this!

public class Guy {
 public string Name;
 public int Cash;

 public int GiveCash(int amount) {
 if (amount <= Cash && amount > 0) {
 Cash -= amount;
 return amount;
 } else {
 MessageBox.Show(
 “I don’t have enough cash to give you ” + amount,
 Name + “ says...”);
 return 0;
 }
 }

 public int ReceiveCash(int amount) {
 if (amount > 0) {
 Cash += amount;
 return amount;
 } else {
 MessageBox.Show(amount + “ isn’t an amount I’ll take”,
 Name + “ says...”);
 return 0;
 }
 }

}

Create a project for your guys
Create a new Windows Forms Application project (because
we’ll be using a form). Then use the Solution Explorer to add a
new class to it called Guy. Make sure to add “using System.
Windows.Forms;” to the top of the Guy class file. Then fill
in the Guy class. Here’s the code for it:

The Guy class has two fields. The Name field is
a string, and it’ll contain the guy’s name (“Joe”).
And the Cash field is an int, which will keep
track of how many bucks are in his pocket.

The GiveCash() method has one parameter
called amount that you’ll use to tell the
guy how much cash to give you.

He uses an if statement to check
whether he has enough cash—if he
does, he takes it out of his pocket and
returns it as the return value.

The Guy makes
sure that you’re
asking him for a
positive amount
of cash, otherwise
he’d add to his
cash instead of
taking away from
it.

If the guy doesn’t have enough cash, he’ll tell you so with a message box, and then he’ll make GiveCash() return 0.

Be careful with your curly brackets. It’s easy to have the wrong number—make sure that every opening bracket has a matching closing bracket. When they’re all balanced, the IDE will automatically indent them for you when you type the last closing bracket.

The ReceiveCash() method works just like
the GiveCash() method. It’s passed an
amount as a parameter, checks to make
sure that amount is greater than zero,
and then adds it to his cash.

If the amount was positive, then the
ReceiveCash() method returns the amount
added. If it was zero or negative, the guy
shows a message box and then returns 0.

Download at WoweBook.Com

112 Chapter 3

Build a form to interact with the guys
The Guy class is great, but it’s just a start. Now put together
a form that uses two instances of the Guy class. It’s got labels
that show you their names and how much cash they have, and
buttons to give and take cash from them.

Build this!

Add two buttons and three labels to your form
The top two labels show how much cash each guy has. We’ll also add a variable called bank to
the form—the third label shows how much cash is in it. We’re going to have you name some of
the labels that you drag onto the forms. You can do that by clicking on each label that you
want to name and changing its “(Name)” row in the Properties window. That’ll make your
code a lot easier to read, because you’ll be able to use “joesCash” and “bobsCash” instead of

“label1” and “label2”.

11

Add variables to your form
Your form will need to keep track of the two guys, so you’ll need a variable for each of them. Call
them joe and bob. Then add a variable to the form called bank to keep track of how much
money the form has to give to and receive from the guys.

namespace Your_Project_Name {

 public partial class Form1 : Form {

 Guy joe;

 Guy bob;

 int bank = 100;

 public Form1() {

 InitializeComponent();

 }

22

Since we’re using
Guy objects to
keep track of
Joe and Bob,
you declare
their variables
using Guy.

The amount of cash in the bank goes up and down depending on how much money the form gave to and received from the Guy objects.

Name the top label joesCash,
the label underneath it
bobsCash, and the bottom
label bankCash. You can leave
their Text properties alone,
we’ll add a method to the
form to set them.

This button will call the Joe
object’s ReceiveCash() method,
passing it 10 as the amount, and
subtracting the cash it gives to
Joe from the bank variable.

This button will call the Bob
object’s GiveCash() method,
passing it 5 as the amount, and
adding the cash it receives
from Joe to the bank variable.

joe says, “where’s my money?”

Download at WoweBook.Com

you are here 4 113

objects: get oriented!

Add a method to the form to update the labels
The labels on the right-hand side of the form show how much cash each guy has and how much
is in the bank variable. So add the UpdateForm() method to keep them up to date—make
sure the return type is void to tell C# that the method doesn’t return a value. Type this
method into the form right underneath where you added the bank variable:

 public void UpdateForm() {

 joesCash.Text = joe.Name + “ has $” + joe.Cash;

 bobsCash.Text = bob.Name + “ has $” + bob.Cash;

 bankCash.Text = “The bank has $” + bank;

 }

33

Double-click on each button and add the code to interact with the objects
Make sure the left-hand button is called button1, and the right-hand button is called button2.
Then double-click each of the buttons—when you do, the IDE will add two methods called
button1_Click() and button2_Click() to the form. Add this code to each of them:

 private void button1_Click(object sender, EventArgs e) {

 if (bank >= 10) {

 bank -= joe.ReceiveCash(10);

 UpdateForm();

 } else {

 MessageBox.Show(“The bank is out of money.”);

 }

 }

 private void button2_Click(object sender, EventArgs e) {

 bank += bob.GiveCash(5);

 UpdateForm();

 }

44

The “Receive $5 from Bob” button
doesn’t need to check how much is
in the bank, because it’ll just add
whatever Bob gives back. If Bob’s out of money,

GiveCash() will return zero.

When the user clicks the “Give $10 to Joe” button, the form calls the Joe object’s ReceiveCash() method—but only if the bank has enough money.

The bank needs at least $10 to give to
Joe. If there’s not enough, it’ll pop up
this message box.

This new method is simple.
It just updates the three
labels by setting their Text
properties. You’ll have each
button call it to keep the
labels up to date.

Start Joe out with $50 and start Bob out with $100
It’s up to you to figure out how to get Joe and Bob to start out with their Cash and
Name fields set properly. Put it right underneath InitializeComponent() in the form.
That’s part of a special method that gets run once, when the form is first initialized.Once you’ve
done that, click both buttons a number of times—make sure that one button takes $10 from the
bank and adds it to Joe, and the other takes $5 from Bob and adds it to the bank.

 public Form() {
 InitializeComponent();

 // Initialize joe and bob here!

 }

55

Add the lines of code here to create the two objects and set their Name and Cash fields.

Notice how the labels
are updated using the
Guy objects’ Name and
Cash fields.

Download at WoweBook.Com

114 Chapter 3

Make sure you save the
project now—we’ll come
back to it in a few pages.

It’s up to you to figure out how to get Joe and Bob to start out with their Cash
and Name fields set properly. Put it right underneath InitializeComponent()

public Form1() {
 InitializeComponent();

 bob = new Guy();
 bob.Name = “Bob”;
 bob.Cash = 100;

 joe = new Guy();
 joe.Name = “Joe”;
 joe.Cash = 50;

 UpdateForm();
}

Here’s where we set up the first
instance of Guy. The first line
creates the object, and the next
two set its fields.

Q: Why doesn’t the solution start with “Guy bob = new
Guy()”? Why did you leave off the first “Guy”?

A:	Because	you	already	declared	the	bob	field	at	the	top	of	the	
form.	Remember	how	the	statement	“int i = 5;”	is	the	same	
as	the	two	statements	“int i”	and	“i = 5;”?	This	is	the	same	
thing.	You	could	try	to	declare	the	bob	field	in	one	line	like	this:	

“Guy bob = new Guy();”.	But	you	already	have	the	first	
part	of	that	statement	(“Guy bob;”)	at	the	top	of	your	form.	So	
you	only	need	the	second	half	of	the	line,	the	part	that	sets	the	bob	
field	to	create	a	new	instance	of	Guy().

Q: Okay, so then why not get rid of the “Guy bob;” line at
the top of the form?

A:	Then	the	bob	variable	will	only	exist	inside	that	special	
“public Form1()”	method.	When	you	declare	a	variable	
inside	a	method,	it’s	only	valid	inside	the	method—you	can’t	access	
it	from	any	other	method.	But	when	you	declare	it	outside	of	your	
method	but	inside	the	form	or	a	class	that	you	added,	then	you	can	
access	it	from	any other method	inside	the	form	or	class.

Q: What happens if I don’t leave off that first “Guy”?

A:	You’ll	run	into	problems—your	form	won’t	work,	because	it	
won’t	ever	set	the	form’s	bob	variable.	Think	about	it	for	a	minute,	
and	you’ll	see	why	it	works	that	way.	If	you	have	this	code	at	the	top	
of	your	form:	
	
 public partial class Form1 : Form {
 Guy bob;
	
and	then	you	have	this	code	later	on,	inside	a	method:	
	
 Guy bob = new Guy();	
	
then	you’ve	declared	two	variables.	It’s	a	little	confusing,	because	
they	both	have	the	same	name.	But	one	of	them	is	valid	throughout	
the	entire	form,	and	the	other	one—the	new	one	you	added—is	only	
valid	inside	the	method.	The	next	line	(bob.Name = “Bob”;)	
only	updates	that	local	variable,	and	doesn’t	touch	the	one	in	the	
form.	So	when	you	try	to	run	your	code,	it’ll	give	you	a	nasty	error	
message	(“NullReferenceException	not	handled”),	which	just	means	
you	tried	to	use	an	object	before	you	created	it	with	new.

Then we do the same for the
second instance of the Guy class.

Make sure you call UpdateForm() so
the labels look right when the form
first pops up.

exercise solution

Download at WoweBook.Com

you are here 4 115

objects: get oriented!

There’s an even easier way to initialize objects
Almost every object that you create needs to be initialized in some way.
And the Guy object is no exception—it’s useless until you set its Name
and Cash fields. It’s so common to have to initialize fields that C# gives
you a shortcut for doing it called an object initializer. And the IDE’s
IntelliSense will help you do it.

joe = new Guy();
joe.Name = “Joe”;
joe.Cash = 50;

joe = new Guy() { Cash = 50, Name = “Joe” };

joe = new Guy() {

joe = new Guy() {

joe = new Guy() { Cash = 50,

Delete the second two lines, and the semicolon after “Guy()” and add a right curly bracket.22

Here’s the original code that you wrote to
initialize Joe’s Guy object.

11

Press space. As soon as you do, the IDE pops up an IntelliSense window that shows you all of
the fields that you’re able to initialize.

33

joe = new Guy() { Cash = 50
Press tab to tell it to add the Cash field. Then set it equal to 50.44

Type in a comma. As soon as you do, the other field shows up.55

 Object
initializers only
work with C#
3.0.

If you’re running
Visual Studio 2005, then this
won’t work. Definitely consider
downloading Visual Studio 2008
Express Edition—it’s free, and
you can install it alongside your
existing VS2005 installation.

Finish the object initializer. Now you’ve saved yourself two lines of code!55

Object
intializers
save you time
and make
your code
more compact
and easier to
read... and the
IDE helps you
write them.This new declaration does exactly the same

thing as the three lines of code you wrote
originally. It’s just shorter and easier to read.

Download at WoweBook.Com

116 Chapter 3

Navigator obj
e c

tbestRoute

obj Object

myInst

± You’re building your program to solve a problem.
Spend some time thinking about that problem. Does it break down into pieces
easily? How would you explain that problem to someone else? These are good
things to think about when designing your classes.

A few ideas for designing intuitive classes

± What real-world things will your program use?
A program to help a zoo keeper track her animals’ feeding schedules might have
classes for different kinds of food and types of animals.

± Use descriptive names for classes and methods.
Someone should be able to figure out what your classes and methods do just by
looking at their names.

± Look for similarities between classes.
Sometimes two classes can be combined into one if they’re really similar. The candy
manufacturing system might have three or four turbines, but there’s only one
method for closing the trip valve that takes the turbine number as a parameter.

It’d be great if I
could compare a few
routes and figure out
which is fastest...

BlockedRoad
Name
Duration

FindDetour()

ClosedRoad
StreetName
ReasonItsClosed

CalculateDelay()

Detour
Name
Duration
ReasonItsClosed

FindDetour()
CalculateDelay()

a few helpful tips

Download at WoweBook.Com

you are here 4 117

objects: get oriented!

Use an object initializer to initialize Bob’s instance of Guy
You’ve already done it with Joe. Now make Bob’s instance work with an object
initializer too.

11

Add two more buttons to your form
The first button tells Joe to give 10 bucks to Bob, and the second tells Bob to give 5
bucks back to Joe. Before you double-click on the button, go to the Properties
window and change each button’s name using the “(Name)” row—it’s at the top of
the list of properties. Name the first button joeGivesToBob, and the second one
bobGivesToJoe.

22

This button tells Joe to
give 10 bucks to Bob, so
you should use the “(Name)”
row in the Properties
window to name it
joeGivesToBob.

This button tells Bob to give t bucks to Joe. Name it bobGivesToJoe.

Make the buttons work
Double-click on the joeGivesToBob button in the designer. The IDE will add a
method to the form called joeGivesToBob_Click() that gets run any time the
button’s clicked. Fill in that method to make Joe give 10 bucks to Bob. Then double-
click on the other button and fill in the new bobGivesToJoe_Click() method
that the IDE creates so that Bob gives five bucks to Joe. Make sure the form updates
itself after the cash changes hands.

33

Add	buttons	to	the	“Fun	with	Joe	and	Bob”	program	to	make	the	guys	give	each	other	cash.

If you already clicked the button, just delete
it, add it back to your form, and rename it.
Then delete the old button3_Click() method
that the IDE added before, and use the new
method it adds now.

Download at WoweBook.Com

118 Chapter 3

exercise solution

Add	buttons	to	the	“Fun	with	Joe	and	Bob”	program	to	make	the	guys	give	each	other	cash.

public partial class Form1 : Form {
 Guy joe;
 Guy bob;
 int bank = 100;

 public Form1() {
 InitializeComponent();
 bob = new Guy() { Cash = 100, Name = “Bob” };
 joe = new Guy() { Cash = 50, Name = “Joe” };
 UpdateForm();
 }

 public void UpdateForm() {
 joesCash.Text = joe.Name + “ has $” + joe.Cash;
 bobsCash.Text = bob.Name + “ has $” + bob.Cash;
 bankCash.Text = “The bank has $” + bank;
 }

 private void button1_Click(object sender, EventArgs e) {
 if (bank >= 10) {
 bank -= joe.ReceiveCash(10);
 UpdateForm();
 } else {
 MessageBox.Show(“The bank is out of money.”);
 }
 }

 private void button2_Click(object sender, EventArgs e) {
 bank += bob.GiveCash(5);
 UpdateForm();
 }

 private void joeGivesToBob_Click(object sender, EventArgs e) {
 bob.ReceiveCash(joe.GiveCash(10));
 UpdateForm();
 }

 private void bobGivesToJoe_Click(object sender, EventArgs e) {
 joe.ReceiveCash(bob.GiveCash(5));
 UpdateForm();
 }

}

Here are the object initializers for the two instances of the Guy class. Bob gets initialized with 100 bucks and his name.

The trick here is
thinking through
who’s giving the
cash and who’s
receiving it.

Take a close look at
how the Guy methods
are being called. The
results returned
by GiveCash() are
pumped right into
ReceiveCash() as its
parameter.

To make Joe give cash
to Bob, we call Joe’s
GiveCash() method and
send its results into
Bob’s ReceiveCash()
method.

Download at WoweBook.Com

you are here 4 119

objects: get oriented!

Objectcross
It’s time to give your left brain a break, and put that
right brain to work: all the words are object-related
and from this chapter.

1

2 3 4 5 6

7

8 9

10

11

12

13

14 15

Across

2. If a method's return type is _____, it doesn't return
anything.
7. An object's fields define its _______
9. A good method __________ makes it clear what the
method does.
10. Where objects live
11. What you use to build an object
13. What you use to pass information into a method
14. The statement you use to create an object
15. A special kind of field that's used by the form
controls

Down

1. This form control lets the user choose a number
from a range you set.
3. It's a great idea to create a class ________ on paper
before you start writing code
4. What an object uses to keep track of what it knows
5. These define what an object does
6. An object's methods define its ________
7. Don't use this keyword in your class declaration if
you want to be able to create instances of it
8. An object is an ______________ of a class
12. This statement tells a method to immediately exit,
and specifies the value that should be passed back to
the statement that called the method.

Across

2.	If	a	method’s	return	type	is	_____,	it	doesn’t	return	anything.	

7.	An	object’s	fields	define	its	_______	

9.	A	good	method	__________	makes	it	clear	what	the	method	
does.	

10.	Where	objects	live	

11.	What	you	use	to	build	an	object	

13.	What	you	use	to	pass	information	into	a	method	

14.	The	statement	you	use	to	create	an	object	

15.	A	special	kind	of	field	that’s	used	by	the	form	controls	

Down

1.	This	form	control	lets	the	user	choose	a	number	from	a	range	
you	set.	

3.	It’s	a	great	idea	to	create	a	class	________	on	paper	before	
you	start	writing	code	

4.	What	an	object	uses	to	keep	track	of	what	it	knows	

5.	These	define	what	an	object	does	

6.	An	object’s	methods	define	its	________	

7.	Don’t	use	this	keyword	in	your	class	declaration	if	you	want	to	
be	able	to	create	instances	of	it	

8.	An	object	is	an	______________	of	a	class	

12.	This	statement	tells	a	method	to	immediately	exit,	and	
specifies	the	value	that	should	be	passed	back	to	the	statement	
that	called	the	method.

Download at WoweBook.Com

120 Chapter 3

public partial class Form1 : Form
{
 private void button1_Click(object sender, EventArgs e)
 {
 String result = “”;

 Echo e1 = new Echo();

 int x = 0;

 while (___________) {

 result = result + e1.hello() + “\n”;

 if (____________) {

 e2.count = e2.count + 1;

 }

 if (____________) {

 e2.count = e2.count + e1.count;

 }

 x = x + 1;

 }
 MessageBox.Show(result + “Count: ” + e2.count);
 }

 public class ____________ {
 public int _________ = 0;

 public string ___________ {

 return “helloooo...”;
 }
 }
}

puzzle solutions

That’s	the	correct	answer.
And	here’s	the	bonus	answer!

Pool Puzzle Solution
Your job was to take code snippets from

the pool and place them into the
blank lines in the code. Your goal
was to make classes that will
compile and run and produce the
output listed.

Echo e2 = new Echo();

x < 4

e1.count = e1.count + 1;

x > 0

x == 3

Echo
count

hello()

Echo e2 = e1;

Download at WoweBook.Com

you are here 4 121

objects: get oriented!

N
1

U

M V
2

O I D
3

F
4

M
5

B
6

E I I E S
7

T A T E

R I
8

N
9

A M E T T H

I N G L H
10

E A P A

C
11

L A S S R D O T V

U T A R
12

D I I

P P
13

A R A M E T E R S C O

D N T R

O C U

W N
14

E W P
15

R O P E R T Y

N N

Across

2. If a method's return type is _____, it doesn't return
anything. [void]
7. An object's fields define its _______ [state]
9. A good method __________ makes it clear what the
method does. [name]
10. Where objects live [heap]
11. What you use to build an object [class]
13. What you use to pass information into a method
[parameters]
14. The statement you use to create an object [new]
15. A special kind of field that's used by the form
controls [property]

Down

1. This form control lets the user choose a number
from a range you set. [numericupdown]
3. It's a great idea to create a class ________ on paper
before you start writing code [diagram]
4. What an object uses to keep track of what it knows
[field]
5. These define what an object does [methods]
6. An object's methods define its ________ [behavior]
7. Don't use this keyword in your class declaration if
you want to be able to create instances of it [static]
8. An object is an ______________ of a class
[instance]
12. This statement tells a method to immediately exit,
and specifies the value that should be passed back to
the statement that called the method. [return]

Objectcross Solution

Download at WoweBook.Com

Download at WoweBook.Com

this is a new chapter 123

This data just got garbage collected.

Types and References4

It’s 10:00.
 Do you know where your data is?

Data type, database, Lieutenant Commander Data…
it’s all important stuff. Without data, your programs are useless. You

need information from your users, and you use that to look up or produce new

information, to give back to them. In fact, almost everything you do in programming

involves working with data in one way or another. In this chapter, you’ll learn the

ins and outs of C#’s data types, how to work with data in your program, and even

figure out a few dirty secrets about objects (psstt… objects are data, too).

Data type, database, Lieutenant Commander Data…
it’s all important stuff. Without data, your programs are useless. You

need information from your users, and you use that to look up or produce new

information, to give back to them. In fact, almost everything you do in programming

involves working with data in one way or another. In this chapter, you’ll learn the

ins and outs of C#’s data types, how to work with data in your program, and even

figure out a few dirty secrets about objects (psstt… objects are data, too).

Download at WoweBook.Com

124 Chapter 4

The variable’s type determines what
kind of data it can store
There are fifteen types built into C#, and each one stores a different
kind of data. You’ve already seen some of the most common ones, and
you know how to use them. But there are a few that you haven’t seen,
and they can really come in handy, too.

Types you’ll use all the time
It shouldn’t come as a surprise that int, string, bool, and float are the most
common types.

int can store any whole number from -2,147,483,648 to 2,147,483,647.

string can hold text of any length (including the empty string “”).

bool is a Boolean value—it’s either true or false.

float can store any decimal number from ±1.5 × 10−45 to ±3.4 × 1038 with up
to 7 significant figures. That range looks weird and complicated, but it’s actually
pretty simple. The “significant figures” part means the precision of the number:
35,048,410,000,000, 1,743,059, 14.43857, and 0.00004374155 all have seven
significant figures. The 1038 thing means that you can store any number as large as
1038 (or 1 followed by 38 zeroes)—as long as it only has 7 or fewer significant figures.
On the other end of the range, 10-45 means that you can store any number as small
as 10-45 (or a decimal point followed by 45 zeroes followed by 1)… but, you guessed
it, as long as it only has 7 or fewer significant figures.

≥

≥

≥

≥

More types for whole numbers
Once upon a time, computer memory was really expensive, and processors were really
slow. And, believe it or not, if you used the wrong type, it could seriously slow down your
program. Luckily, times have changed, and most of the time if you need to store a whole
number you can just use an int. But sometimes you really need something bigger… and
once in a while, you need something smaller, too. That’s why C# gives you more options:

byte can store any whole number between 0 and 255.

sbyte can store any whole number from -128 to 127.

short can store any whole number from -32,768 to 32,767.

ushort can store any whole number from 0 to 65,535.

uint can store any whole number from 0 to 4,294,967,295.

long can store any number between minus and plus 9 billion billion.

ulong can store any number between 0 and about 18 billion billion.

≥

≥

≥

≥

≥

≥

≥

A lot of times, if
you’re using these
types it’s because
you’re solving a
problem where
it really helps to
have the “wrapping
around” effect that
you’ll read about in
a few minutes.

The “u”
stands for

“unsigned”

not my type

A whole number doesn’t
have a decimal point.

The “u” in uint stands for “unsigned”,
which means it can’t be negative (so
there’s no minus sign).

“float” is short for “floating point”—as opposed to a “fixed point” number, which always has the same number of decimal places.

Download at WoweBook.Com

you are here 4 125

types and references

When you used the
Value property in
your numericUpDown control, you were
using a decimal.

You can use the Windows calculator to convert between decimal (normal, base-10) numbers and
binary numbers (base-2 numbers written with only ones and zeroes)—put it in Scientific mode, enter
a number, and click the Bin radio button to convert to binary. Then click Dec to convert it back. Now
enter some of the upper and lower limits for the whole number types (like -32,768 and 255)
and convert them to binary. Can you figure out why C# gives you those particular limits?

Types for storing really HUGE and really tiny numbers
Sometimes 7 significant figures just isn’t precise enough. And, believe it or not, sometimes 1038
isn’t big enough and 10-45 isn’t small enough. A lot of programs written for finance or scientific
research run into these problems all the time, so C# gives us two more types:

double can store any number from ±5.0 × 10-324 to ±1.7 × 10308 with 15–16
significant digits.

decimal can store any number from ±1.0 × 10-28 to ±7.9 × 1028 with 28–29
significant digits.

≥

≥

Literals have types, too
When you type a number directly into your C# program, you’re using a literal… and
every literal is automatically assigned a type. You can see this for yourself—just enter this
line of code that assigns the literal 14.7 to an int variable:

 int myInt = 14.7;

Now try to build the program. You’ll get this:

That’s the same error you’ll get if you try to set an int equal to a double variable. What
the IDE is telling you is that the literal 14.7 has a type—it’s a double. You can change
its type to a float by sticking an F on the end (14.7F). And 14.7M is a decimal. If you try to assign a

float literal to a double
or a decimal literal to a
float, the IDE will give
you a helpful message
reminding you to add
the right suffix. Cool!

A few more useful built-in types
Sometimes you need to store a single character like Q or 7 or $, and when you do you’ll
use the char type. Literal values for char are always inside single quotes ('x', '3').
You can include escape sequences in the quotes, too ('\n' is a line break, '\t' is
a tab). You write an escape sequence in your C# code using two characters, but your
program stores each escape sequence as a single character in memory.

And finally, there’s one more important type: object. You’ve already seen how an
object can inherit from another one, and that object can in turn inherit from yet a
different object. At the top of every inheritance hierarchy is the object class—that’s a
special type that every other object inherits from. That’s really useful, because it means
that you can assign any value, variable, or object to an object variable.

You’ll learn a lot more about how char and
byte relate to each other in Chapter 9.

The double
type is actually
as common as
float. A lot
of people use
it all the time,
and rarely use
float.

A literal just means a number that you
type into your code. So when you type
“int i = 5;”, the 5 is a literal.

When your
program needs
to deal with
currency, you
usually want to
use a decimal
to store the
number.

Download at WoweBook.Com

126 Chapter 4

A variable is like a data to-go cup
All of your data takes up space in memory. (Remember the heap
from last chapter?) So part of your job is to think about how much
space you’re going to need whenever you use a string or a number in
your program. That’s one of the reasons you use variables. They let
you set aside enough space in memory to store your data.

Think of a variable like a cup that you keep your data in. C# uses
a bunch of different kinds of cups to hold different kinds of data.
And just like the different sizes of cups at the coffee shop, there are
different sizes of variables, too.

long int short byte
 64 32 16 8

 float double decimal
 32 64 128

Numbers that have decimal places are stored differently than
whole numbers. You can handle most of your numbers that have
decimal places using float, the smallest data type that stores
decimals. If you need to be more accurate, use a double, and
if you’re writing a financial application where you’ll be storing
currency values, you’ll want to use the decimal type.

It’s not always about numbers, though. (You wouldn’t expect to
get hot coffee in a plastic cup or cold coffee in a paper one.) The
C# compiler also can handle characters and non-numeric types.
The char type holds one character, and string is used for lots
of characters “strung” together. There’s no set size for a string
object, either. It expands to hold as much data as you need to store
in it. The bool data type is used to store true or false values, like
the ones you’ve used for your if statements.

 bool char string

 8 16

You’ll use long for whole numbers that are going to be really big.

int is commonly used for whole

numbers. It holds numbers up to

2,147,483,647.

These are the number of bits of memory set aside for the variable when you declare it.

These types are for
fractions. Larger
variables store more
decimal places.

A short will hold whole numbers
up to 32,767.

byte holds numbers
between zero and 255.

depends on
the size

of the string

i’ll take an ice cream float to go

Download at WoweBook.Com

you are here 4 127

types and references

Three of these statements won’t compile, either because they’re
trying to cram too much data into a small variable or because
they’re putting the wrong type of data in. Circle them.

10 pounds of data in a 5 pound bag
When you declare your variable as one type, that’s how your
compiler looks at it. Even if the value is nowhere near the upper
boundary of the type you’ve declared, the complier will see the cup
it’s in, not the number inside. So this won’t work:

 int leaguesUnderTheSea = 20000;

 short smallerLeagues = leaguesUnderTheSea;

20,000 would fit into a short, no problem. But since
leaguesUnderTheSea is declared as an int, the compiler sees
it as int-sized and considers it too big to put in a short container.
The compiler won’t make those translations for you on the fly. You
need to make sure that you’re using the right type for the data
you’re working with.

int hours = 24;

short y = 78000;

bool isDone = yes;

short RPM = 33;

int balance = 345667 - 567;

string taunt = “your mother”;

byte days = 365;

long radius = 3;

char initial = ‘S’;

string months = “12”;

20,000

int

short

All the compiler sees is an
int going into a short (which
doesn’t work). It doesn’t care
about the value in the int cup.

This makes sense. What if you later put a larger value in the int cup, that wouldn’t fit into the short cup? The compiler is trying to protect you.

Download at WoweBook.Com

128 Chapter 4

Three of these statements won’t compile, either because they’re
trying to cram too much data into a small variable or because
they’re putting the wrong type of data in. Circle them.

short y = 78000;

bool isDone = yes;

byte days = 365;

A byte can only hold a value of up to 256. You’ll need a short for this.

The short type holds
numbers from -32,767
to 32,768. This
number’s too big!

You can only assign a value of
“true” or “false” to a bool.

Even when a number is the right size, you
can’t just assign it to any variable
Let’s see what happens when you try to assign
a decimal value to an int variable.

Create a new project and add a button to it. Then add these lines to the
button’s Click() method:

 decimal myDecimalValue = 10;
 int myIntValue = myDecimalValue;

 MessageBox.Show(“The myIntValue is ” + myIntValue);

11

Check out how
the IDE figured
out that you
were probably
missing a cast.

Try building your program. Uh-oh—you got an error that looks like this:22

Make the error go away by casting the decimal to an int. Once you change
the second line so it looks like this, your program will compile and run:

int myIntValue = (int) myDecimalValue;

33

casting call

Take a minute to flip back to the beginning of the last chapter and check out how you used casting when you passed the NumericUpDown.Value to the Talker Tester form.

Do this

So what happened?
The compiler won’t let you assign a value to a variable if it’s the wrong type—even
if that variable can hold the value just fine—because that’s the underlying cause
behind an enormous number of bugs. When you use casting, you’re essentially
making a promise to the compiler that you know the types are different, and that
in this particular instance it’s okay for C# to cram the data into the new variable.

Here’s where you cast the
decimal value to an int.

Download at WoweBook.Com

you are here 4 129

types and references

When you cast a value that’s too
big, C# will adjust it automatically
You’ve already seen that a decimal can be cast to an
int. It turns out that any number can be cast to any other
number. But that doesn’t mean the value stays intact
through the casting. If you cast an int variable that’s set
to 365 to a byte variable, 365 is too big for the byte. But
instead of giving you an error, the value will just wrap
around: for example, 256 cast to a byte will have a value
of 0. 257 would be converted to 1, 258 to 2, etc., up to 365,
which will end up being 109. And once you get back to
255 again, the conversion value “wraps” back to zero.

Hey, I’ve been combining
numbers and strings in my
message boxes since I learned
about loops in Chapter 2! Have I
been converting types all along?

Yes! The + operator converts for
you.
What you’ve been doing is using the +
operator, which does a lot of converting
for you automatically—but it’s especially
smart about it. When you use + to add a
number or boolean to a string, then it’ll
automatically convert that value to a string,
too. If you use + (or *, / or -) with two
different types, it automatically converts
the smaller type to the bigger one.
Here’s an example:

 int myInt = 36;

 float myFloat = 16.4F;

 myFloat = myInt + myFloat;

Since an int can fit into a float but a
float can’t fit into an int, the + operator
converts myInt to a float before adding it to
myFloat.

When you’re
assigning a number value to a float,
you need to add an F to the end of
the number to tell the compiler that
it’s a float, and
not a double.

You can’t always cast any type to any
other type. Create a new project, drag a

button onto a form, and type these statements
into its method. Then build your program—it will
give lots of errors. Cross out the ones that give
errors. That’ll help you figure out which types can
be cast , and which can’t!

int myInt = 10;

byte myByte = (byte)myInt;

double myDouble = (double)myByte;

bool myBool = (bool)myDouble;

string myString = “false”;

myBool = (bool)myString;

myString = (string)myInt;

myString = myInt.ToString();

myBool = (bool)myByte;

myByte = (byte)myBool;

short myShort = (short)myInt;

char myChar = ‘x’;

myString = (string)myChar;

long myLong = (long)myInt;

decimal myDecimal = (decimal)myLong;

myString = myString + myInt + myByte
+ myDouble + myChar;

Wrap it yourself!
There’s no mystery to how casting “wraps” the numbers—you can do it yourself. Just pop up the Windows calculator, switch it to Scientific mode, and calculate 365 Mod 256 (using the “Mod” button, which does a modulo calculation). You’ll get 109.

Download at WoweBook.Com

130 Chapter 4

a true convert

long l = 139401930;

short s = 516;

double d = l - s;

d = d / 123.456;

MessageBox.Show(“The answer is ” + d);

This + operator is smart
enough to convert the decimal
to a string.

The - operator
subtracted the short
from the long, and the
= operator converted
the result to a double.

C# does some casting automatically
There are two important conversions that don’t require
you to do the casting. The first is done automatically any
time you use arithmetic operators, like in this example:

The other way C# converts types for you automatically is when
you use the + operator to concatenate strings (which just
means sticking one string on the end of another, like you’ve been
doing with message boxes). When you use + to concatenate
a string with something that’s another type, it automatically
converts the numbers to strings for you. Here’s an example. The
first two lines are fine, but the third one won’t compile.

long x = 139401930;

MessageBox.Show(“The answer is ” + x);

MessageBox.Show(x);

The C# compiler spits out an error that mentions something
about invalid arguments (an argument is what C# calls the
value that you’re passing into a method’s parameter). That’s
because the parameter for MessageBox.Show() is a
string, and this code passed a long, which is the wrong
type for the method. But you can convert it to a string really
easily by calling its ToString() method. That method is a
member of every value type and object. (All of the classes you
build yourself have a ToString() method that returns the
class name.) That’s how you can convert x to something that
MessageBox.Show() can use:

MessageBox.Show(x.ToString());

You can’t always cast any type to any other
type. Create a new project, drag a button onto a
form, and type these statements into its method.
Then build your program—it will give lots of
errors. Cross out the ones that give errors. That’ll
help you figure out which types can be cast , and
which can’t!

int myInt = 10;

byte myByte = (byte)myInt;

double myDouble = (double)myByte;

bool myBool = (bool)myDouble;

string myString = “false”;

myBool = (bool)myString;

myString = (string)myInt;

myString = myInt.ToString();

myBool = (bool)myByte;

myByte = (byte)myBool;

short myShort = (short)myInt;

char myChar = ‘x’;

myString = (string)myChar;

long myLong = (long)myInt;

decimal myDecimal = (decimal)myLong;

myString = myString + myInt + myByte
+ myDouble + myChar;

Download at WoweBook.Com

you are here 4 131

types and references

When you call a method, the variables must
match the types of the parameters
Try calling MessageBox.Show(123)—passing MessageBox.Show() a
literal (123) instead of a string. The IDE won’t let you build your program.
Instead, it’ll show you an error in the IDE: “Argument ‘1’: cannot convert from
‘int’ to ‘string’.” Sometimes C# can do the conversion automatically – like if
your method expects an int, but you pass it a short – but it can’t do that for ints
and strings

But MessageBox.Show() isn’t the only method that will give you compiler
errors if you try to pass it a variable whose type doesn’t match the parameter.
All methods will do that, even the ones you write yourself. Go ahead and try
typing this completely valid method into a class:

When the
compiler gives
you an “invalid
arguments” error,
it means that
you tried to call
a method with
variables whose
types didn’t match
the method’s
parameters.

public int MyMethod(bool yesNo) {

 if (yesNo) {
 return 45;
 } else {
 return 61;
 }

}

It works just fine if you pass it what it expects (a bool)—call MyMethod(true) or
MyMethod(false), and it compiles just fine.

But what happens if you pass it an integer or a string instead? The IDE gives you a
similar error to the one that you got when you passed 123 to MessageBox.Show().
Now try passing it a boolean, but assigning the return value to a string or passing it on to
MessageBox.Show(). That won’t work, either—the method returns an int, not a
long or the string that MessageBox.Show() expects.

One reminder—the code that c
alls

this parameter doesn’t hav
e to pass it

a variable called
yesNo. It just has to

pass it a boolean
 value or variable

. The

only place it’s ca
lled yesNo is inside

the method’s code.

if statements always test to see if something’s true
Did you notice how we wrote our if statement like this:

 if (yesNo) {
We didn’t have to explicitly say “if (yesNo == true)”. That’s because an if statement always

checks if something’s true. You check if something’s false using ! (an exclamation point, or

the NOT operator). “if (!yesNo)” is the same thing as “if (yesNo == false)”. In our code

examples from now on, you’ll usually just see us do “if (yesNo)” or “if (!yesNo)”, and not

explicitly check to see if a boolean is true or fa
lse.

You can assign
anything to a variable, parameter, or field
with the type object.

Download at WoweBook.Com

132 Chapter 4

There	are	about	77	reserved words	in	C#.	These	are	words	reserved	by	the	C#	compiler;	you	
can’t	use	them	for	variable	names.	You’ll	know	a	lot	of	them	really	well	by	the	time	you	finish	the	
book.	Here	are	some	you’ve	already	used.	Write	down	what	you	think	these	words	do	in	C#.

this table reserved

namespace

for

class

public

else

new

using

if

while

Answers on page 161.

Actually, C# does give you a way to use reserved keywords as variable names, by putting @ in front of the keyword. You can do that with non-reserved names too, if you want to.

Download at WoweBook.Com

you are here 4 133

types and references

Create	a	reimbursement	calculator	for	a	business	trip.	It	should	allow	the	user	to	enter	a	starting	
and	ending	mileage	reading	from	the	car’s	odometer.	From	those	two	numbers,	it	will	calculate	
how	many	miles	she’s	travelled	and	figure	out	how	much	she	should	be	reimbursed	if	her	
company	pays	her	$.39	for	every	mile	she	puts	on	her	car.	

Start with a new Windows project.
Make the form look like this:

11

Create the variables you’ll need for the calculator.
Put the variables in class definition at the top of Form1. You need two whole number
variables to track the starting odometer reading and the ending odometer reading. Call
them startingMileage and endingMileage. You need three numbers that
can hold decimal places. Make them doubles and call them milesTraveled,
reimburseRate, and amountOwed. Set the value for reimburseRate to .39.

22

For the two NumericUpDown controls, set the Minimum property to 1 and Maximum to 999999.

Get rid of
the minimize
and maximize buttons.

This label is 12 pt bold.

When you’re done with the Form, double-click on the
button to add some code to the project.

Make your calculator work.
Add code in the button1_Click() method to:

Make sure that the number in the Starting Mileage field is smaller than the number in
the Ending Mileage field. If not, show a messagebox that says “The starting mileage
must be less than the ending mileage”. Make the title for the message box “Cannot
Calculate”.

Subtract the starting number from the ending number and then multiply it by the
reimburse rate using these lines:

 milesTraveled = endingMileage -= startingMileage;

 amountOwed = milesTraveled *= reimburseRate;

 label4.Text = “$” + amountOwed;

≥

≥

33

Run it.
Make sure it’s giving the right numbers. Try changing the starting value to be higher than
the ending value and make sure it’s giving you the message box.

44

Download at WoweBook.Com

134 Chapter 4

v You	were	asked	to	create	a	reimbursement	calculator	for	a	business	trip.	Here’s	the	code	for	the	
first	part	of	the	exercise.

something’s wrong…

public partial class Form1 : Form

{

 int startingMileage;

 int endingMileage;

 double milesTraveled;

 double reimburseRate = .39;

 double amountOwed;

 public Form1() {

 InitializeComponent();

 }

 private void button1_Click(object sender, EventArgs e){

 startingMileage = (int) numericUpDown1.Value;

 endingMileage = (int)numericUpDown2.Value;

 if (startingMileage <= endingMileage){

 milesTraveled = endingMileage -= startingMileage;

 amountOwed = milesTraveled *= reimburseRate;

 label4.Text = “$” + amountOwed;

 } else {

 MessageBox.Show(
 “The starting mileage must be less than the ending mileage”,
 “Cannot Calculate Mileage”);

 }
 }
}

Did you remember
that you have
to change the
decimal value from
the numericUpDown
control to an int?

int works great for whole
numbers. This number could
go all the way up to 999,999. So a short or a byte
won’t cut it.

This block is
supposed to figure
out how many
miles were traveled
and then multiply
them by the
reimbursement rate.

This button seems to work, but it has a
pretty big problem. Can you spot it?

We used an alternate way of calling the MessageBox.Show() method here. We gave it two parameters: the first one is the message to display, and the second one goes in the title bar.

Download at WoweBook.Com

you are here 4 135

types and references

v

Now add another button to the form.
Make it so that the number of miles traveled is displayed
on the form after you’ve calculated the amount owed.

11

One line should do it.
All we need to do is get the form to display the milesTraveled variable, right? So this line
should do that:

private void button2_Click(object sender, EventArgs e) {

 Messagebox.Show(milesTraveled + “ miles”, “Miles Traveled”);

}

22

When you’re done with the Form, double-click on the
Display Miles button to add some code to the project.

Run it.
Type in some values and see what happens.

33

Um, something’s not right…
The number of miles always matches the amount owed. Why?

44

Clicking this button after you’ve clicked calculate should show the number of miles traveled in a message box.

Download at WoweBook.Com

136 Chapter 4

operators are standing by

 private void button1_Click(object sender, EventArgs e)

 {

 startingMileage = (int) numericUpDown1.Value;

 endingMileage = (int)numericUpDown2.Value;

 if (startingMileage <= endingMileage){

 milesTraveled = endingMileage -= startingMileage;

 amountOwed = milesTraveled *= reimburseRate;

 label4.Text = “$” + amountOwed;

 } else {

 MessageBox.Show(“The starting mileage number must
 be less than the ending mileage number”,
 “Cannot Calculate Mileage”);

 }

Take a good look at the operator we used to subtract ending mileage from
starting mileage (-=). The problem is it doesn’t just subtract, it also assigns
a value to the variable on the left side of the subtraction sign. The same
thing happens in the line where we multiply number of miles traveled by the
reimbursement rate. We should replace the -= and the *= with just - and *:

Combining = with an operator

These are
called compound
operators. This
one subtracts
startingMileage
from endingMileage
but also assigns
the new value to
endingMileage and
milesTraveled at
the same time.

So can good variable names help you out here?� Definitely! Take a
close look at what each variable is supposed to do. You already get a lot of
clues from the name milesTraveled—you know that’s the variable that
the form is displaying incorrectly, and you’ve got a good idea of how that
value ought to be calculated. So you can take advantage of that when you’re
looking through your code to try to track down the bug. It’d be a whole lot
harder to find the problem if the incorrect lines looked like this instead:

 mT = eM -= sM;

 aO = mT *= rR;

milesTraveled = endingMileage - startingMileage;

amountOwed = milesTraveled * reimburseRate;

This is better—now
your code won’t modify
endingMileage and
milesTraveled.

Variables named like this are essentially useless in telling you what their purpose might be.

Download at WoweBook.Com

you are here 4 137

types and references

Objects use variables, too
So far, we’ve looked at objects separate from other types. But
an object is just another data type. Your code treats objects
exactly like it treats numbers, strings, and booleans. It uses
variables to work with them:

Using an int Using an object

Write a statement to declare the object.

 Dog spot;

11Write a statement to declare the integer.

 int myInt;

11

Assign a value to the object.

 spot = new Dog();

22Assign a value to the new variable.

 myInt = 3761;

22

Check one of the object’s fields.

 while (spot.Happy) {

33Use the integer in your code.

 while (i < myInt) {

33

When you have a class
like Dog, you use it as
the type in a variable
declaration statement.

Objects are just one more type of
variable your program can use.
If your program needs to work with a whole
number that’s really big, use a long. If it needs
a whole number that’s small, use a short. If it
needs a yes/no value, use a boolean. And if it
needs something that barks and sits, use a Dog.
No matter what type of data your program
needs to work with, it’ll use a variable.

So it doesn’t matter if I’m
working with an object or a value. If

it’s going into memory, and my program
needs to use it, I use a variable.

Download at WoweBook.Com

138 Chapter 4

Guy object #
1Joe

get the reference

When you create a new object, you use code like new Guy. But that’s not enough;
even though that code creates a new Guy object on the heap, it doesn’t give you a
way to access that object. You need a reference to the object. So you create a
reference variable: a variable of type Guy with a name, like Joe. So Joe is a
reference to the new Guy object you created. Anytime you want to use that particular
guy, you can reference it with the reference variable called Joe.

So when you have a variable that is an object type, it’s a reference variable: a
reference to a particular object. Take a look:

Refer to your objects with reference variables

public partial class Form1 : Form
{
 Guy Joe;

 public Form1()
 {
 InitializeComponent();

 Joe = new Guy();
 }

That’s called
instantiating
the object.

Here’s the heap before your
code runs. Nothing there.

Here’s the heap after
this code runs. There’s an
object, with the variable
Joe referring to it.

This variable
is named
Joe, and will
reference
an object of
type Guy.

This is the
reference variable…

…and this is the
object that Joe
now refers to.

The ONLY way to reference this guy object is through the reference variable called Joe.

Creating a reference is like making a label
with a label maker—instead of sticking it
on your stuff, you’re using it to label an
object so you can refer to it later.

Download at WoweBook.Com

you are here 4 139

types and references

In your kitchen, you probably have a container of salt and sugar. If you
switched their labels, it would make for a pretty disgusting meal—even
though the labels changed, the contents of the containers stayed the same.
References are like labels. You can move labels around, point them at
different things, but it’s the object that dictates what methods and data are
available, not the reference itself.

References are like labels for your object

cust
omer

uncl
ejoe

dad

broth
er

joe

heyy
ou

programm
er

This object is of type Guy.
It’s a SINGLE object with
MULTIPLE references.

You never refer to your object directly. For example, you can’t write code
like Guy.GiveCash() if Guy is your object type. The C# compiler doesn’t
know which Guy you’re talking about, since you might have several
instances of Guy on the heap. So you need a reference variable, like joe,
that you assign to a specific instance, like Guy joe = new Guy().

Now, you can call methods, like joe.GiveCash(). joe refers to a specific
instance of the Guy class, and your C# compiler knows exactly which
instance to use. And, as you saw above, you might have multiple labels
pointing to the same instance. So you could say Guy dad = joe, and
then call dad.GiveCash(). That’s okay, too—that’s what Joe’s kid does
every day.

Form1’s button1_Click method has a variable called “Joe” that references this object.

There are lots of different references to this same Guy, because a lot of different methods use him for different things. Each reference has a different name that makes sense in its context.

Every one of these labels is a different reference variable, but they all point to the SAME Guy object.

When your code
needs to work
with an object in
memory, it uses a
reference, which
is a variable
whose type is
a class of the
object it’s going
to point to. A
reference is like
a label that your
code uses to talk
about a specific
object.

An instance of the Guy class is keeping a reference to this object in a variable called “Dad”.

Download at WoweBook.Com

140 Chapter 4

Guy object

Guy object #
2

Guy object #
1

Guy object #
2

If all of the labels come off of an object, no programs can access that
object anymore. That means C# can mark the object for garbage
collection. That’s when C# gets rid of any unreferenced objects, and
reclaims the memory those objects took up for your program’s use.

For an object
to stay in the
heap, it has to
be referenced.
When the
last reference
to the object
disappears, so
does the object.

If there aren’t any more references,
your object gets garbage collected

JOE

When you use the “new” statement,
you’re telling C# to create an object.
When you take a reference variable
like “Joe” and assign it to that
object, it’s like you’re slapping a new
label on it.

Here’s some code that creates an object.

Guy joe = new Guy()

 { Name = “Joe”, Cash = 50 };

11

Now let’s create a second object.

Guy bob = new Guy()

 { Name = “Bob”, Cash = 75 };

22
bob JOE

Let’s take the reference to the first object, and
change it to point at the second object.

 joe = bob;

33

Now joe is pointing to the same object as bob. bob
JOE

poof!

that’s sanitation engineer thank you very much

Now we have two Guy object instances, and two reference variables: one for each Guy.

But there is no longer
a reference to the
first Guy object…

…so C# marks the object for garbage collection, and trashes it. It’s gone!

“Joe”
50

“Bob”
75

“Joe”
50

“Bob”
75

Download at WoweBook.Com

you are here 4 141

types and references

1 2

3 4 5

6

7

8

9

10 11 12

13

14

15

16 17

Across

1. The second part of a variable declaration
4. "namespace", "for", "while", "using" and "new" are
examples of _____________ words.
6. What (int) does in this line of code: x = (int) y;
8. When an object no longer has any references
pointing to it, it's removed from the heap using
____________ collection.
10. What you're doing when you use the + operator to
stick two strings together.
14. The type that holds the biggest numbers.
15. The type that stores a single letter or number
16. \n and \r are _______ sequences
17. The four whole number types that only hold
positive numbers

Down

2. You can combine the variable declaration and the
____________ into one statement.
3. A variable that points to an object
5. What your program uses to work with data that's in
memory
7. If you want to store a currency value, use this type
9. += and -= are this kind of operator
11. A variable declaration always starts with this.
12. Every object has this method that converts it to a
string.
13. When you've got a variable of this type, you can
assign any value to it

Typecross
Take a break, and sit back and
give your right brain something
to do. It’s your standard
crossword; all of the solution
words are from this chapter.

When you’re done, turn the
page, and take on the rest
of the chapter.

Answers on page 162.

Across

1.	The	second	part	of	a	variable	declaration	

4.	“namespace”,	“for”,	“while”,	“using”	and	“new”	are	examples	
of	_____________	words.	

6.	What	(int)	does	in	this	line	of	code:	x	=	(int)	y;	

8.	When	an	object	no	longer	has	any	references	pointing	to	it,	
it’s	removed	from	the	heap	using	____________	collection.	

10.	What	you’re	doing	when	you	use	the	+	operator	to	stick	two	
strings	together.	

14.	The	type	that	holds	the	biggest	numbers.	

15.	The	type	that	stores	a	single	letter	or	number	

16.	\n	and	\r	are	_______	sequences	

17.	The	four	whole	number	types	that	only	hold	positive	
numbers	

Down

2.	You	can	combine	the	variable	declaration	and	the	_________	
into	one	statement.	

3.	A	variable	that	points	to	an	object	

5.	What	your	program	uses	to	work	with	data	that’s	in	memory	

7.	If	you	want	to	store	a	currency	value,	use	this	type	

9.	+=	and	-=	are	this	kind	of	operator	

11.	A	variable	declaration	always	starts	with	this.	

12.	Every	object	has	this	method	that	converts	it	to	a	string.	

13.	When	you’ve	got	a	variable	of	this	type,	you	can	assign	any	
value	to	it

Download at WoweBook.Com

142 Chapter 4

Dog object #
1

Dog object #
3

Dog object #
1

Dog object #
2

so many labels

You’ve got to be careful when you start moving around reference
variables. Lots of times, it might seem like you’re simply pointing
a variable to a different object. But, you could end up removing all
references to another object in the process. That’s not a bad thing,
but it may not be what you intended. Take a look:

Multiple references and their side effects

Dog object #
1Rove
r

Rove
r

SPOT

Fido

Fido

Rove
r

SPOT

Luck
y

Dog rover = new Dog();

rover.Breed = “Greyhound”;
11

Dog fido = new Dog();

fido.Breed = “Beagle”;

Dog spot = rover;

22

Dog lucky = new Dog();

lucky.Breed = “Dachshund”;

fido = rover;

33

Rover is a Dog object with a
Breed field called Greyhound.

Fido is another Dog object.
But Spot is just another
reference to the first object.

Lucky is a third object.
But Fido is now pointing
to Object #1. So, Object
#2 has no references.
It’s done as far as the
program is concerned.

Objects:______

References:_____

Objects:______

References:_____

Objects:______

References:_____

1
1

2
3

2
4

poof!

Download at WoweBook.Com

you are here 4 143

types and references

Dog rover = new Dog();
rover.Breed = “Greyhound”;
Dog rinTinTin = new Dog();
Dog fido = new Dog();
Dog quentin = fido;

11

Dog spot = new Dog();
spot.Breed = “Dachshund”;
spot = rover;

22

Dog lucky = new Dog();
lucky.Breed = “Beagle”;
Dog charlie = fido;
fido = rover;

33

Objects:______

References:_____

Objects:______

References:_____

rinTinTin = lucky;
Dog laverne = new Dog();
laverne.Breed = “pug”;

44

Objects:______

References:_____

charlie = laverne;
lucky = rinTinTin;

55

Objects:______

References:_____

Objects:______

References:_____

Now it’s your turn. Here’s one long block of code. Figure out how many
objects and references there are at each stage. On the right-hand side,
draw a picture of the objects and labels in the heap.

Download at WoweBook.Com

144 Chapter 4

Dog object #
5

Dog object #
3

Dog object #
1

Dog object #
4

Dog object #
1

Dog object #
3

Dog object #
5

Dog object #
4

Dog object #
2

Dog object #
3

Dog object #
1

Dog object #
4

Dog object #
3

Dog object #
1

Dog object #
2

Dog object #
3

swapping elephants

Dog rover = new Dog();
rover.Breed = “Greyhound”;
Dog rinTinTin = new Dog();
Dog fido = new Dog();
Dog quentin = fido;

11

Dog spot = new Dog();
spot.Breed = “Dachshund”;
spot = rover;

22

Dog lucky = new Dog();
lucky.Breed = “Beagle”;
Dog charlie = fido;
fido = rover;

33

Objects:______

References:_____

Objects:______

References:_____

rinTinTin = lucky;
Dog laverne = new Dog();
laverne.Breed = “pug”;

44

Objects:______

References:_____

charlie = laverne;
lucky = rinTinTin;

55

Objects:______

References:_____

Objects:______

References:_____

Now it’s your turn. Here’s one long block of code. Figure out how many
objects and references there are at each stage. On the right-hand side,
draw a picture of the objects and labels in the heap.

3

3

 4
7

4
8

4
8

One new Dog object is
created but Spot is the
only reference to it. When
Spot is set = to Rover,
that object goes away.

Here a new Dog object is
created, but when Fido is
set to Rover, Fido’s object
from #1 goes away.

Charlie was set to Fido
when Fido was still on
object #3. Then, after
that, Fido moved to object
#1, leaving Charlie behind.

Here the references move
around but no new objects
are created. And setting
Lucky to Rin Tin Tin did
nothing because they already
pointed to the same object.

4

5

fido
quen

tin

rove
r

rint
inti

n
fido

quen
tin

spot

rove
r

rint
inti

n

fido

quen
tin

spot

LUCK
Y

char
lie

rove
r

fido

quen
tin

spot

LUCK
Y

char
lie

LAVE
RNE

rove
r

rint
inti

n

fido

quen
tin

spot

LUCK
Y

LAVE
RNE

char
lie

Dog object #
1rove

r

Dog object #
2rint

inti
n

rint
inti

n

poof!
Dog #2 lost its
last reference, and
it went away.

When Rin Tin Tin
moved to Lucky’s
object, the old Rin Tin
Tin object disappeared.

Download at WoweBook.Com

you are here 4 145

types and references

Create	a	program	with	an	elephant	class.	Make	two	elephant	instances	and	then	swap	the	
reference	values	that	point	to	them,	without	getting	any	Elephant	instances	garbage-collected.

Start with a new Windows Application project.
Make the form look like this:

11

Create the Elephant class.
Add an Elephant class to the project. Have a look at the Elephant class diagram—you’ll need an int
field called EarSize and a String field called Name. (Make sure both are public.) Then add a method
called WhoAmI() that displays a messagebox that tells you the name and ear size of the elephant.

22

Create two elephant instances and a reference.
Add two Elephant fields to the Form1 class (in the area right below the class declaration) named
Lloyd and Lucinda. Initialize them so they have the right name and ear size. Here are the
Elephant object initializers to add to your form:

 lucinda = new Elephant() { Name = “Lucinda”, EarSize = 33 };
 lloyd = new Elephant() { Name = “Lloyd”, EarSize = 40 };

33

Make the “Lloyd” and “Lucinda” buttons work.
Have the Lloyd button call lloyd.WhoAmI() and the Lucinda button call lucinda.WhoAmI().

44

Hook up the swap button.
Here’s the hard part. Make the Swap button exchange the two references, so that when you click
Swap, the Lloyd and Lucinda variables swap objects and a “Objects swapped” box is displayed.
Test out your program by clicking the Swap button and then clicking the other two buttons. The first
time you click Swap, the Lloyd button should pop up Lucinda’s messagebox, and the Lucinda button
should pop up Lloyd’s messagebox. If you click the Swap button again, everything should go back.

55

Elephant
Name
EarSize

WhoAmI()

Clicking on the “Lucinda”
button calls lucinda.WhoAmI(),

which displays this messagebox.

C# garbage collects any object with no references to it. So here’s your
hint: If you want to pour a glass of beer into another glass that’s currently
full of water, you’ll need a third glass to pour the water into...

Here’s the class diagram for the Elephant class you need to create.

The WhoAmI() method should pop
up this message box. Make sure the
message includes the ear size and the
title bar includes the name.

Download at WoweBook.Com

146 Chapter 4

Create	a	program	with	an	elephant	class.	Make	two	elephant	instances	and	then	swap	the	
reference	values	that	point	to	them,	without	getting	any	Elephant	instances	garbage-collected.

Why do you think we didn’t add a Swap() method to the Elephant class?

 using System.Windows.Forms;

 class Elephant {

 public int EarSize;
 public String Name;

 public void WhoAmI() {
 MessageBox.Show(“My ears are ” + EarSize + “ inches tall.”,
 Name + “ says…”);
 }
}

public partial class Form1 : Form {

 Elephant lucinda;
 Elephant lloyd;

 public Form1()
 {
 InitializeComponent();
 lucinda = new Elephant()
 { Name = “Lucinda”, EarSize = 33 };
 lloyd = new Elephant()
 { Name = “Lloyd”, EarSize = 40 };
 }

 private void button1_Click(object sender, EventArgs e) {
 lloyd.WhoAmI();
 }

 private void button2_Click(object sender, EventArgs e) {
 lucinda.WhoAmI();
 }

 private void button3_Click(object sender, EventArgs e) {
 Elephant holder;
 holder = lloyd;
 lloyd = lucinda;
 lucinda = holder;
 MessageBox.Show(“Objects swapped”);
 }
}

There’s no new statement for the
reference because we don’t want to
create another instance of Elephant.

If you just point Lloyd
to Lucinda, there won’t
be any more references
pointing to Lloyd and
his object will be lost.
That’s why you need
to have the Holder
reference hold onto
the Lloyd object until
Lucinda can get there.

This is the Elephant
class definition code
in the Elephant.cs
file we added to the
project. Don’t forget
the “using System.
Windows.Forms;” line
at the top of the
class. Without it, the
MessageBox statement
won’t work.

Here’s the Form1 class code from Form1.cs.

hold that reference

strings and arrays are
different from all of the other data types you’ve
seen, because they’re the only ones without a set size (think about that for a bit).

Download at WoweBook.Com

you are here 4 147

types and references

Elephant O

bj
e c

t

Elephant O

bj
e c

t

private void button4_Click(object sender, EventArgs e)
{
 lloyd = lucinda;
 lloyd.EarSize = 4321;
 lloyd.WhoAmI();
}

Two references means TWO ways
to change an object’s data
Besides losing all the references to an object, when
you have multiple references to an object, you can
unintentionally change an object. In other words, one
reference to an object may change that object, while
another reference to that object has no idea that
something has changed. Watch:

Do this

Add another button to your form.11

Add this code for the button. Can you guess what’s going to happen when you click it?22

OK, go ahead and click the new button. Wait a second, that’s the Lucinda messagebox.
Didn’t we call the WhoAmI() method from Lloyd?

33

You’re calling the
WhoAmI() method from

the lloyd object.

It’s lucinda’s
messagebox… But we set this

EarSize using the
lloyd reference! What gives?

Lloy
d

Luci
nda

After this code runs, both the lloyd and lucinda variables reference the SAME Elephant object.

Lloy
d

Luci
nda

lloyd and lucinda are now interchangeable. Changes to

one affects the object that BOTH are pointing at…

there’s no longer a real difference between lloyd and

lucinda, since they point to the SAME object.

But lloyd points at the same thing that lucinda does.

This statement
says to set
EarSize to 4321
on whatever
object the lloyd
reference happens
to point to.

Note that the
data is NOT being
overwritten—the
only things changing
are the references.

Download at WoweBook.Com

148 Chapter 4

Array

pick an object out of a line-up

A special case: arrays

int[] heights;

heights = new int[7];

heights[0] = 68;

heights[1] = 70;

heights[2] = 63;

heights[3] = 60;

heights[4] = 58;

heights[5] = 72;

heights[6] = 74;

name The type
of each
element in
the array.

Notice that the array is an object,
even though the 7 elements are just
value types—like the ones on the first
two pages of this chapter.

7 int variables

heig
hts

In memory, the array

is stored as one ch
unk

of memory, even though

there are multiple int

variables within it.

If you have to keep track of a lot of data of the same type, like a list of heights
or a group of dogs, you can do it in an array. What makes an array special is
that it’s a group of variables that’s treated as one object. An array gives you
a way of storing and changing more than one piece of data without having to
keep track of each variable individually. When you create an array, you declare
it just like any other variable, with a name and a type:

bool[] myArray;

myArray = new bool[15];

myArray[4] = true;

You declare an array by
specifying its type, followed
by square brackets.

Use each element in an array like
it is a normal variable
When you use an array, first you need to declare a reference
variable that points to the array. Then you need to create the
array object using the new statement, specifying how big you
want the array to be. Then you can set the elements in the
array. Here’s an example of code that declares and fills up an
array—and what’s happening on the heap when you do it. The
first element in the array has an index of zero.

You could combine the declaration of the myArray variable with its initialization—just like any other variable. Then it’d look like this:bool[] myArray = new bool[15];

You use the new keyword to create an array because it’s an object. So an array variable is a kind of reference variable. This line sets the value of the fifth
element of myArray to true. It’s the
fifth one because the first is myArray[0],
the second is myArray[1], etc.

This array has 15
elements within it.

You
reference
these by
index, but
each one
works
essentially
like a normal
int variable.

 int int int int int int int

Download at WoweBook.Com

you are here 4 149

types and references

Dog Obj
e c

t
Dog Obj

e c
t

You can create an array of object references just like you create
an array of numbers or strings. Arrays don’t care what the type of
variable is that they store; it’s up to you. So you can have an array
of ints, or an array of Duck objects, with no problem.

Here’s code that creates an array of 7 Dog variables. The line that
initializes the array only creates reference variables. Since there are
only two new Dog() lines, only two actual instances of the Dog
class) are created.

 Dog[] dogs = new Dog[7];

 dogs[5] = new Dog();

 dogs[0] = new Dog();

Arrays can contain a bunch of
reference variables, too

This line declares a
dogs variable to hold an
array of references to
Dog objects, and then
creates a 7-element
array.

These two lines create new instances of Dog() and put them at indexes 0 and 5.

When you set or
retrieve an element
from an array, the
number inside the
brackets is called
the index. The first
element in the array
has an index of zero.

All of the elements in the array are
references. The array itself is an object.

7 Dog variables

The first line of code only
created the array, not the
instances. The array is a
list of seven Dog reference
variables.

 Dog Dog Dog Dog Dog Dog Dog

Array

An array’s lengt
h

You can find o
ut how many

elements are in an
array using its

Length property
. So if you’ve g

ot

an array called
 heights, then

you

can use heights
. Length to find

out how long it is. If t
here are

7 elements in the arr
ay, that’ll

give you 7—which means the array

elements are numbered 0 to 6.

Download at WoweBook.Com

150 Chapter 4

Welcome to Sloppy Joe’s Budget House o’ Discount Sandwiches!
Sloppy Joe has a pile of meat, a whole lotta bread, and more condiments
than you can shake a stick at. But what he doesn’t have is a menu! Can
you build a program that makes a new random menu for him every day?

sloppy joe sez: “it’s not old, it’s vintage”

Start a new project and add a MenuMaker class
If you need to build a menu, you need ingredients. And arrays would be perfect
for those lists. We’ll also need some way of choosing random ingredients to
combine together into a sandwich. Luckily, the .NET Framework has a built-in
class called Random that generates random numbers. So we’ll have four fields
in our class: a Randomizer field that holds a reference to a Random object, and
three arrays of strings to hold the meats, condiments, and breads.

11

Do this

 public class MenuMaker {
 public Random Randomizer;

 string[] Meats = { “Roast beef”, “Salami”, “Turkey”, “Ham”, “Pastrami” };
 string[] Condiments = { “yellow mustard”, “brown mustard”,
 “honey mustard”, “mayo”, “relish”, “french dressing” };
 string[] Breads = { “rye”, “white”, “wheat”, “pumpernickel”,
 “italian bread”, “a roll” };
}

MenuMaker
Randomizer
Meats
Condiments
Breads

GetMenuItem()

 public string GetMenuItem() {
 string randomMeat = Meats[Randomizer.Next(Meats.Length)];
 string randomCondiment = Condiments[Randomizer.Next(Condiments.Length)];
 string randomBread = Breads[Randomizer.Next(Breads.Length)];
 return randomMeat + “ with ” + randomCondiment + “ on ” + randomBread;
 }

Add a GetMenuItem() method to the class that generates a random sandwich
The point of the class is to generate sandwiches, so let’s add a method to do exactly that. It’ll
use the Random object’s Next() method to choose a random meat, condiment and bread
from each array. When you pass an int parameter to Next(), the method returns a random
that’s less than that parameter. So if your Random object is called Randomizer, then calling
Randomizer.Next(7) will return a random number between 0 and 6.

So how do you know what parameter to pass into the Next() method? Well, that’s easy—just
pass in each array’s Length. That will return the index of a random item in the array.

22

The method puts a random item from the Meats array into randomMeat by
passing Meats.Length to the Random object’s Next() method. Since there are 5
items in the Meats array, Meats.Length is 5, so Next(5) will return a random
number between 0 and 4.

The field called
Randomizer holds
a reference to a
Random object.
Calling its Next()
method will
generate random
numbers.

The class has three fields to
store three different arrays of
strings. It’ll use them to build
the random menu items.

The GetMenuItem()
method returns
a string that
contains a sandwich
built from random
elements in the
three arrays.

Remember, use square brackets to
access a member of an array.The
value of Breads[2] is “wheat”.

Download at WoweBook.Com

you are here 4 151

types and references

I eat all my meals
at Sloppy Joe’s!How it works…

Meats[Randomizer.Next(Meats.Length)]

Meats is an array of strings. It’s got five e
lements,

numbered from zero to 4. So Meats[0] equals

“Roast Beef”, and Meats[3] equals “Ham”.

The randomizer.Next(7) method gets a random number that’s less than 7. Meats.Length returns the number of elements in Meats. So randomizer.Next(Meats.Length) gives you a random number that’s greater than or equal to zero, but less than the number of elements in the Meats array.

Build your form
Add six labels to the form, label1 through label6. Then add code to set each label’s
Text property using a MenuMaker object. You’ll need to initialize the object using a new
instance of the Random class. Here’s the code:

public Form1() {

 InitializeComponent();

 MenuMaker menu = new MenuMaker() { Randomizer = new Random() };

 label1.Text = menu.GetMenuItem();

 label2.Text = menu.GetMenuItem();

 label3.Text = menu.GetMenuItem();

 label4.Text = menu.GetMenuItem();

 label5.Text = menu.GetMenuItem();

 label6.Text = menu.GetMenuItem();

}

33

Use an object initializer to set the
MenuMaker object’s Randomizer field to
a new instance of the Random class.

Now you’re all set to
generate six different
random sandwiches using the
GetMenuItem() method.

When you run the
program, the six labels
show six different
random sandwiches.

Download at WoweBook.Com

152 Chapter 4

Objects use references to talk to each other
So far, you’ve seen forms talk to objects by using reference variables to call their
methods and check their fields. Objects can also call each others’ methods using
references, too. In fact, there’s nothing that a form can do that your objects can’t do,
because your form is just another object. And when objects talk to each other,
one useful keyword that they have is this. Any time an object uses the this keyword,
it’s referring to itself—it’s a reference that points to the object that calls it.

Here’s a method to tell an elephant to speak
Let’s add a method to the Elephant class. Its first parameter is a message from an elephant. Its
second parameter is the elephant that said it:

 public void TellMe(string message, Elephant whoSaidIt) {

 MessageBox.Show(whoSaidIt.Name + “ says: ” + message);

 }

Here’s what it looks like when it’s called:

 Elephant lloyd = new Elephant() { Name = “Lloyd”, EarSize = 40 };

 Elephant lucinda = new Elephant() { Name = “Lucinda”, EarSize = 33 };

 lloyd.TellMe(“Hi”, lucinda);

We called Lloyd’s TellMe() method, and passed it two parameters: “Hi” and a reference to
Lucinda’s object. The method uses its whoSaidIt parameter to access the Name parameter of
whatever elephant was passed into TellMe() using its second parameter.

11

Here’s a method that calls another method
Now let’s add this SpeakTo() method to the Elephant class. It uses a special keyword: this.
That’s a reference that lets an object talk about itself.

 public void SpeakTo(Elephant talkTo, string message) {

 talkTo.TellMe(message, this);

 }

Let’s take a closer look at how this works.

 lucinda.SpeakTo(lloyd, “Hello”);

When Lucinda’s SpeakTo() method is called, it uses its talkTo reference parameter to call
Lloyd’s TellMe() method.

 talkTo.TellMe(message, this);

 lloyd.TellMe(message, [a reference to Lucinda]);

So Lloyd acts as if he was called with (“Hello”, lucinda), and shows this message:

22

Lucinda uses talkTo
(which has a reference to
Lloyd) to call TellMe()

this is replaced
with a reference to

Lucinda’s object

This method in the Elephant class calls another
elephant’s TalkTo() method. It lets one elephant
communicate with another one.

your object’s a chatty cathy

Download at WoweBook.Com

you are here 4 153

types and references

Q: One more time—my form is an
object?

A:	Yes!	That’s	why	your	class	code	starts	
with	a	class	declaration.	Open	up	code	for	
a	form	and	see	for	yourself.	Then	open	up	
Program.cs	in	any	program	you’ve	written	so	
far	and	look	inside	the	Main()	method—you’ll	
find	“new Form1()”.

Q: Why would I ever use null?

A:	There	are	a	few	ways	you	see	null	
used	in	typical	programs.	The	most	common	
way	is	testing	for	it:	

	
 if (lloyd == null) {
	
That	test	will	return	true	if	the	lloyd	
reference	is	set	to	null.	
	
Another	way	you’ll	see	the	null	keyword	
used	is	when	you	want	your	object	to	get	
garbage	collected.	If	you’ve	got	a	reference	
to	an	object	and	you’re	finished	with	the	
object,	setting	the	reference	to	null	will	
immediately	mark	it	for	collection	(unless	
there’s	another	reference	to	it	somewhere.)

Q: You keep talking about garbage
collecting, but what’s actually doing the
collecting?

A:	Remember	how	we	talked	about	the	
Common Language Runtime (or CLR)	
back	in	the	beginning	of	the	first	chapter?	
That’s	the	virtual	machine	that	runs	all	.NET	
programs.	A	virtual machine	is	a	way	for	it	
to	isolate	running	programs	from	the	rest	of	
the	operating	system.	One	thing	that	virtual	
machines	do	is	manage	the	memory	that	
they	use.	That	means	that	it	keeps	track	of	
all	of	your	objects,	figures	out	when	the	last	
reference	to	the	object	disappears,	and	frees	
up	the	memory	that	it	was	using.

Where no object has gone before
There’s another important keyword that you’ll use with objects.
When you create a new reference and don’t set it to anything, it has
a value. It starts off set to null, which means it’s not pointing to
anything.

Dog object #
2fidopoof!

Dog fido;

Dog lucky = new Dog();

fido = new Dog();

Right now, there’s only one object. The fido
reference is set to null. Dog object #

1Luck
y

lucky = null;

Dog object #
2fido

Dog object #
1Luck

y

Now that fido’s pointing
to an object, it’s no
longer equal to null.

When we set lucky to null,
it’s no longer pointing at its
object, so it gets garbage
collected.

Download at WoweBook.Com

154 Chapter 4

Q: I’m still not sure I get how
references work.

A:		References	are	the	way	you	use	all	
of	the	methods	and	fields	in	an	object.	If	
you	create	a	reference	to	a	Dog	object	you	
can	then	use	that	reference	to	access	any	
methods	you’ve	created	for	the	Dog	object.	
If	you	have	a	(non-static)	method	called	
Dog.Bark()	or	Dog.Beg(),	you	can	create	
a	reference	called	spot.	Then	you	can	use	
that	to	access	spot.Bark()	or	spot.Beg().	You	
could	also	change	information	in	the	fields	
for	the	object	using	the	reference.	So	you	
could	change	a	Breed	field	using	spot.Breed.	

Q: Wait, then doesn’t that mean that
every time I change a value through a
reference I’m changing it for all of the
other references to that object too?

A:	Yes.	If	rover	is	a	reference	to	the	
same	object	as	spot,	changing	rover.Breed	
to	“beagle”	would	make	it	so	that	spot.Breed	
was	“beagle.”

Q:	Go back to that stuff about value
types. Now, why can’t I change a small
number from a bigger type if it’s small
enough?

A:	Okay.	The	thing	about	variables	is	they	
assign	a	size	to	your	number	no	matter	how	
big	its	value	is.	So	if	you	name	a	variable	
and		give	it	a	long type	even	though	the	
number	is	really	small,	(like,	say,	5)	C#	sets	
aside	enough	memory	for	it	to	get	really	big.	
When	you	think	about	it,	that’s	really	useful.	
After	all,	they’re	called	variables	because	
they	change	all	the	time.		
	
C#	assumes	you	know	what	you’re	doing	
and	you’re	not	going	to	give	a	variable	a	
type	that	you	don’t	need.	So	even	though	
the	number	might	not	be	big	now,	there’s	a	
chance	that	after	some	math	happens,	it’ll	
change	and	C#	gives	it	enough	memory	to	
handle	whatever	type	of	number	you	call	it.	

Q: Remind me again—what does
“this.” do?

A:	this	is	a	special	variable	that	you	
can	only	use	inside	an	object.	When	you’re	
inside	a	class,	you	use	this	to	refer	
to	any	field	or	method	of	that	particular	
instance.	It’s	especially	useful	when	you’re	
working	with	a	class	whose	methods	call	
other	classes.	One	object	can	use	it	to	send	
a reference to itself	to	another	object.	So	if	
Spot	calls	one	of	Rover’s	methods	passing	
this	as	a	parameter,	he’s	giving	Rover	a	
reference	to	the	Spot	object.

this and that

Any time you’ve got
code in an object
that’s going to be
instantiated, the
instance can use the
special this variable
that has a reference
to itself.

	When	you	declare	a	variable	you	ALWAYS	give	a	type.	
Sometimes	you	combine	it	with	setting	the	value.	

There	are	value types	for	numbers	that	hold	different	
sizes	of	numbers.	The	biggest	numbers	should	be	of	the	
type,	long and	the	smallest	ones	(up	to	255)	can	be	
declared	as	bytes.

Every	value	type	has	a	size,	and	you	can’t	put	a	value	of	
a	bigger	type	into	a	smaller	variable,	no	matter	what	the	
actual	size	of	the	data	is.	

When	you’re	using	literal	values,	use	the	F	suffix	to	
indicate	a	float	(15.6F)	and	M	for	a	decimal	(36.12M).	

There	are	a	few	types	(like	short	to	int)	that	C#	knows	
how	to	convert	automatically.		Other	than	those,	the	
compiler	won’t	let	you	set	a	variable	equal	to	a	value	of	
a	different	type	unless	you	cast	it.”	

There	are	some	words	that	are	reserved	by	the	
language	and	you	can’t	name	your	variables	with	them.	
They’re	words	like,	for,	while,	using,	new,	and	
others	that	do	specific	things	in	the	language.	

References	are	like	labels:	you	can	have	as	many	
references	to	an	object	as	you	want,	and	they	all	refer	to	
the	same	thing.

If	an	object	doesn’t	have	a	reference,	it	gets	garbage	
collected.	

There’s actually a very specific case where you don’t declare a type – you’ll
learn about it when you use the ‘var’ keyword in chapter 14.

Download at WoweBook.Com

you are here 4 155

types and references

Here’s an array of Elephant objects and a loop that will go through
it and find the one with the biggest ears. What’s the value of the
biggestEars.Ears after each iteration of the for loop?

Iteration #1 biggestEars.Earssize = _________

Iteration #2 biggestEars.EarSize = _________

Iteration #3 biggestEars.EarSize = _________

Iteration #4 biggestEars.EarSize = _________

Iteration #5 biggestEars.EarSize = _________

Iteration #6 biggestEars.EarSize = _________

private void button1_Click(object sender, EventArgs e)

{

 Elephant[] elephants = new Elephant[7];

 elephants[0] = new Elephant() { Name = “Lloyd”, EarSize = 40 };

 elephants[1] = new Elephant() { Name = “Lucinda”, EarSize = 33 };

 elephants[2] = new Elephant() { Name = “Larry”, EarSize = 42 };

 elephants[3] = new Elephant() { Name = “Lucille”, EarSize = 32 };

 elephants[4] = new Elephant() { Name = “Lars”, EarSize = 44 };

 elephants[5] = new Elephant() { Name = “Linda”, EarSize = 37 };

 elephants[6] = new Elephant() { Name = “Humphrey”, EarSize = 45 };

 Elephant biggestEars = elephants[0];

 for (int i = 1; i < elephants.Length; i++)

 {

 if (elephants[i].EarSize > biggestEars.EarSize)

 {

 biggestEars = elephants[i];

 }

 }

 MessageBox.Show(biggestEars.EarSize.ToString());

}

Be careful—this loop starts
with the second element of the
array (at index 1) and iterates
six times until i is equal to the
length of the array.

We’re creating an array of 7
Elephant() references.

Every array
starts with
index 0, so the
first elephant
in the array is
Elephants[0].

This line makes the biggestEars
reference point at whatever
elephant elephants[i] points to.

Download at WoweBook.Com

156 Chapter 4

private void button1_Click(object sender, EventArgs e)

{

 Elephant[] elephants = new Elephant[7];

 elephants[0] = new Elephant() { Name = “Lloyd”, EarSize = 40 };

 elephants[1] = new Elephant() { Name = “Lucinda”, EarSize = 33 };

 elephants[2] = new Elephant() { Name = “Larry”, EarSize = 42 };

 elephants[3] = new Elephant() { Name = “Lucille”, EarSize = 32 };

 elephants[4] = new Elephant() { Name = “Lars”, EarSize = 44 };

 elephants[5] = new Elephant() { Name = “Linda”, EarSize = 37 };

 elephants[6] = new Elephant() { Name = “Humphrey”, EarSize = 45 };

 Elephant biggestEars = elephants[0];

 for (int i = 1; i < elephants.Length; i++)

 {

 if (elephants[i].EarSize > biggestEars.EarSize)

 {

 biggestEars = elephants[i];

 }

 }

 MessageBox.Show(biggestEars.EarSize.ToString());

}

Iteration #1 biggestEars.Earssize = _________

Iteration #2 biggestEars.EarSize = _________

Iteration #3 biggestEars.EarSize = _________

Iteration #4 biggestEars.EarSize = _________

Iteration #5 biggestEars.EarSize = _________

Iteration #6 biggestEars.EarSize = _________

exercise solutions

40

42

42

44

44

45

Did you remember that
the loop starts with the
second element of the
array? Why do you think
that is?

The biggestEars reference is used to keep track of which element we’ve seen while going through the for loop has the biggest ears so far.

The for loop starts with the second elephant
and compares it to whatever elephant
biggestEars points to. If its ears are
bigger, it points biggestEars at that
elephant instead. Then it moves to the next
one, then the next one… by the end of the loop
biggestEars points to the one with the
biggest ears.

Here’s an array of Elephant objects and a loop that will go through
it and find the one with the biggest ears. What’s the value of the
biggestEars.Ears after each iteration of the for loop?

Download at WoweBook.Com

you are here 4 157

types and references

refNum = index[y];

int y =
0;

String result = “”;

MessageBox.Show(result);

y = y + 1;

index[0] =
 1;

index[1] =
 3;

index[2] =
 0;

index[3] =
 2;

result += islands[refNum];

int[] index = new int[4];

result += “\nisland = ”;

String[] islands = new String[4];

int refNum;

while (y < 4) {

private void button1_Click (object sender, EventArgs e) {

islands[0] = “Bermuda”;islands[1] = “Fiji”;
islands[2] = “Azores”;islands[3] = “Cozumel”;

}

Code Magnets
The code for a button is all scrambled up on the fridge. Can you
reconstruct the code snippets to make a working method that
produces the output listed below?

}

Download at WoweBook.Com

158 Chapter 4

Code Magnets Solution
The code for a button is all scrambled up on the fridge. Can you
reconstruct the code snippets to make a working method that
produces the output listed below?

private void button1_Click (object sender, EventArgs e) {

String result = “”;

int[] index = new int[4];

index[0] =
 1;

index[1] =
 3;

index[2] =
 0;

index[3] =
 2;

islands[0] = “Bermuda”;islands[1] = “Fiji”;
islands[2] = “Azores”;islands[3] = “Cozumel”;

String[] islands = new String[4];

int y =
0;

int refNum;

while (y < 4) {

refNum = index[y];

result += “\nisland = ”;

result += islands[refNum];

y = y + 1;

}

}

MessageBox.Show(result);

The result string is built
up using the += operator to
concatenate lines onto it.

This while loop pulls a value from the
index[] array and uses it for the index in the
islands[] array.

The islands[] array
is initialized here.

Here’s where the
index[] array
gets initialized.

exercise solutions

Download at WoweBook.Com

you are here 4 159

types and references

Note: Each snippet from
the pool can be used
more than once

class Triangle
{
 double area;
 int height;
 int length;
 public static void Main(String[] args)
 {
 string results = “”;

 while (________)
 {

 _____.height = (x + 1) * 2;
 _____.length = x + 4;

 results += “triangle ” + x + “, area”;
 results += “ = ” + _____.area + “\n”;

 }

 x = 27;
 Triangle t5 = ta[2];
 ta[2].area = 343;
 results += “y = ” + y;
 MessageBox.Show(results +
 “, t5 area = ” + t5.area);
 }
 void setArea()
 {
 ____________ = (height * length) / 2;
 }
}

Output

Bonus Question!

For extra bonus points, use snippets
from the pool to fill in the two blanks
missing from the output.

Here’s the entry p
oint for the

application. Assume it’s in a file with

the right “using”
 lines at the top

.

x = x + 1;
x = x + 2;
x = x - 1; x < 4

x < 5Triangle [] ta = new Triangle(4);
Triangle ta = new [] Triangle[4];
Triangle [] ta = new Triangle[4];

ta = new Triangle();
ta[x] = new Triangle();
ta.x = new Triangle();

ta[x] = setArea();
ta.x = setArea();
ta[x].setArea();

int x;
int y;
int x = 0;
int x = 1;
int y = x;

area
ta.area
ta.x.area
ta[x].area

ta.x
ta(x)
ta[x]

x
y

28
30.0

4, t5 area = 18
4, t5 area = 343
27, t5 area = 18
27, t5 area = 343

Hint: SetArea()
is NOT a
static method.
Flip back to
Chapter 3 for
a refresher on
what the static
keyword means.

Pool Puzzle
Your job is to take code snippets

from the pool and place them
into the blank lines in the
code. You may use the same
snippet more than once, and
you won’t need to use all the
snippets. Your goal is to make

a class that will compile and run
and produce the output listed.

Download at WoweBook.Com

160 Chapter 4

28
4, t5 area = 343

After this line,
we’ve got an array
of four Triangle
references—but
there aren’t any
Triangle objects yet!

Notice how this class contains
the entry point, but it also
creates an instance of itself?
That’s completely legal in C#.

The SetArea() method
uses the height and
length fields to set the
area field. Since it’s not
a static method, it can
only be called from inside
an instance of Triangle.

The while loop
creates the four
instances of
Triangle by calling
the new statement
four times.

Pool Puzzle Solution

Bonus Answer

class Triangle
{
 double area;
 int height;
 int length;
 public static void Main(String[] args)
 {
 string results = “”;

 while (________)
 {

 _____.height = (x + 1) * 2;
 _____.length = x + 4;

 results += “triangle ” + x + “, area”;
 results += “ = ” + _____.area + “\n”;

 }

 x = 27;
 Triangle t5 = ta[2];
 ta[2].area = 343;
 results += “y = ” + y;
 MessageBox.Show(results +
 “, t5 area = ” + t5.area);
 }
 void setArea()
 {
 ____________ = (height * length) / 2;
 }
}

int x = 0;
Triangle[] ta = new Triangle[4];

x < 4

ta[x] = new Triangle();
ta[x]

ta[x].setArea();

ta[x]
x = x + 1;

int y = x;

area

ta[x]

exercise solutions

Download at WoweBook.Com

you are here 4 161

types and references

There	are	about	77	reserved words	in	C#.	These	are	words	reserved	by	the	C#	compiler;	you	
can’t	use	them	for	variable	names.	You’ll	know	a	lot	of	them	really	well	by	the	time	you	finish	the	
book.	Here	are	some	you’ve	already	used.	Write	down	what	you	think	these	words	do	in	C#.

namespace

for

class

public

else

new

using

if

while

Namespaces make sure that the names you are using in your program don’t collide
with the ones in the .NET Framework or other external classes you’ve used in your
program. All of the classes and methods in a program are inside a namespace.

This lets you do a loop that executes three statements. First it declares the
variable it’s going to use, then there’s the statement that evaluates the variable
against a condition. The third statement does something to the value.

A class is how you define an object. Classes have properties and methods.
Properties are what they know and methods are what they do.

A public class can be used by every other class in the project. When a variable or
method is declared as public, it can be used by classes and called by methods that are
outside of the one it’s being declared in.

Code that starts with else will get executed if the if statement preceding it fails.

You use this to create a new instance of an object.

This is a way of listing off all of the namespaces you are using in your program. Using
lets you use code from the .NET framework and pre-defined classes from third parties
as well as classes you can make yourself.

One way of setting up a conditional statement in a program. It says
if one thing is true, do one thing and if not do something else.

while loops are loops that keep on going as long as the condition in them is true.

Download at WoweBook.Com

162 Chapter 4

exercise solutions

Typecross Solution

N
1

A
2

M E

R
3

S R
4

E S E R V
5

E D

E S A

F I R

E G C
6

A S T I N G

R N A D
7

E M G
8

A R B A G E

N E L C C
9

C
10

O N C A T
11

E N A T
12

E I O

E T Y O M M

O
13

P S A P

D
14

O U B L E T L O

J C
15

H A R U

E I N

E
16

S C A P E U
17

N S I G N E D

T G

Across

1. The second part of a variable declaration [name]
4. "namespace", "for", "while", "using" and "new" are
examples of _____________ words. [reserved]
6. What (int) does in this line of code: x = (int) y;
[casting]
8. When an object no longer has any references
pointing to it, it's removed from the heap using
____________ collection. [garbage]
10. What you're doing when you use the + operator to
stick two strings together. [concatenate]
14. The type that holds the biggest numbers. [double]
15. The type that stores a single letter or number
[char]
16. \n and \r are _______ sequences [escape]
17. The four whole number types that only hold
positive numbers [unsigned]

Down

2. You can combine the variable declaration and the
____________ into one statement. [assignment]
3. A variable that points to an object [reference]
5. What your program uses to work with data that's in
memory [variable]
7. If you want to store a currency value, use this type
[decimal]
9. += and -= are this kind of operator [compound]
11. A variable declaration always starts with this.
[type]
12. Every object has this method that converts it to a
string. [tostring]
13. When you've got a variable of this type, you can
assign any value to it [object]

Download at WoweBook.Com

C# Lab 163

Name: Date:

C# Lab 163

This lab gives you a spec that describes a program
for you to build, using the knowledge you’ve gained
over the last few chapters.
This project is bigger than the ones you’ve seen so far.
So read the whole thing before you get started, and
give yourself a little time. And don’t worry if you get
stuck—there’s nothing new in here, so you can move
on in the book and come back to the lab later.
We’ve filled in a few design details for you, and we’ve
made sure you’ve got all the pieces you need... and
nothing else.
It’s up to you to finish the job. You can download
an executable for this lab from the website... but we
won’t give you the code for the answer.

C# Lab
A Day at the Races

Download at WoweBook.Com

164

A Day at the Races

The Spec: Build a Racetrack Simulator
Joe, Bob, and Al love going to the track, but they’re
tired of losing all their money. They need you to build a
simulator for them so they can figure out winners before
they lay their money down. And, if you do a good job,
they’ll cut you in on their profits.

Here’s what you’re going to build for them...

The Guys
Joe, Bob, and Al want to bet on a dog race. Joe starts with 50 bucks,
Bob starts with 75 bucks, and Al starts with 45 bucks. Before
each race, they’ll each decide if they want to bet, and how
much they want to put down. The guys can change their bets
right up to the start of the race... but once the race starts, all
bets are final.

The Betting Parlor
The betting parlor keeps track of how much cash each
guy has, and what bet he’s placed. There’s a minimum
bet of 5 bucks. The parlor only takes one bet per person
for any one race.

The parlor checks to make
sure that the guy who’s betting
has enough cash to cover his
bet—so the guys can’t place a
bet if they don’t have the cash
to cover the bet.

Welcome to Curly’s
Betting Parlor

Minimum Bet: $5
One bet per person per race

Got enough cash?

Download at WoweBook.Com

 165

A Day at the Races

Betting
Every bet is double-or-nothing—either the winner doubles
his money, or he loses what he bet. There’s a minimum
bet of 5 bucks, and each guy can bet up to 15 bucks on a
single dog. If the dog wins, the bettor ends up with twice
the amount that he bets (after the race is complete). If he
loses, that amount disappears from his pile.

The Race
There are four dogs that run on a straight track. The
winner of the race is the first dog to cross the finish line.
The race is totally random, there are no handicaps or
odds, and a dog isn’t more likely to win his next race
based on his past performance.

If you want to build a handicap system, by all means do it! It’ll be really good practice writing some fun code.

Sound fun? We’ve got more details coming up...

All bets: double-or-nothing
Minimum Bet: $5
Up to $15 per dog

Win: $$ added
Lose: $$ removed

Say a guy places a $10 bet at the window. At
the end of the race, if his dog wins, his cash
goes up by $10 (because he keeps the original $10
he bet, plus he gets $10 more from winning). If
he loses, his cash goes down by $10.

Download at WoweBook.Com

166

A Day at the Races

You’ll need three classes and a form

Greyhound
StartingPosition
RacetrackLength
MyPictureBox
Location
Randomizer

Run()
TakeStartingPosition()

public class Greyhound {
 public int StartingPosition; // Where my PictureBox starts
 public int RacetrackLength; // How long the racetrack is
 public PictureBox MyPictureBox = null; // My PictureBox object
 public int Location = 0; // My Location on the racetrack
 public Random Randomizer; // An instance of Random

 public bool Run() {
 // Move forward either 1, 2, 3 or 4 spaces at random
 // Update the position of my PictureBox on the form
 // Return true if I won the race
 }

 public void TakeStartingPosition() {
 // Reset my location to the start line
 }
}

You’ll build three main classes in the project, as well as a GUI for the
simulator. You should have an array of three Guy objects to keep track
of the three guys and their winnings, and an array of four Greyhound
objects that actually run the race. Also, each instance of Guy should
have its own Bet object that keeps track of his bet and pays out (or
takes back) cash at the end of the race.

We’ve gotten you started with class descriptions and some snippets of
code to work from. You’ve got to finish everything up.

Your object can control things on your form...
The Greyhound class keeps track of its position on the racetrack during the race. It also
updates the location of the PictureBox representing the dog to move down the race
track. Each instance of Greyhound uses a field called MyPictureBox to reference
the PictureBox control on the form that shows the picture of the dog. Suppose the
distance variable contains the distance to move the dog forward. Then this code will
update the location of MyPictureBox by adding distance to its X value:

 Point p = MyPictureBox.Location;
 p.X += distance;
 MyPictureBox.Location = p;

We’ve given you the skeleton of the class you need to build. Your job is to fill in the methods.

You get the current
location of the picture...

...add the value to move forward to its X coordinate...
...and then update the picture
box location on the form.

See how the class diagram
matches up with the code?

We’ve added comments to give you an idea of what to do.

Don’t overthink this...
sometimes you just need to set

a variable, and you’re do
ne.

You’ll need to add “using
System.Windows.Forms” to

the top of the Greyhound
and Guy classes. And you’ll
need to add “using System.

Drawing;” to Greyhound,
because it uses Point.

The Greyhound object initializer is pretty
straightforward. Just make sure you pass a
reference to the right PictureBox on the
form to each Greyhound object.

You’ll have to make sure the form passes the right picturebox into each Greyhound’s object initializer.

You only need one instance of Random—each Greyhound’s
Randomizer reference should point to the same Random object.

Download at WoweBook.Com

 167

A Day at the Races

Bet
Amount
Dog
Bettor

GetDescription
PayOut

Guy
Name
MyBet
Cash
MyRadioButton
MyLabel

UpdateLabels()
PlaceBet()
ClearBet()
Collect()

public class Guy {
 public string Name; // The guy’s name
 public Bet MyBet; // An instance of Bet() that has his bet
 public int Cash; // How much cash he has

 // The last two fields are the guy’s GUI controls on the form
 public RadioButton MyRadioButton; // My RadioButton
 public Label MyLabel; // My Label

 public void UpdateLabels() {
 // Set my label to my bet’s description, and the label on my
 // radio button to show my cash (“Joe has 43 bucks”)
 }

 public void ClearBet() { } // Reset my bet so it’s zero

 public bool PlaceBet(int Amount, int Dog) {
 // Place a new bet and store it in my bet field
 // Return true if the guy had enough money to bet
 }

 public void Collect(int Winner) { } // Ask my bet to pay out
}

public class Bet {
 public int Amount; // The amount of cash that was bet
 public int Dog; // The number of the dog the bet is on
 public Guy Bettor; // The guy who placed the bet

 public string GetDescription() {
 // Return a string that says who placed the bet, how much
 // cash was bet, and which dog he bet on (“Joe bets 8 on
 // dog #4”). If the amount is zero, no bet was placed
 // (“Joe hasn’t placed a bet”).
 }

 public int PayOut(int Winner) {
 // The parameter is the winner of the race. If the dog won,
 // return the amount bet. Otherwise, return the negative of
 // the amount bet.
 }
}

Hint: You’ll instantiate Bet
in the Guy code. Guy willl
use the this keyword to
pass a reference to himself
to the Bet’s initializer.

Add your code here.

The key here is to use the Bet
object... let it do the work.

Remember that bets are represented by instances of Bet.

This is a common programming task:

assembling a string or message from

several individual bits of da
ta.

This is the object that Guy uses to represent bets in the application.

When you intialize the
Guy object, make sure
you set its MyBet
field to null, and
call its UpdateLabels()
method as soon as it’s
initialized.

The object initializer for Bet just sets the amount, dog and bettor.

Once you set MyLabel to one of the
labels on the form, you’ll be able to change
the label’s text using MyLabel.Text. And
the same goes for MyRadioButton!

Download at WoweBook.Com

168

A Day at the Races

System.Window
s.

Fo
rm

 o
b

je
c

t

Here’s your application architecture

System.Window
s.

Fo
rm

 o
b

je
c

t

Greyhound[]
ar

ra
y

Guy[] a

rr
ay

Among the visual objects will be four PictureBox controls for the pictures of the dogs. You’ll pass references to them to the object initializers of the four Greyhound objects. It’ll also have three RadioButton controls and three labels, which you’ll pass to the object initializers of the three Guy objects.

The guys array contains references to three Guy objects. Each of those objects has a field called bet, which is a reference to a Bet object.

The dogs array contains four

references, each of which points

to a separate instance o
f the

Greyhound class.

Array of Greyhound references

Array of Guy references

Guy obje
ct

Form obje
ct

The form needs to initialize
both of these arrays when
it starts up.

Spend some time looking closely at the architecture. It
looks pretty complicated at first, but there’s nothing here
you don’t know. Your job is to recreate this architecture
yourself, starting with the Greyhound and Guy arrays in
your main form.

Greyhound o
b

je
c

t

Greyhound o
b

je
c

t

Greyhound o
b

je
c

t

Greyhound o
b

je
c

t

Visual obje
ct

s

Guy obje
ct

Bet obje
ct

Guy obje
ct

Bet obje
ct

Guy obje
ct

Bet obje
ct

Guy obje
ct

Form obje
ct

Download at WoweBook.Com

 169

A Day at the Races

Greyhound[]
ar

ra
y

System.Window
s.

Fo
rm

 o
b

je
c

t

Bet obje
ct

Guy obje
ct

Form obje
ct

When a Guy places a bet, he
creates a new Bet object

Guy[1].PlaceBet(7, 3)

First the form tells Guy #2
to place a bet for 7 bucks on
dog #3... MyBet = new Bet()

{ Amount = 7, dog = 3, Bettor = this };

...so Guy #2 creates a new instance of Bet, using the this keyword to tell the Bet object that he’s the bettor...

true ...and since the Guy had enough money to place the bet, PlaceBet() returns true.
The form tells the dogs to keep
running until there’s a winner

The Bet object figures out if it
should pay out

while (there’s no winner) {
 for (loop through each dog, making
 sure there’s still no winner) {
 have the dog run one pace
 }
 }

When the user
tells the form to
start the race,
the form starts
a loop to animate
each dog running
along the track.

Each dog’s Run() method checks to see if that dog won the race, so the loops should end immediately as soon as one of the dog wins.

Guy[1].Collect(winningDog) MyBet.PayOut(winningDog)

if (my dog won) {
 return Amount;
} else {
 return -Amount;
}

The Guy will add the result of Bet.
Payout() to his cash. So if the dog won,
it should return Amount; otherwise, it’ll
return -Amount.

The betting parlor in the form tells
each Guy which dog won so he can
collect any winnings from his bet.

Bet obje
ct

Guy obje
ct

Form obje
ct

Download at WoweBook.Com

170

A Day at the Races

Here’s what your GUI should look like
The graphical user interface for the “Day at the Races” application
consists of a form that’s divided into two sections. The top is the
racetrack: a PictureBox control for the track, and four more for
the dogs. The bottom half of the form shows the betting parlor, where
three guys (Joe, Bob, and Al) can bet on the outcome of the race.

All three guys can bet on the race, but there’s only one betting window so only one guy can place a bet at a time.These radio buttons are used to select which guy places the bet.

When a Guy places a bet, it overwrites
any previous bet he placed. The current
bets show up in these label controls.
Each label has AutoSize set to False
and BorderStyle set to FixedSingle.

Once all bets are
placed, click this
button to start
the race.

Each of the four dogs has its ow
n PictureBox control. When

you initialize each of the four G
reyhound objects, each one’s

MyPicturebox field will have a reference to one of th
ese objects.

You’ll pass the reference (along
with the racetrack length and

starting position) to the Greyhound’s object initializer.

You’ll use the Length property of the racetrack PictureBox control to set the racetrack length in the Greyhound object, which it’ll use to figure out if it won the race.

The form should update this
label with the minimum bet
using the Minimum property
of the NumericUpDown
control for the bet amount.

You can download the graphics files from www.headfirstlabs.com/books/hfcsharp/

Make sure you set each PictureBox’s SizeMode property to Zoom.

Download at WoweBook.Com

 171

A Day at the Races

Placing bets
Use the controls in the Betting Parlor groupbox to place
each guy’s bet. There are three distinct stages here:

No bets have been placed yet
When the program first starts up, or if a race has just finished, no bets
have been placed in the betting parlor. You’ll see each guy’s total cash
next to his name on the left.

11

Each guy places his bets
To place a bet, select the guy’s radio button, select an amount and a dog, and click
the Bets button. His PlaceBet() method will update the label and radio button.

22

Each guy’s cash
shows up here.

The minimum bet
should be the same
as the minimum value
in the bet control.

When a guy places a bet, his Guy object updates this label using the MyLabel reference. He also updates the cash he has using his MyRadioButton reference.

After the race, each guy collects his winnings (or pays up!)
Once the race is complete and there’s a winner, each Guy object calls his
Collect() method and adds his winnings or losses to his cash.

33

Once Bob places
his bet, his Guy
object updates this label and the radio button text.

Since Al bet 12 bucks
on the winning dog, his
cash goes up by 12. The
other two guys lose the
money they bet.

Make sure all the Greyhound objects share one Random object! If each dog creates its own new instance of Random, you might see a bug where all of the dogs generate the same sequence of random numbers.

Download at WoweBook.Com

172

A Day at the Races

The Finished Product
You’ll know your “Day at the Races” application is
done when your guys can place their bets and watch
the dogs race.

During the race, the four dog
images run across the racetrack
until one of them wins the race.

During the race, no bets can be placed... and make sure you can’t start a new race while the dogs are running!

You can download a finished executable,
as well as the graphics files for the
four dogs and the racetrack, from the
Head First labs website:
www.headfirstlabs.com/books/hfcsharp

But you won’t find the source code! In real life, you
don’t get a solution to your programming problems.
Here’s your chance to really test your C# knowledge
and see just how much you’ve learned!

Download at WoweBook.Com

this is a new chapter 173

encapsulation5

private

Ever wished for a little more privacy?�

Sometimes your objects feel the same way. Just like you don’t want anybody you

don’t trust reading your journal or paging through your bank statements, good objects

don’t let other objects go poking around their fields. In this chapter, you’re going to

learn about the power of encapsulation. You’ll make your object’s data private,

and add methods to protect how that data is accessed.

Ever wished for a little more privacy?�

Sometimes your objects feel the same way. Just like you don’t want anybody you

don’t trust reading your journal or paging through your bank statements, good objects

don’t let other objects go poking around their fields. In this chapter, you’re going to

learn about the power of encapsulation. You’ll make your object’s data private,

and add methods to protect how that data is accessed.

No peeking!

Keep your privates...

Download at WoweBook.Com

174 Chapter 5

Kathleen is an event planner

kathleen needs your help

She’s been planning dinner parties for
her clients and she’s doing really well.
But lately she’s been having a hard time
responding to clients fast enough with an
estimate for her services.

When a new client calls Kathleen to do a party, she needs to find
out the number of guests, what kind of drinks to serve, and what
decorations she should buy. Then she uses a pretty complicated
calculation to figure out the total cost, based on a flow chart she’s
been using for years. The bad news is that it takes her a long time
to work through her chart, and while she’s estimating, her potential
clients are checking out other event planners.

It’s up to you to build her a C#-driven event estimator and save
her business. Imagine the party she’ll throw you when you succeed!

Kathleen would rather spend
her time planning events, not
planning estimates.

Download at WoweBook.Com

you are here 4 175

encapsulation

What does the estimator do?
Kathleen runs down some of the basics of her system
for figuring out the costs of an event. Here’s part of
what she came up with:

Kathleen’s Party Planning Program—Cost Estimate for a Dinner Party

For each person on the guest list there’s a $25 food charge.

Clients have a choice when it comes to drinks. Most parties serve alcohol, which

costs $20 per person. But they can also choose to have a party without alcohol.

Kathleen calls that the “Healthy Option,” and it only costs $5 per person to have

soda and juice instead of alcohol. Choosing the Healthy Option is a lot easier for

her, so she gives the client a 5% discount on the entire party, too.

There are two options for the cost of decorations. If a client goes with the

normal decorations, it’s $7.50 per person with a $30 decorating fee. A client can

also upgrade the party decorations to the “Fancy Option”—that costs $15 per

person with a $50 one-time decorating fee.

•

•

•

Number of
people.
Food ($25 per
person)

Healthy
Option?

Alcohol
($20 per
person)

Fancy
decorations?

Juice and soda
($5 per person +

5% discount on
total cost)

Fancy
Decorations
($15 per person

+$50 decorating
fee)

Normal
Decorations
($7.50 per
person +$30
decorating fee)

Yes

No

Yes

No

Here’s another look at this same set of costs, broken
down into a little flow chart to help you see how it works:

Some of these choices involve a change to the final price of the event, as well as individual per-person costs.

While most choices affect the cost for each guest, there are also one-time fees to figure in.

Download at WoweBook.Com

176 Chapter 5

v

DinnerParty

NumberOfPeople
CostOfBeveragesPerPerson
CostOfDecorations

SetHealthyOption()
CalculateCostOfDecorations()
CalculateCost()

Create a new Windows Application project and add a class file to it called
DinnerParty.cs, and build the DinnerParty class using the class diagram
to the left. It’s got three methods: CalculateCostOfDecorations(),
SetHealthyOption(), and CalculateCost(). For the fields, use
decimal for the two costs, int for the number of people, and bool to
keep track of whether or not the healthy option was selected. Make sure
you add an M after every literal you assign to a decimal value (10.0M).

11

Add this code to your form:

DinnerParty dinnerParty;
public Form1() {
 InitializeComponent();
 dinnerParty = new DinnerParty() { NumberOfPeople = 5 };
 dinnerParty.SetHealthyOption(false);
 dinnerParty.CalculateCostOfDecorations(true);
 DisplayDinnerPartyCost();
}

44

Flip back to the previous page to be sure you’ve got all of the logic right for
the methods. Only one of them returns a value (a decimal)—the other
two are void. The CalculateCostOfDecorations() method figures
out the cost of decorations for the number of people attending the party.
Use the CalculateCost() method to figure out the total cost by adding
up the cost of the decorations to the cost of drinks and food per person. If
the client wants the Healthy Option, you can apply the discount inside the
CalculateCost()method after you’ve figured out the total cost.

33

This is just a label with the Text Property set to “”, the BorderStyle
property set to Fixed3D, and the AutoSize property set to false.

Here’s the class di
agram for

the DinnerParty class
you’ll

need to create.

Set the default
value to 5. The
minimum should be
1 and the maximum
should be 20.

Build a program to solve Kathleen’s party estimating problem.

Here’s what the form
should look like. Use
the NumericUpDown
control’s properties to set
the maximum number
of people to 20, the
minimum to 1, and the
default to 5. Get rid of the
maximize and minimize
buttons, too.

55

Here’s a useful C# tool. Since the cost of food won’t be changed by the
program, you can declare it as a constant, which is like a variable except
that its value can never be changed. Here’s the declaration to use:

public const int CostOfFoodPerPerson = 25;

22

The SetHealthyOption() method uses a bool parameter (healthyOption) to update the CostOfBeveragesPerPerson field based on whether or not the client wants the healthy option.

okay, no problem

You don’t need to add “using System.Windows.Forms;” to your DinnerParty class, because it doesn’t use MessageBox.Show(), Point, or anything else from that .NET Framework namespace.

The Fancy
decorations box
should have Checked
set to true.

You’ll declare the dinnerParty field in
the form, and then add these four lines
below InitializeComponent().

Download at WoweBook.Com

you are here 4 177

encapsulation

v

Instead of using a button to calculate the costs, this form will update the cost label
automatically as soon as you use a checkbox or the NumericUpDown control. The first
thing you need to do is create a method in the form that displays the cost.

Add this method to Form1(). It’ll get called when the NumericUpDown control is clicked:

private void DisplayDinnerPartyCost()
{
 decimal Cost = dinnerParty.CalculateCost(checkBox2.Checked);
 costLabel.Text = Cost.ToString(“c”);
}

66

Double-click on the Fancy Decorations checkbox on the form and make
sure that it first calls CalculateCostOfDecorations(), and then
DisplayDinnerPartyCost(). Next, double-click the Healthy Option
checkbox and make sure that it calls the SetHealthyOption() method in the
DinnerParty class and then calls the DisplayDinnerPartyCost() method.

88

Now hook up the NumericUpDown field to the NumberOfPeople variable you
created in the DinnerParty class and display the cost in the form. Double-click on the
NumericUpDown control—the IDE will add an event handler to your code. That’s
a method that gets run every time the control is changed. It’ll reset the number of
people in the party. Fill it in like this:

private void numericUpDown1_ValueChanged(
 object sender, EventArgs e)
{
 dinnerParty.NumberOfPeople = (int) numericUpDown1.Value;
 DisplayDinnerPartyCost();
}

Uh-oh—there’s a problem with this code. Can you spot it? Don’t worry if you
don’t see it just yet. We’ll dig into it in just a couple of minutes!

77

This method will
get called by all of
the other methods
you create on the
form. It’s how you
update the cost
label with the right
value whenever
anything changes.

These are just two-line methods. The first line will call the method you created in the class to figure out the costs and the second will display the total cost on the form.

The value you send from the form to the
method will be fancyBox.Checked. That will
be passed as a boolean parameter to the
method in the class.

Add this method to the form—it’ll recalculate the cost of the party and put it in the Cost label.

Change the name of the
lablel that displays the cost
to costLabel.

This is true if the
checkbox for the Healthy
Option is checked.

When you
double-click
on a button in
the IDE to add
code that gets
run when the
button is clicked, that’s an event
handler too.

You need to cast numericUpDown.Value to
an int because it’s a Decimal property.

Passing “c” to ToString() tells it to format the cost as a currency value. If you’re in a country that uses dollars, it’ll add a dollar sign.

Download at WoweBook.Com

178 Chapter 5

wv

exercise solution

public class DinnerParty {
 const int CostOfFoodPerPerson = 25;
 public int NumberOfPeople;
 public decimal CostOfBeveragesPerPerson;
 public decimal CostOfDecorations = 0;

 public void SetHealthyOption(bool healthyOption) {
 if (healthyOption) {
 CostOfBeveragesPerPerson = 5.00M;
 } else {
 CostOfBeveragesPerPerson = 20.00M;
 }
 }

 public void CalculateCostOfDecorations(bool fancy) {
 if (fancy)
 {
 CostOfDecorations = (NumberOfPeople * 15.00M) + 50M;
 } else {
 CostOfDecorations = (NumberOfPeople * 7.50M) + 30M;
 }
 }
 public decimal CalculateCost(bool healthyOption) {
 decimal totalCost = CostOfDecorations +
 ((CostOfBeveragesPerPerson + CostOfFoodPerPerson)
 * NumberOfPeople);

 if (healthyOption) {
 return totalCost * .95M;
 } else {
 return totalCost;
 }
 }
}

 Here’s the code that goes into DinnerParty.cs.

This applies the 5% discount to
the overall event cost if the
non-alcoholic option was chosen.

Using a constant for CostOfFoodPerPerson
ensures the value can’t be changed. It also
makes the code easier to read—it’s clear that
this value never changes.

When the form first creates
the object, it uses the initializer to set NumberOfPeople. Then
it calls SetHealthyOption() and CalculateCostOfDecorations() to set the other fields.

We used “if (Fancy)” instead of
typing “if (Fancy == true)” because
the if statement always checks if the
condition is true.

We used parentheses to make sure the
math works out properly.

Download at WoweBook.Com

you are here 4 179

encapsulation

wv

public partial class Form1 : Form {
 DinnerParty dinnerParty;
 public Form1() {
 InitializeComponent();
 dinnerParty = new DinnerParty() { NumberOfPeople = 5 };
 dinnerParty.CalculateCostOfDecorations(fancyBox.Checked);
 dinnerParty.SetHealthyOption(healthyBox.Checked);
 DisplayDinnerPartyCost();
 }

 private void fancyBox_CheckedChanged(object sender, EventArgs e) {
 dinnerParty.CalculateCostOfDecorations(fancyBox.Checked);
 DisplayDinnerPartyCost();
 }

 private void healthyBox_CheckedChanged(object sender, EventArgs e) {
 dinnerParty.SetHealthyOption(healthyBox.Checked);
 DisplayDinnerPartyCost();
 }

 private void numericUpDown1_ValueChanged(object sender, EventArgs e) {
 dinnerParty.NumberOfPeople = (int)numericUpDown1.Value;
 DisplayDinnerPartyCost();
 }

 private void DisplayDinnerPartyCost() {
 decimal Cost = dinnerParty.CalculateCost(healthyBox.Checked);
 costLabel.Text = Cost.ToString(“c”);
 }
}

Changes to the checkboxes on the form set
the healthyOption and Fancy booleans to
true or false in the SetHealthyOption() and
CalculateCostOfDecorations() methods.

We call DisplayDinnerPartyCost to
initialize the label that shows the
cost as soon as the form’s loaded.

We had you use a decimal for the prices because it’s designed for monetary values. Just make
sure you always put an “M” after every literal—so if you want to store $35.26, make sure you
write 35.26M.

We named our checkboxes “healthyBox”
and “fancyBox” so you could see what’s
going on in their event handler methods.

The new dinner party cost needs to be
recalculated and displayed any time the number
changes or the checkboxes are checked.

String formatting
You’ve already seen how you can convert any variable to a string using its ToString() method. If you pass “c” to ToString(), it converts it to the local currency. You can also pass it “f3” to format it with as a decimal number with three decimal places, “0” (that’s a zero) to convert to a whole number, “0%” for a whole number percentage, and “n” to display it as a number with a comma separator for thousands. Take a minute and see how each of these looks in your program!

Download at WoweBook.Com

180 Chapter 5

Kathleen’s Test Drive

something’s gone terribly wrong

This rocks!
Estimating is about to

get a whole lot easier.

Rob (on phone): Hi Kathleen. How are the arrangements
for my dinner party going?

Kathleen: Just great. We were out looking at decorations this
morning and I think you’ll love the way the party’s going to
look.

Rob: That’s awesome. Listen, we just got a call from my wife’s
aunt. She and her husband are going to be visiting for the next
couple of weeks. Can you tell me what it does to the estimate
to move from 10 to 12 people on the guest list?

Kathleen: Sure! I’ll have that for you in just one minute.

Kathleen: OK. It looks like the total cost for the dinner will
go from $575 to $665.

Rob: Only $90 difference? That sounds like a great deal! What
if we decide to cut the fancy decorations? What’s the cost then?

Changing the Number of
People value from 10 to 12
and hitting enter shows $665
as the total cost. Hmm, that
seems a little low...

Rob’s one of Kathleen’s
favorite clients. She did hi

s
wedding last year, and now
she’s planning an important
dinner party for him.

Download at WoweBook.Com

you are here 4 181

encapsulation

Kathleen: Um, it looks like... um, $660.

Rob: $660? I thought the decorations were $15 per person. Did you change your
pricing or something? If it’s only $5 difference, we might as well go with the Fancy
Decorations. I’ve gotta tell you though, this pricing is confusing.

Kathleen: We just had this new program written to do the estimation for us.
But it looks like there might be a problem. Just one second while I add the fancy
decorations back to the bill.

Kathleen: Rob, I think there’s been a mistake. It looks like the cost with the fancy
decorations just shot up to $770. That does seem to make more sense. But I am
beginning not to trust this application. I’m going to send it back for some bug fixes
and work up your estimate by hand. Can I get back to you tomorrow?

Rob: I am not paying $770 just to add two people to the party. The price you
quoted me before was a lot more reasonable. I’ll pay you the $665 you quoted me in
the first place, but I just can’t go higher than that!

When you turn the Fancy
Decorations back on, the
number shoots up to $770.
These numbers are just wrong.

Turning off the Fancy Decorations checkbox only reduces the amount by $5. That can’t be right!

Why do you think the numbers are coming out wrong every time Kathleen makes a change?

Download at WoweBook.Com

182 Chapter 5

wasn’t expecting that

Each option should be calculated individually
Even though we made sure to calculate all of the amounts according
to what Kathleen said, we didn’t think about what would happen when
people made changes to just one of the options on the form.

When you launch the program, the form sets the number of people to 5
and Fancy Decorations to true. It leaves Healthy Option unchecked and
it calculates the cost of the dinner party as $350. Here’s how it comes up
with the initial total cost:

5 people.

$20 per person for drinks

$25 per person for food

$15 per person for decorations
plus $50 fee.

Total cost of drinks = $100

Total cost of food = $125

Total cost of Decorations = $125

$100 + $125 + 125 = $350

When you change the number of guests, the application should
recalculate the total estimate the same way. But it doesn’t:

10 people.

$20 per person for drinks

$25 per person for food

$15 per person for decorations
plus $50 fee.

Total cost of drinks = $200

Total cost of food = $250

Total cost of Decorations = $200

$200 + $250+ 200 = $650

So far, so good.

The program is adding the old cost of
decorations up with the new cost of
food and drink.
It’s doing $200 + $250 + $125= $575.

This is the total we should get. But we’re not...

New food and drink cost. Old decorations.

 Don’t worry!
This one
wasn’t your
fault.

We built a nasty little bug into
the code we gave you to show
you just how easy it is to have
problems with how objects use
each others’ fields... and just how
hard those problems are to spot.

Download at WoweBook.Com

you are here 4 183

encapsulation

The Problem Up Close

Take a look at the method that handles changes to the value in the numericUpDown
control. It sets the value from the field to the NumberofPeople variable and then
calls the DisplayDinnerPartyCost() method. Then it counts on that method
to handle recalculating all the individual new costs.

private void numericUpDown1_ValueChanged(
 object sender, EventArgs e) {

 dinnerParty.NumberOfPeople = (int)numericUpDown1.Value;

 DisplayDinnerPartyCost();

}

public void CalculateCostOfDecorations(bool Fancy) {

 if (Fancy) {

 CostOfDecorations = (NumberOfPeople * 15.00M) + 50M;

 } else {

 CostOfDecorations = (NumberOfPeople * 7.50M) + 30M;

 }

}

So, when you make a change to the value in the NumberofPeople field,
this method never gets called:

This line sets the value
of NumberofPeople
in this instance of
DinnerParty to the
value in the form.

This method calls the CalculateCost() method, but not
the CalculateCostofDecorations() method.

People won’t always use your programs in
exactly the way you expect.
Luckily, C# gives you a powerful tool to make sure your
program always works correctly—even when people do
things you never thought of. It’s called encapsulation
and it’s a really helpful technique for working with objects.

Hold on! I assumed Kathleen would
always set all three options at once!

This variable is set to $125 from when the
form first called it and, since this method
doesn’t get called again, it doesn’t change.

That’s why the number corrects itself when you turn
fancy decorations back on. Clicking the checkbox makes
the program run CalculateCostOf Decorations() again.

Download at WoweBook.Com

184 Chapter 5

It’s easy to accidentally misuse your objects
Kathleen ran into problems because her form ignored the
convenient CalculateCostOfDecorations() method that
you set up and instead went directly to the fields in the DinnerParty
class. So even though your DinnerParty class worked just fine, the
form called it in an unexpected way... and that caused problems.

NumberOfPeople = 10;

CalculateCostOfDecorations(
true);

 Form

How the DinnerParty class expected to be called
The DinnerParty class gave the form a perfectly good method to calculate the
total cost of decorations. All it had to do was set the number of people and then
call CalculateCostOfDecorations(), and then CalculateCost()
will return the correct cost.

11

Even though the form didn’t set up the party properly, CalculateCost() still returned a number... and there was no way for Kathleen to know that the number was wrong.

CalculateCost() returns $650

How the DinnerParty class was actually called
The form set the number of people, but just called the CalculateCost()
method without first recalculating the cost of the decorations. That threw off
the whole calculation, and Kathleen ended up giving Rob the wrong price.

22

NumberOfPeople = 10;

CalculateCost() returns $575

protect your objects

DinnerParty
ob

je
ct

 Form

DinnerParty
ob

je
ct

Download at WoweBook.Com

you are here 4 185

encapsulation

Encapsulation means keeping some of
the data in a class private
There’s an easy way to avoid this kind of problem: make sure that there’s only one
way to use your class. Luckily, C# makes it easy to do that by letting you declare
some of your fields as private. So far, you’ve only seen public fields. If you’ve
got an object with a public field, any other object can read or change that field.
But if you make it a private field, then that field can only be accessed from
inside that object (or by another object of the same class).

en-cap-su-la-ted, adj.
enclosed by a protective coating
or membrane. The divers were fully
encapsulated by their submersible,
and could only enter and exit through
the airlock.

public class DinnerParty {

 private int numberOfPeople;

 ...

 public void SetPartyOptions(int people, bool fancy) {

 numberOfPeople = people;

 CalculateCostOfDecorations(fancy);

 }

 public int GetNumberOfPeople() {

 return numberOfPeople;

 }

If you want to make a field private, all you need to do is use the private keyword when you declare it. That tells C# that if you’ve got an instance of DinnerParty, its numberOfPeople field can only be read and written by that instance. Other objects won’t even know it’s there.

Other objects still need a way to set the

number of people for the dinner party.
 One

good way to give them access to it is to

add methods to set or get the number of

people. That way you can make sure that the

CalculateCostOfDe
corations()

method gets run every time the number of

people is changed. That’ll take care of that

pesky bug.

By making the field that holds the number
of party guests private, we only give the
form one way to tell the DinnerParty class
how many people are at the party—and
we can make sure the cost of decorations
is recalculated properly. When you make
some data private and then write code to
use that data, it’s called encapsulation.

Use your laziness to your own benefit—if you leave off the “private” or “public”, then C# will just assume that your field is private.

Download at WoweBook.Com

186 Chapter 5

Use encapsulation to control access to your
class’s methods and fields
When you make all of your fields and methods public, any other class
can access them. Everything your class does and knows about becomes
an open book for every other class in your program... and you just saw
how that can cause your program to behave in ways you never expected.
Encapsulation lets you control what you share and what you keep private
inside your class. Let’s see how this works:

SecretAgent

Alias
RealName
Password

AgentGreeting()

Super-spy Herb Jones is defending life, liberty, and the pursuit of
happiness as an undercover agent in the USSR. His ciaAgent object is an
instance of the SecretAgent class.

11

Agent Jones has a plan to help him evade the enemy KGB agents. He
added an AgentGreeting() method that takes a password as its
parameter. If he doesn’t get the right password, he’ll only reveal his
alias, Dash Martin.

22

Seems like a foolproof way to protect the agent’s identity, right? As
long as the agent object that calls it doesn’t have a the right password,
the agent’s name is safe.

33

AgentGreeting(“the jeep is
parked outside”)

The ciaAgent object is an
instance of the SecretAgent
class, while kgbAgent is an
instance of EnemyAgent.

“Dash Martin”

spy versus spy

The KGB only gets the alias of the CIA agent. Perfect. Right?

The KGB agent uses the wrong
password in his greeting.

EnemyAgent

Borscht
Vodka

ContactComarades()
OverthrowCapitalists()

RealName: “Herb Jones”

Alias: “Dash Martin”

Password: “the crow flies at midnight” ciaAgent

†

 kgbAgent

 ciaAgent

†

Download at WoweBook.Com

you are here 4 187

encapsulation

public string RealName;Setting your variables
public means they can be
accessed, and even changed,
from outside the class.

string name = ciaAgent.Real
Name;

Agent Jones can use private fields to keep the his identity secret from
enemy spy objects. Once he declares the realName field as private, the
only way to get to it is by calling methods that have access to the
private parts of the class. So the KGB agent is foiled!

private string realName;

Keeping your fields and methods private makes sure no outside
code is going to make changes to the values you’re using when you don’t expect it.

You’d also want to make sure that the field

that stores the password is private, otherwise

the enemy agent can get to it.

He left the field public...
Why go through all of
the trouble to guess his
password? I can just get
his name directly!

But is the realName field REALLY protected?
So as long as the KGB doesn’t know any CIA agent passwords, the
CIA’s real names are safe. Right? But what about the field declaration
for the realName field:

Setting your variables as public means they can be accessed, and even changed, from outside the class.

There’s no need to call any
method. The realName field is
wide open for everyone to see!

Just replace public with private, and boom, your fields are now hidden from the world.

 kgbAgent

 ciaAgent

†

The kgbAgent object can’t access the ciaAgent’s private fields because they’re instances of different classes.

Download at WoweBook.Com

188 Chapter 5

Q: Okay, so I need to access private data
through public methods. But what happens if the
class with the private field doesn’t give me a way
to get at that data, but my object needs to use it?

A:	Then	you	can’t	access	the	data	from	outside	the	
object.	When	you’re	writing	a	class,	you	should	always	
make	sure	that	you	give	other	objects	some	way	to	
get	at	the	data	they	need.	Private	fields	are	a	very	
important	part	of	encapsulation,	but	they’re	only	part	
of	the	story.	Writing	a	class	with	good	encapsulation	
means	giving	a	sensible,	easy-to-use	way	for	other	
objects	to	get	the	data	they	need,	without	giving	them	
access	to	hijack	data	your	class	needs.

Q: Why would I ever want to keep a field with no
way for another class to access?

A:	Sometimes	a	class	needs	to	keep	track	of	
information	that	is	necessary	for	it	to	operate,	but	
which	no	other	object	really	needs	to	see.	Here’s	an	
example.	When	computers	generate	random	numbers,	
they	use	special	values	called	seeds.	You	don’t	need	
to	know	how	they	work,	but	every	instance	of		

	
Random	actually	contains	an	array	of	several	dozen	
numbers	that	it	uses	to	make	sure	that	Next()	
always	gives	you	a	random	number.	If	you	create	an	
instance	of	Random,	you	won’t	be	able	to	see	that	
array.	That’s	because	you	don’t	need	it—but	if	you	
had	access	to	it,	you	might	be	able	to	put	values	in	it	
that	would	cause	it	to	give	non-random	values.	So	the	
seeds	have	been	completely	encapsulated	from	you.

Q: Hey, I just noticed that all of the event
handlers I’ve been using have the private
keyword. Why are they private?

A:	Because	C#	forms	are	set	up	so	that	only	the	
controls	on	the	forms	can	trigger	event	handlers.	
When	you	put	the	private	keyword	in	front	of	
any	method,	then	that	method	can	only	be	used	from	
inside	your	class.	When	the	IDE	adds	an	event	handler	
method	to	your	program,	it	declares	it	as	private	so	
other	forms	or	objects	can’t	get	to	it.	But	there’s	no	rule	
that	says	that	an	event	handler	must	be	private.	In	fact,	
you	can	check	this	out	for	yourself—double-click	on	a	
button,	then	change	its	event	handler	declaration	to	
public.	The	code	will	still	compile	and	run.

Private fields and methods can only be
accessed from inside the class
There’s only one way that an object can get at the data stored inside another
object’s private fields: by using the public fields and methods that return the data.
But while KGB and MI5 agents need to use the AgentGreeting() method, friendly
spies can see everything—any class can see private fields in other instances
of the same class.

keeping secrets

AgentGreeting(“the crow fli
es at midnight”)

Now that the fields are private,
this is pretty much the only
way the mi5Agent can get the
ciaAgent’s real name.

“Herb Jones”

mi5gent is an instance of the BritishAgent class, so it doesn’t have access to ciaAgent’s private fields either.

The only
way that
one object
can get to
data stored
in a private
field inside
another
object is by
using public
methods
that return
the data.

 mi5Agent

 ciaAgent

†
Only another
ciaAgent object can see them.

Download at WoweBook.Com

you are here 4 189

encapsulation

Here’s a class with some private fields. Circle the statements
below that won’t compile if they’re run from outside the
class using an instance of the object called mySuperChef.

public class SuperChef
{
 public string cookieRecipe;
 private string secretIngredient;
 private const int loyalCustomerOrderAmount = 60;
 public int Temperature;
 private string ingredientSupplier;

 public string GetRecipe (int orderAmount)
 {
 if (orderAmount >= loyalCustomerOrderAmount)
 {
 return cookieRecipe + “ ” + secretIngredient;
 }
 else
 {
 return cookieRecipe;
 }
 }
}

1. string ovenTemp = mySuperChef.Temperature;

2. string supplier = mySuperChef.ingredientSupplier;

3. int loyalCustomerOrderAmount = 94;

4. mySuperChef.secretIngredient = “cardamom”;

5. mySuperChef.cookieRecipe = “get 3 eggs, 2 1/2 cup flour, 1 tsp salt,
 1 tsp vanilla and 1.5 cups sugar and mix them together. Bake for 10
 minutes at 375. Yum!”;

6. string recipe = mySuperChef.GetRecipe(56);

7. After running all of the lines that will compile above, what’s the value of recipe?

Download at WoweBook.Com

190 Chapter 5

public class SuperChef
{
 public string cookieRecipe;
 private string secretIngredient;
 private const int loyalCustomerOrderAmount = 60;
 public int Temperature;
 private string ingredientSupplier;

 public string GetRecipe (int orderAmount)
 {
 if (orderAmount >= loyalCustomerOrderAmount)
 {
 return cookieRecipe + “ and the secret ingredient is “
 + secretIngredient;
 }
 else
 {
 return cookieRecipe;
 }
 }
}

1. string ovenTemp = mySuperChef.Temperature;

2. string supplier = mySuperChef.ingredientSupplier;

3. int loyalCustomerOrderAmount = 54;

4. mySuperChef.secretIngredient = “cardamom”;

5. mySuperChef.cookieRecipe = “Get 3 eggs, 2 1/2 cup flour, 1 tsp salt,
 1 tsp vanilla and 1.5 cups sugar and mix them together. Bake for 10
 minutes at 375. Yum!”;

6. string recipe = mySuperChef.GetRecipe(56);

7. After running all of the lines that will compile above, what’s the value of recipe?

good ideas for easy encapsulation

The only way to get the secret
ingredient is to order a whole
lot of cookies. Outside code
can’t access this field directly.

“Get 3 eggs, 2 1/2 cup flour, 1 tsp salt, 1 tsp vanilla and 1.5 cups sugar and mix them together.
Bake for 10 minutes at 375. Yum!”

Here’s a class with some private fields. Circle the statements
below that won’t compile if they’re run from outside the
class using an instance of the object called mySuperChef.

#1 doesn’t compile because you can’t just assign an int to a string.

#2 and #4 don’t compile
because ingredientSupplier and
secretIngredient are private.

Even though you created a local variable called loyalCustomerAmount and set it to 54, that didn’t change the object’s loyalCustomerAmount value, which is still 60—so it won’t print the secret ingredient.

Download at WoweBook.Com

you are here 4 191

encapsulation

± Think about ways the fields can be misused.
What can go wrong if they’re not set properly?

± Is everything in your class public?
If your class has nothing but public fields and methods, you probably
need to spend a little more time thinking about encapsulation.

± What fields require some processing or calculation to
happen when they’re set?
Those are prime candidates for encapsulation. If someone writes
a method later that changes the value in any one of them, it could
cause problems for the work your program is trying to do.

A few ideas for encapsulating classes

± Only make fields and methods public if you need to.
If you don’t have a reason to declare something public, don’t. You could
make things really messy for yourself by making all of the fields in your
program public—but don’t just go making everything private, either.
Spending a little time up front thinking about which fields really need to
be public and which don’t can save you a lot of time later.

The cost of decorations
needs to be figured out first.
Once you know that, you can just add

it up with the cost of the food and
drink to get the total cost.

Download at WoweBook.Com

192 Chapter 5

Encapsulation keeps your data pristine
Sometimes the value in a field changes as your program does
what it’s supposed to do. If you don’t explicitly tell your program
to reset the value, you can do your calculations using the old
one. When this is the case, you want to have your program
execute some statements any time a field is changed—like
having Kathleen’s program recalculate the cost every time
you change the number of people. We can avoid the problem
by encapsulating the data using private fields. We’ll provide a
method to get the value of the field, and another method to set
the field and do all the necessary calculations.

get it, set it, got it, good

class Farmer
{
 private int numberOfCows;
}

public const int FeedMultiplier = 30;
public int GetNumberOfCows()
{
 return numberOfCows;
}

public void SetNumberOfCows(int newNumberOfCows)
{
 numberOfCows = newNumberOfCows;
 BagsOfFeed = numberOfCows * FeedMultiplier;
}

When you create a form to let a user enter the number of cows into a numeric field,
you need to be able to change the value in the numberOfCows field. To do that, you
can create a method that returns the value of the field to the form object.

We’d better make this field private
so nobody can change it without also
changing bagsOfFeed—if they get
out of sync, that’ll create bugs!

We’ll add a method to give
other classes a way to get
the number of cows.

And here’s a method to set the
number of cows that makes sure
the BagsOfFeed field is changed
too. Now there’s no way for the
two to get out of sync.

A quick example of encapsulation
A Farmer class uses a field to store the number of cows, and
multiplies it by a number to figure out how many bags of cattle
feed are needed to feed the cows:

 T
hese acco

mplish
 the sa

me thing!

We used camelCase for the private fields and PascalCase for the
public ones. PascalCase means capitalizing the first letter in every
word in the variable name. camelCase is similar to PascalCase,
except that the first letter is lowercase. That makes the
uppercase letters look like “humps” of a camel.

The farmer
needs 30 bags
of feed for
each cow.

Download at WoweBook.Com

you are here 4 193

encapsulation

private int numberOfCows;

public int NumberOfCows
{

 get
 {
 return numberOfCows;
 }

 set
 {
 numberOfCows = value;
 BagsOfFeed = numberOfCows * FeedMultiplier;
 }

}

C# has special kinds of methods that make it easy to encapsulate your data. You
can use properties, methods that are executed every time a property is used to
set or return the value of the field, which is called a backing field.

Properties make encapsulation easier

We’ll rename the private field to numberOfCows
(notice the lowercase “n”). This will become the
backing field for the NumberOfCows property.

You’ll often use properties by combining them with a normal field declaration. Here’s the declaration for NumberOfCows.
This is a get accessor. It’s a method that’s run any time
the NumberOfCows property is read. It has a return value
that matches the type of the variable—in this case it
returns the value of the private numberOfCows property.

This is a set accessor that’s called every time the NumberOfCows property is set. Even though the method doesn’t look like it has any parameters, it actually has one called value that contains whatever value the field was set to.

 T
hese acco

mplish
 the sa

me thing!

private void button1_Click(object sender, EventArgs e) {

 Farmer myFarmer = new Farmer();

 myFarmer.NumberOfCows = 10;

 int howManyBags = myFarmer.BagsOfFeed;

 myFarmer.NumberOfCows = 20;

 howManyBags = myFarmer.BagsOfFeed;

}

You use get and set accessors exactly like fields. Here’s code for a button that sets the
numbers of cows and then gets the bags of feed:

When this line sets
NumberOfCows to 10, the
set accessor sets the
private numberOfCows field and then updates the public BagsOfFeed field.

Even though the code treats NumberOfCows like
a field, it runs the set accessor, passing it 20.
And when it queries the BagsOfFeed field it runs
the get accessor, which returns 300.

Since the NumberOfCows set accessor updated BagsOfFeed, now you can get its value.

Download at WoweBook.Com

194 Chapter 5

Build an application to test the Farmer class
Create a new Windows Forms application that we can use to test the Farmer
class and see properties in action. We’ll use the Console.WriteLine()
method to write the results to the output window in the IDE.

Do this
Add the Farmer class to your project:

public class Farmer {
 public int BagsOfFeed;
 public const int FeedMultiplier = 30;

 private int numberOfCows;
 public int NumberOfCows {
 (add the get and set accessors from the previous page)
 }
}

11

Here’s the form for the code. It uses Console.WriteLine() to send its output to the Output
window (which you can bring up by selecting “Output” from the View menu). You can pass several
parameters to WriteLine()—the first one is the string to write. If you include “{0}” inside the
string, then WriteLine() replaces it with the first parameter. It replaces “{1}” with the second
parameter, “{2}” with the third, etc.

public partial class Form1 : Form {
 Farmer farmer;
 public Form1() {
 InitializeComponent();
 farmer = new Farmer() { NumberOfCows = 15 };
 }
 private void numericUpDown1_ValueChanged(object sender, EventArgs e) {
 farmer.NumberOfCows = (int)numericUpDown1.Value;
 }
 private void calculate_Click(object sender, EventArgs e) {
 Console.WriteLine(“I need {0} bags of feed for {1} cows”,
 farmer.BagsOfFeed, farmer.NumberOfCows);
 }
}

33

Build this form:22

Set the NumericUpDown control’s Value to 15, its Minimum to 5, and its
Maximum to 300.

Name this button “calculate”—it
uses the public Farmer data to
write a line to the output.

WriteLine() replaces “{0}” with value in
the first parameter, and “{1}” with the
second parameter.

Use the Console.WriteLine()
method to send a line of text
to the IDE’s Output window.

private property (no tresspassing)

Download at WoweBook.Com

you are here 4 195

encapsulation

Automatic
properties
are a C# 3.0
feature.

If you’re still
using Visual
Studio 2005
and C# 2.0,
this code won’t
work. We highly
recommend that
you use Visual
Studio 2008
Express. You
can download it
for free!

Use automatic properties to finish the class
It looks like the Cow Calculator works really well. Give it a shot—run it and click
the button. Then change the number of cows to 30 and click it again. Do the same
for 5 cows and then 20 cows. Here’s what your Output window should look like:

But there’s a problem with the class. Add a button to the form that executes this statement:

 farmer.BagsOfFeed = 5;

Now run your program again. It works fine until you press the new button. But press
that button and then press the Calculate button again. Now your ouput tells you that
you need 5 bags of feed—no matter how many cows you have!

Fully encapsulate the Farmer class
The problem is that your class isn’t fully encapsulated. You used properties to
encapsulate NumberOfCows, but BagsOfFeed is still public. This is a common problem.
In fact, it’s so common that C# has a way of automatically fixing it. Just change the
public BagsOfFeed field to an automatic property. And the IDE makes it really easy
for you to add automatic properties. Here’s how:

Remove the BagsOfFeed field from the Farmer class. Put your cursor where the field used to be,
and then type prop and press the tab key twice. The IDE will add this line to your code:

 public int MyProperty { get; set; }

11

Press the tab key—the cursor jumps to MyProperty. Change its name to BagsOfFeed:

 public int BagsOfFeed { get; set; }

Now you’ve got a property instead of a field. When C# sees this, it works exactly the same as if you
used a backing field (like the private numberOfCows behind the public NumberOfCows property).

22

That hasn’t fixed our problem yet. But there’s an easy fix—just make it a read-only property:

 public int BagsOfFeed { get; private set; }

Try to rebuild your code—you’ll get an error on the line in the button that sets BagsOfFeed telling
you that the set accessor is private. You can’t modify BagsOfFeed from outside the Farmer
class—you’ll need to remove that line in order to get your code to compile, so remove the button from
the form. Now your Farmer class is better encapsulated!

33

The prop-tab-tab code snippet
adds an automatic property to
your code.

Download at WoweBook.Com

196 Chapter 5

set it up

What if we want to change the feed multiplier?
We built the Cow Calculator to use a const for the feed multiplier. But what if we
want to use the same Farmer class in different programs that need different feed
multipliers? You’ve seen how poor encapsulation can cause problems when you
make fields in one class too accessible to other classes. That’s why you should only
make fields and methods public if you need to. Since the Cow Calculator
never updates FeedMultiplier, there’s no need to allow any other class to set it.
So let’s change it to a read-only property that uses a backing field.

Remove this line from your program:

 public const int FeedMultiplier = 30;

Use prop-tab-tab to add a read-only property. But instead of adding
an automatic property, use a backing field:

 private int feedMultiplier;
 public int FeedMultiplier { get { return feedMultiplier; } }

11

Go ahead and make that change to your code. Then run it. Uh-oh—something’s wrong!
BagsOfFeed always returns 0 bags!

Wait, that makes sense. FeedMultiplier never got initialized. It starts out with the
default value of zero and never changes. When it’s multiplied by the number of cows,
it still gives you zero. So add an object initializer:

public Form1() {
 InitializeComponent();
 farmer = new Farmer() { NumberOfCows = 15, feedMultiplier = 30 };

Uh-oh—the program won’t compile! You should get this error:

22

You can only initialize public fields and properties inside an object initializer.
So how can you make sure your object gets initialized properly if some of
the fields that need to be initialized are private?

Do this!

This property acts just like an int field
,

except instead of storing a value it jus
t

returns the backing field, feedMultiplier.
And since there’s no set accessor, it’s
read-only. It has a public get, which
means any other class can read the value

of FeedMultiplier. But since its set is
private, that makes it read-only— it can
only be set by an instance of Farmer.

Since we changed FeedMultiplier from a public const to a private int field, we changed its name, so it
starts with a lowercase “f”. That’s a pretty standard naming convention you’ll see throughout the book.

Download at WoweBook.Com

you are here 4 197

encapsulation

Use a constructor to initialize private fields
If you need to initialize your object, but some of the fields that need to be initialized are private,
then an object initializer just won’t do. Luckily, there’s a special method that you can add to any
class called a constructor. If a class has a constructor, then that constructor is the very first
thing that gets executed when the class is created with the new statement. You can pass
parameters to the constructor to give it values that need to be initialized. But the constructor
does not have a return value, because you don’t actually call it directly. You pass its
parameters to the new statement. And you already know that new returns the object—so
there’s no way for a constructor to return anything.

public Farmer(int numberOfCows, int feedMultiplier) {
 this.feedMultiplier = feedMultiplier;
 NumberOfCows = numberOfCows;
}

public Form1() {
 InitializeComponent();
 farmer = new Farmer(15, 30);
}

Add a constructor to your Farmer class
This constructor only has two lines, but there’s a lot going on here. So let’s take it step by step. We already know
that we need the number of cows and a feed multiplier for the class, so we’ll add them as parameters to the
constructor. Since we changed feedMultiplier from a const to an int, now we need an initial value for
it. So let’s make sure it gets passed into the constructor. We’ll need a value for it, so let’s make sure it gets passed
into the constructor. We’ll use the constructor to set the number of cows, too.

11

Now change the form so that it uses the constructor
The only thing you need to do now is change the form so that the new statement that creates the Farmer
object uses the constructor instead of an object initializer. Once you replace the new statement, both errors will
go away, and your code will work!

22

Notice how
there’s no “void”
or “int” or
another type
after “public”.
That’s because
constructors
don’t have a
return value.

The first thing we’ll do is set the feed multiplier, because it needs to be set before we can call the NumberOfCows set accessor.
If we just set the private numberOfCows field, the NumberOfCows set accessor
would never be called. Setting NumberOfCows makes sure it’s called.

You already know that the form is an
object. Well, it’s got a constructor too!
That’s what this method is—notice how
it’s named Form1 (like the class) and it
doesn’t have a return value.

All you have to do to
add a constructor
to a class is add a
method that has the
same name as the
class and no return
value.

Here’s where the new statement calls the constructor. It looks just like any other new
statement, except that it has parameters that it passes into the constructor method.
When you type it in, watch for the IntelliSense pop-up—it looks just like any other method.

This is the error
you’ll get if your
constructor
takes parameters
but your new
doesn’t have any.

The ‘this’ keyword in this.feedMultiplier tells C# that you’re
talking about the field, not the parameter with the same name.

Download at WoweBook.Com

198 Chapter 5

Q: Is it possible to have a constructor without any
parameters?

A:	Yes.	It’s	actually	very	common	for	a	class	to	have	a	
constructor	without	a	parameter.	In	fact,	you’ve	already	seen	an	
example	of	it—your form’s constructor.	Look	inside	a	newly	
added	Windows	form	and	find	its	constructor’s	declaration:	
	
public Form1() {	
 InitializeComponent();
}	
	
That’s	the	constructor	for	your	form	object.	It	doesn’t	take	
any	parameters,	but	it	does	have	to	do	a	lot.	Take	a	minute	
and	open	up	Form1.Designer.cs.	Find	the	
InitializeComponent()	method	by	clicking	on	the	plus	
symbol	next	to	“Windows	Form	Designer	generated	code”.	
	
That	method	initializes	all	of	the	controls	on	the	form	and	sets	
all	of	their	properties.	If	you	drag	a	new	control	onto	your	form	
in	the	IDE’s	form	designer	and	set	some	of	its	properties	in	the	
Properties	window,	you’ll	see	those	changes	reflected	inside	the	
InitializeComponent()	method.	

	
The	InitializeComponent()	method	is	called	inside	
the	form’s	constructor	so	that	the	controls	all	get	initialized	as	
soon	as	the	form	object	is	created.	(Remember,	every	form	that	
gets	displayed	is	just	another	object	that	happens	to	use	methods	
that	the	.NET	Framework	provides	in	the	System.Windows.Forms	
namespace	to	display	windows,	buttons	and	other	controls.)

 When a method’s parameter
has the same name as a
field, then it masks the
field.

Did you notice how the
constructor’s feedMultiplier parameter
looks just like the backing field behind the
FeedMultiplier property? If you wanted to use
to the backing field in of the constructor, you’d
use “this.”: feedMultiplier refers to the
parameter, and this.feedMultiplier is
how you’d access the private field.

Constructors
 Way Up Close

public Farmer(int numberOfCows, int feedMultiplier) {

 this.feedMultiplier = feedMultiplier;

 NumberOfCows = numberOfCows;

}

Let’s take a closer look at the Farmer constructor so we can get a good sense
of what’s really going on.

This constructor has two parameters, which work just like
ordinary parameters. The first one gives the number of cows,
and the second one is the feed multiplier.

We need to set the feed multiplier first,
because the second statement calls the
NumberOfCows set accessor, which needs
feedMultiplier to have a value in order to
set BagsOfFeed.We need a way to differentiate the field called

feedMultiplier from the parameter with the
same name. That’s where the “this.” keyword
comes in really handy.

Constructors don’t
return anything, so

there’s no return type.

Since “this” is always a reference to the current object, this.feedMultiplier
refers to the field. If you leave “this” off, then feedMultiplier refers
to the parameter. So the first line in the constructor sets the private
feedMultiplier field equal to the second parameter of the constructor.

constructors deconstructed

Download at WoweBook.Com

you are here 4 199

encapsulation

Q: Why would I need complicated
logic in a get or set accessor? Isn’t it just
a way of creating a field?

A:	Because	sometimes	you	know	that	
every	time	you	set	a	field,	you’ll	have	to	do	
some	calculation	or	perform	some	action.	
Think	about	Kathleen’s	problem—she	
ran	into	trouble	because	the	form	didn’t	
run	the	method	to	recalculate	the	cost	of	
the	decorations	after	setting	the	number	
of	people	in	the	DinnerParty	class.	If	we	
replaced	the	field	with	a	set	accessor,	then	
we	could	make	sure	that	the	set	accessor	
recalculates	the	cost	of	the	decorations.	(In	
fact,	you’re	about	to	do	exactly	that	in	just	a	
couple	of	pages!)

Q: Wait a minute—so what’s the
difference between a method and a get or
set accessor?

A:	There	is	none!	Get	and	set	accessors	
are	a	special	kind	of	method—one	that	looks	
just	like	a	field	to	other	objects,	and	called	
whenever	that	field	is	set.	Get	accessors	
always	return	a	value	that’s	the	same	type	
as	the	field,	and	set	accessors	always	take	
exactly	one	parameter	called	value	
whose	type	is	the	same	as	the	field.	Oh,	
and	by	the	way,	you	can	just	say	“property”	
instead	of	“get	and	set	accessor”.

Q: So you can have ANY kind of
statement in a property?

A:	Absolutely.	Anything	you	can	do	in	a	
method,	you	can	do	in	a	property.	They	can	
call	other	methods,	access	other	fields,	even	
create	objects	and	instances.	But	they	only	
get	called	when	a	property	gets	accessed,	
so	it	doesn’t	make	sense	to	have	any		
statements	in	them	that	don’t	have	to	do	with	
getting	or	setting	the	property.

Q: If a set accessor always takes a
parameter called value, why doesn’t its
declaration have parentheses with “int
value” in them, like you’d have with
any other method that takes a parameter
called value?

A:	Because	C#	was	built	to	keep	you	from	
having	to	type	in	extra	information	that	the	
compiler	doesn’t	need.	The	parameter	gets	
declared	without	you	having	to	explicitly	type	
it	in,	which	doesn’t	sound	like	much	when	
you’re	only	typing	one	or	two—but	when	you	
have	to	type	a	few	hundred,	it	can	be	a	real	
time	saver	(not	to	mention	a	bug	preventer).	
	
Every	set	accessor	always	has	exactly	one	
parameter	called	value,	and	the	type	of	
that	parameter	always	matches	the	type	
of	the	property.	C#	has	all	the	information	
it	needs	about	the	type	and	parameter	as	
soon	as	you	type	“set {”.	So	there’s	no	
need	for	you	to	type	any	more,	and	the	C#	
compiler	isn’t	going	to	make	you	type	more	
than	you	have	to.

Q:Wait, a sec—is that why I don’t add
a return value to my constructor?

A:	Exactly!	Your	constructor	doesn’t	have	
a	return	value	because	every	constructor	
is	always	void.	It	would	be	redundant	to	
make	you	type	“void”	at	the	beginning	of	
each	constructor,	so	you	don’t	have	to.

Q: Can I have a get without a set or a
set without a get?

A:	Yes!	When	you	have	a	get	accessor	
but	no	set,	you	create	a	read-only	property.	
For	example,	the	SecretAgent	class	might	
have	a	ReadOnly	field	for	the	name:	
	
	

	
string name = “Dash Martin”;
public string Name {
 get { return name; }
}
	
And	if	you	create	a	property	with	a	set	
accessor	but	no	get,	then	your	backing	
field	can	only	be	written,	but	not	read.	The	
SecretAgent	class	could	use	that	for	a	
Password	property	that	other	spies	could	
write	to	but	not	see:	
	
public string Password {
 set {
 if (value == secretCode) {
 name = “Herb Jones”;
 }
}

Both	of	those	techniques	can	come	in	really	
handy	when	you’re	doing	encapsulation.

Properties (get and
set accessors) are
a special kind of
method that’s only
run when another
class reads or
writes a property.

Download at WoweBook.Com

200 Chapter 5

Take a look at the get and set accessors here. The Form that is using
this class has a new instance of CableBill called thisMonth and calls
the GetThisMonthsBill () method with a button click. Write down the
value of the amountOwed variable after the code below executed.

public class CableBill {
 private int rentalFee;
 public CableBill(int rentalFee) {
 this.rentalFee = rentalFee;
 discount = false;
 }

 private int payPerViewDiscount;
 private bool discount;
 public bool Discount {
 set {
 discount = value;
 if (discount)
 payPerViewDiscount = 2;
 else
 payPerViewDiscount = 0;
 }
 }

 public int CalculateAmount(int payPerViewMoviesOrdered) {
 return (rentalFee - payPerViewDiscount) * payPerViewMoviesOrdered;
 }
}

 1. CableBill january = new CableBill(4);
 MessageBox.Show(january.CalculateAmount(7).ToString());

 2. CableBill february = new CableBill(7);
 february.payPerViewDiscount = 1;
 MessageBox.Show(february.CalculateAmount(3).ToString());

 3. CableBill march = new CableBill(9);
 march.Discount = true;
 MessageBox.Show(march.CalculateAmount(6).ToString());

what’s in a name?

What’s the value of
amountOwed?

What’s the value of
amountOwed?

What’s the value of
amountOwed?

Download at WoweBook.Com

you are here 4 201

encapsulation

Q: I noticed that you used uppercase
names for some fields but lowercase
ones for others. Does that matter?

A:	Yes—it	matters	to	you.	But	it	doesn’t	
matter	to	the	compiler.	C#	doesn’t	care	what	
you	name	your	variables,	but	if	you	choose	
weird	names	then	it	makes	your	code	hard	to	
read.	Sometimes	it	can	get	confusing	when	
you	have	variables	that	are	named	the	same,	
except	one	starts	with	an	uppercase	letter	and	
the	other	starts	with	a	lowercase	one.		

Case	matters	in	C#.	You	can	have	two	
different	variables	called	Party	and	
party	in	the	same	method.	It’ll	be	
confusing	to	read,	but	your	code	will	compile	
just	fine.	Here	are	a	few	tips	about	variable	
names	to	help	you	keep	it	straight.	They’re	
not	hard-and-fast	rules—the	compiler	
doesn’t	care	whether	a	variable	is	uppercase	
or	lowercase—but	they’re	good	suggestions	
to	help	make	your	code	easier	to	read.		
1.	When	you	declare	a	private	field,	it	should	
be	in	camelCase	and	start	with	a	lowercase	
letter.	(It’s	called	camelCase	because	it	
starts	with	a	lowercase	letter	and	additional	
words	are	uppercase,	so	they	resemble	
humps	on	a	camel.)		

2.	Public	properties	and	methods	are	in	
PascalCase	(they	start	with	an	uppercase	
letter).		
3.	Parameters	to	methods	should	be	in	
camelCase.	
	
4.	Some	methods,	especially	constructors,	
will	have	parameters	with	the	same	names	
as	fields.	When	this	happens,	the	parameter	
masks	the	field,	which	means	statements	
in	the	method	that	use	the	name	end	up	
referring	to	the	parameter,	not	the	field.	Use	
the	this	keyword	to	fix	the	problem—add	
it	to	the	variable	to	tell	the	compiler	you’re	
talking	about	the	field,	not	the	parameter.

This code has problems. Write down what you think is wrong with
the code, and what you’d change.

class GumballMachine {
 private int gumballs;

 private int price;
 public int Price
 {
 get
 {
 return price;
 }
 }

 public GumballMachine(int gumballs, int price)
 {
 gumballs = this.gumballs;
 price = Price;
 }

 public string DispenseOneGumball(int price, int coinsInserted)
 {
 if (this.coinsInserted >= price) { // check the field
 gumballs -= 1;
 return “Here’s your gumball”;
 } else {
 return “Please insert more coins”;
 }
 }
}

Download at WoweBook.Com

202 Chapter 5

 1. CableBill january = new CableBill(4);
 MessageBox.Show(january.CalculateAmount(7).ToString());

 2. CableBill february = new CableBill(7);
 february.payPerViewDiscount = 1;
 MessageBox.Show(february.CalculateAmount(3).ToString());

 3. CableBill march = new CableBill(9);
 march.Discount = true;
 MessageBox.Show(march.CalculateAmount(6).ToString());

This code has problems. Write down what you think is wrong with
the code, and what you’d change.

encapsulation prevents bugs

What’s the value of
amountOwed?

What’s the value of
amountOwed?

What’s the value of
amountOwed?

28

won’t compile

42

 public GumballMachine(int gumballs, int price)
 {
 gumballs = this.gumballs;
 price = Price;
 }

 public string DispenseOneGumball(int price, int coinsInserted)
 {
 if (this.coinsInserted >= price) { // check the field
 gumballs -= 1;
 return “Here’s your gumball”;
 } else {
 return “Please insert more coins”;
 }
 }

The “this” keyword
is on a parameter,
where it doesn’t
belong. It should be
on price, because
that field is masked
by a parameter.

This parameter masks the
private field called Price, and
the comment says the method is
supposed to be checking the value
of the price backing field.

The “this” keyword is on the wrong
“gumballs”. this.gumballs refers to

the property, while gumballs refers to

the parameter.

Lowercase price refers to the parameter to the constructor, not the field. This line sets the PARAMETER to the value returned by the Price get accessor, but Price hasn’t even been set yet! So it doesn’t do anything useful. If you change the constructor’s parameter to uppercase Price, this line will work properly.

Write down the value of the amountOwed variable after the code
below executed.

Download at WoweBook.Com

you are here 4 203

encapsulation

If we make sure that the cost of the decorations is recalculated every time the number of people is updated, then CalculateCost() will always return the right amount.

How to fix the Dinner Party calculator
If we want to fix the DinnerParty class, we’ll need a way to make sure that the
CalculateCostOfDecorations() method gets called every time that NumberOfPeople changes.

11

NumberOfPeople = 10;

CalculateCost() returns $650

 Form

DinnerParty
ob

je
ctCalculatecostOfDecor

ations()

We need to recalculate the decoration cost
every time the number of people changes.

Use	what	you’ve	learned	about	properties	and	constructors	to	fix	Kathleen’s	Party	Planner	
program.

Add properties and a constructor
All you need to do to fix Kathleen’s problem is make sure the DinnerParty class is well-
encapsulated. You’ll start by changing NumberOfPeople to a property that always calls
CalculateCostOfDecorations() any time it’s called. Then you’ll add a constructor that makes
sure the instance is initialized properly. Finally, you’ll change the form so it uses the new
constructor. If you do this right, that’s the only change you’ll need to make to the form.

You’ll need to create a new property for NumberOfPeople that has a set accessor
which calls CalculateCostOfDecorations(). It’ll need a backing field called
numberOfPeople.

The NumberOfPeople set accessor needs to have a value to pass as the parameter to
the CalculateCostOfDecorations() method. So add a private bool field called
fancyDecorations that you set every time CalculateCostOfDecorations() is
called.

Add a constructor that sets up the class. It needs to take three parameters for the Number
of People, Healthy Option, and Fancy Decorations. The form currently calls two methods
when it initializes the DinnerParty object—move them into the constructor.
dinnerParty.CalculateCostOfDecorations(fancyBox.Checked);
dinnerParty.SetHealthyOption(healthyBox.Checked);

Here’s the constructor for the form—everything else in the form stays the same:
public Form1() {
 InitializeComponent();
 dinnerParty = new DinnerParty((int)numericUpDown1.Value,
 healthyBox.Checked, fancyBox.Checked);
 DisplayDinnerPartyCost();
}

≥

≥

≥

≥

22

Download at WoweBook.Com

204 Chapter 5

public class DinnerParty {
 const int CostOfFoodPerPerson = 25;

 private int numberOfPeople;
 public int NumberOfPeople {
 get { return numberOfPeople; }
 set {
 numberOfPeople = value;
 CalculateCostOfDecorations(fancyDecorations);
 }
 }
 private bool fancyDecorations;

 public decimal CostOfBeveragesPerPerson;
 public decimal CostOfDecorations = 0;

 public DinnerParty(int numberOfPeople, bool healthyOption, bool fancyDecorations) {
 NumberOfPeople = numberOfPeople;
 this.fancyDecorations = fancyDecorations;
 SetHealthyOption(healthyOption);
 CalculateCostOfDecorations(fancyDecorations);
 }

 public void SetHealthyOption(bool healthyOption) {
 if (healthyOption) {
 CostOfBeveragesPerPerson = 5.00M;
 } else {
 CostOfBeveragesPerPerson = 20.00M;
 }
 }

 public void CalculateCostOfDecorations(bool fancy) {
 fancyDecorations = fancy;
 if (fancy) {
 CostOfDecorations = (NumberOfPeople * 15.00M) + 50M;
 } else {
 CostOfDecorations = (NumberOfPeople * 7.50M) + 30M;
 }
 }

 public decimal CalculateCost(bool healthyOption) {
 decimal totalCost = CostOfDecorations
 + ((CostOfBeveragesPerPerson + CostOfFoodPerPerson) * NumberOfPeople);

 if (healthyOption) {
 return totalCost * .95M;
 } else {
 return totalCost;
 }
 }
}

exercise solution

Use	what	you’ve	learned	about	properties	and	constructors	to	fix	Kathleen’s	Party	Planner	
program.

Now that numberOfPeople is private, there’s no way for the form to change it without also recalculating the cost of the decorations. That’ll fix the bug that almost cost Kathleen one of her best clients!

By using a property, you can make sure that the cost of decorations is recalculated every time the number of people changes.

Be careful how you use
“this.”. You’ll need it to tell
the difference between the
parameter and private field
named numberOfPeople.

So you’ll need
to put “this.”
in front of
“fancyDecorations”
because the
fancyDecorations
parameter masks
the private field
with the same name.

Make sure you store the fancy decorations in a field so the NumberOfPeople set accessor can use it.

Download at WoweBook.Com

this is a new chapter 205

inheritance6

Your object’s family tree

Sometimes you DO want to be just like your parents.
Ever run across an object that almost does exactly what you want your object to do?

Found yourself wishing that if you could just change a few things, that object would

be perfect? Well that’s just one reason that inheritance is one of the most powerful

concepts and techniques in the C# language. Before you’re through this chapter, you’ll

learn how to subclass an object to get its behavior, but keep the flexibility to make

changes to that behavior. You’ll avoid duplicate code, model the real world more

closely, and end up with code that’s easier to maintain.

Sometimes you DO want to be just like your parents.
Ever run across an object that almost does exactly what you want your object to do?

Found yourself wishing that if you could just change a few things, that object would

be perfect? Well that’s just one reason that inheritance is one of the most powerful

concepts and techniques in the C# language. Before you’re through this chapter, you’ll

learn how to subclass an object to get its behavior, but keep the flexibility to make

changes to that behavior. You’ll avoid duplicate code, model the real world more

closely, and end up with code that’s easier to maintain.

So there I was riding my bicycle
object down dead man’s curve

when I realized it inherited from
TwoWheeler and I forgot to add a
Brakes() method...long story short,

twenty-six stitches and Mom said I’m
grounded for a month.

Download at WoweBook.Com

206 Chapter 6

I just got a call for a
birthday party for 10 people.

Can your program handle that?

Most of the changes have to do with cakes and writing.

Kathleen does birthday parties, too

Cost Estimate for a Birthday Party

$25 per person.

There are two options for the cost of decorations. If a client

goes with the normal decorations, it’s $7.50 per person with a $30

decorating fee. A client can also upgrade the party decorations

to the “Fancy Option”—that costs $15 per person with a $50 one-

time decorating fee.

When the party has four people or less, use an 8-inch cake ($40),

Otherwise, she uses a 16-inch cake ($75).

Writing on the cake costs $.25 for each letter. The 8-inch cake can

have up to 16 letters of writing, and the 16-inch one can have up

to 40 letters of writing.

The application should handle both types of parties. Use a tab control,

one tab for each kind of party.

•

•

•

•

Now that you got your program working, Kathleen is using it all the
time. But she doesn’t just handle dinner parties—she does birthdays
too, and they’re priced a little differently. She’ll need you to add
birthdays to her program.

happy birthday baby

These are both the same
as the dinner party.

Download at WoweBook.Com

you are here 4 207

inheritance

We need a BirthdayParty class

BirthdayParty
NumberOfPeople
CostOfDecorations
CakeSize
CakeWriting
CalculateCostOfDecorations()
CalculateCost()

Create a new BirthdayParty class
Your new class will need to calculate the costs, deal with
decorations, and check the size of the writing on the cake.

11

Modifying your program to calculate the cost of Kathleen’s
birthday parties means adding a new class and changing the
form to let you handle both kinds of parties.

Here’s what we need to do:

Add a TabControl to your form
Each tab on the form is a lot like the GroupBox control you used
to choose which guy placed the bet in the Betting Parlor lab. Just
click on the tab you want to display, and drag controls into it.

22

Label the first tab and move the Dinner Party controls onto it
You’ll drag each of the controls that handle the dinner party into the new tab.
They’ll work exactly like before, but they’ll only be displayed when the dinner
party tab is selected.

33

Label the second tab and add new Birthday Party controls onto it
You’ll design the interface for handling birthday parties just like you did for the
dinner parties.

44

Wire your birthday party class up to the controls
Now all you need to do is add a BirthdayParty reference to the form’s fields, and add
the code to each of your new controls to so that it uses its methods and properties.

55

Q: Why can’t we just create a new instance of DinnerParty,
like Mike did when he wanted to compare three routes in his
navigation program?

A:	Because	if	you	created	another	instance	of	the	DinnerParty	
class,	you’d	only	be	able	to	use	it	to	plan	extra	dinner	parties.	Two	
instances	of	the	same	class	can	be	really	useful	if	you	need	to	
manage	two	different	pieces	of	the	same	kind	of	data.	But	if	you	need	
to	store	different kinds of data,	you’ll	need	different classes	to	do	it.

Q: How do I know what to put in the new class?

A:	Before	you	can	start	building	a	class,	you	need	to	know	
what	problem	it’s	supposed	to	solve.	That’s	why	you	had	to	talk	to	
Kathleen—she’s	going	to	be	using	the	program.	Good	thing	you	took	
a	lot	of	notes!	You	can	come	up	with	your	class’s	methods,	fields,	and	
properties	by	thinking	about	its	behavior	(what	it	needs to do)	and	its	
state	(what	it	needs to know).

You’ll do all this in a
minute—but first you’ll
need to get a sense of
what the job involves.

Download at WoweBook.Com

208 Chapter 6

BirthdayParty
NumberOfPeople
CostOfDecorations
CakeSize
CakeWriting
CalculateCostOfDecorations()
CalculateCost()

Add the new BirthdayParty class to your program
You already know how you’ll handle the NumberOfPeople property and
the CostOfDecorations methods—they’re just like their counterparts in
DinnerParty. Start by creating your new class and adding those. Then
add the rest of the behavior:

Add a public int field called CakeSize. Make a private method
called CalculateCakeSize() that sets CakeSize to either 8 or 16
depending on the number of people. You’ll need to call it from
the constructor and the NumberOfPeople set accessor.

You’ll need a CakeWriting string property to hold the writing
on the cake. We’ll give you the code for this one.

The CakeWriting set accessor checks CakeSize because
different sizes of cake can hold different numbers of letters.
Then it uses value.Length to check how long the string
is. If it’s too long, instead of setting the private field, the set
accessor pops up a message box that says, “Too many letters
for a 16-inch cake” (or 8-inch cake).

Every string has a Substring() method that returns a
portion of the string. CakeWriting uses it to cut the size of
the cake writing down—if the number of people changes and
reduces the cake size, you’ll need to cut down the string, too.

Finally, add the CalculateCost() method. But instead of taking
the decoration cost and adding the cost of beverages (which is
what happens in DinnerParty), it’ll add the cost of the cake.

≥

≥

≥

≥

≥

11

Update the form to add tabs
Drag a TabControl out of the toolbox and onto your form, and resize
it so it takes up the entire form. Change the text of each tab using the
TabPages property: a “...” button shows up in the Properties Window
next to the property. When you click it, the IDE pops up a window
that lets you edit the properties of each tab. Set the Text property of
the tabs to “Dinner Party” and “Birthday Party”.

22

Name the first tab and move the Dinner Party
controls onto it
You’ll drag the each of the controls that handle the dinner
party into the new tab. They’ll work exactly like they do now,
but they’ll only be displayed when that tab is selected.

33

Add	birthday	parties	to	Kathleen’s	party	planning	program.

Click on the tabs to switch
between them. Use the
TabCollection property to
change the text for each
tab. Click the “...” button
next to it and select each
tab’s Text property.

After you drag the Dinner
Party controls onto the tab,
they’ll only be visible when the
Dinner Party tab is selected.

If the cake
writing is too long
for the cake, the
set accessor cuts
the backing field
down to size.
So you’ll need
to make sure to
reload the text
into the text
box every time
the text changes
or the number
of people changes
(in case there’s
a long string and
she cuts down to
a smaller cake).

We don’t want any other
methods changing the
value of CakeWriting.

another kind of party
Make sure you use decimal as
the type for the fields and
properties that hold currency.

Download at WoweBook.Com

you are here 4 209

inheritance

Build the Birthday Party user interface
The Birthday Party GUI has a NumericUpDown control for the number of people, a
CheckBox control for fancy decorations, and a Label control with a 3D border for the cost.
Then you’ll add a TextBox control for the cake writing.

44

Put it all together
All the pieces are there, now it’s just a matter of writing a little code to make the controls work.

Add a BirthdayParty object to the form. Make sure you instantiate it.

Add code to the NumericUpDown control’s event handler method to set the object’s
NumberOfPeople property.

Make the Fancy Decorations checkbox work.

Add a DisplayBirthdayPartyCost() method and add it
to all of the event handlers so the cost label is updated
automatically any time there’s a change.

≥
≥

≥
≥

66

This tab uses the
NumericUpDown, CheckBox,
and Label controls just like
the Dinner Party tab does.
Name them numberBirthday,
fancyBirthday, and
birthdayCost.

Add a TextBox control called cakeWriting for the writing on the cake (and a label above it so the user knows what it’s for). Use its Text property to give it a default value of “Happy Birthday”.

Click on the Birthday Party
tab and add the new controls.

Run it
Make sure the program works the way it’s supposed to. Check that it
pops up a message box if the writing is too long for the cake. Make
sure the price is always right. Once it’s working, you’re done!

77

You’ll need this property
Here’s the code for the BirthdayParty.CakeWriting property—it’ll come in handy:

private string cakeWriting = “”;
public string CakeWriting {
 get { return this.cakeWriting; }
 set {
 int maxLength;
 if (CakeSize == 8)
 maxLength = 16;
 else
 maxLength = 40;
 if (value.Length > maxLength) {
 MessageBox.Show(“Too many letters for a ” + CakeSize + “ inch cake”);
 if (maxLength > this.cakeWriting.Length)
 maxLength = this.cakeWriting.Length;
 this.cakeWriting = cakeWriting.Substring(0, maxLength);
 }
 else
 this.cakeWriting = value;
 }
}

55

Did you notice how
we left out some
of the brackets?
When you only have
one statement in a
code block, you don’t
need to add curly
brackets around it. Every string has a Substring() method that returns a portion of the string. This one cuts it down to the allowed length, so you’ll need to reload the writing into the textbox when the text or cake size change.

This property is a little more complex than the ones
you’ve seen before. It checks the cake size to see if it’s too long for the cake, using the maxLength variable to store the maximum length. If it’s too long, it gives an
error message and then cuts the backing field down to the right size, so it can be reloaded into the text box.

Download at WoweBook.Com

210 Chapter 6

Add	birthday	parties	to	Kathleen’s	party	planning	program.

public partial class Form1 : Form {
 DinnerParty dinnerParty;
 BirthdayParty birthdayParty;
 public Form1() {
 InitializeComponent();
 dinnerParty = new DinnerParty((int)numericUpDown1.Value,
 healthyBox.Checked, fancyBox.Checked);
 DisplayDinnerPartyCost();

 birthdayParty = new BirthdayParty((int)numberBirthday.Value,
 fancyBirthday.Checked, cakeWriting.Text);
 DisplayBirthdayPartyCost();
 }

 // The fancyBox, healthyBox, and numericUpDown1 event handlers and
 // the DisplayDinnerCost() method are identical to the ones in the
 // Dinner Party exercise at the end of Chapter 5.

 private void numberBirthday_ValueChanged(object sender, EventArgs e) {
 birthdayParty.NumberOfPeople = (int)numberBirthday.Value;
 DisplayBirthdayPartyCost();
 }

 private void fancyBirthday_CheckedChanged(object sender, EventArgs e) {
 birthdayParty.CalculateCostOfDecorations(fancyBirthday.Checked);
 DisplayBirthdayPartyCost();
 }

 private void cakeWriting_TextChanged(object sender, EventArgs e) {
 birthdayParty.CakeWriting = cakeWriting.Text;
 DisplayBirthdayPartyCost();
 }

 private void DisplayBirthdayPartyCost() {
 cakeWriting.Text = birthdayParty.CakeWriting;
 decimal cost = birthdayParty.CalculateCost();
 birthdayCost.Text = cost.ToString(“c”);
 }
}

The BirthdayParty instance is
initialized in the form’s constructor,
just like the instance of DinnerParty.

The way that the form
handles the cake writing
can be really simple because
the BirthdayParty class
is well encapsulated. All
the form has to do is use
its controls to set the
properties on the object,
and the object takes care
of the rest.

The CheckBox and NumericUpDown controls’ event
handlers are just like the ones for the dinner party.

All the intelligence for dealing with making sure the
writing, the number of people, and the cake size are built
into the NumberOfPeople and CakeWriting set accessors,
so the form just has to set and display the values.

exercise solution

Download at WoweBook.Com

you are here 4 211

inheritance

using System.Windows.Forms;

public class BirthdayParty {
 public const int CostOfFoodPerPerson = 25;

 public decimal CostOfDecorations = 0;
 private bool fancyDecorations;
 public int CakeSize;

 public BirthdayParty(int numberOfPeople, bool fancyDecorations, string cakeWriting) {
 this.numberOfPeople = numberOfPeople;
 this.fancyDecorations = fancyDecorations;
 CalculateCakeSize();
 this.CakeWriting = cakeWriting;
 CalculateCostOfDecorations(fancyDecorations);
 }

 private void CalculateCakeSize() {
 if (NumberOfPeople <= 4)
 CakeSize = 8;
 else
 CakeSize = 16;
 }

 private string cakeWriting = “”;
 public string CakeWriting {
 get { return this.cakeWriting; }
 set {
 int maxLength;
 if (CakeSize == 8)
 maxLength = 16;
 else
 maxLength = 40;
 if (value.Length > maxLength) {
 MessageBox.Show(“Too many letters for a ” + CakeSize + “ inch cake”);
 if (maxLength > this.cakeWriting.Length)
 maxLength = this.cakeWriting.Length;
 this.cakeWriting = cakeWriting.Substring(0, maxLength);
 }
 else
 this.cakeWriting = value;
 }
 }

The constructor sets
the properties and then
runs the calculations.

The constructor’s calling the set accessor to
set the cake writing, in case the parameter
is too long for the cake, so it’s got to
calculate the cake size first.

When the BirthdayParty object is initialized, it needs
to know the number of people, the fancy decorations
and the writing on the cake, so it can start out with
the right cake cost when CalculateCost() is called.

The CalculateCakeSize() method sets

the CakeSize field. It’s called
 by the

NumberOfPeople set accessor an
d the

CalculateCost() method.

The CakeWriting property makes sure
that the cake’s writing is never too long
for the cake size. Its set accessor checks
the cake size, then uses the backing
fields Length property to make sure it’s
not too long. If it is, it cuts the string
down to the right size.

Download at WoweBook.Com

212 Chapter 6

 public decimal CalculateCost() {
 decimal TotalCost = CostOfDecorations + (CostOfFoodPerPerson * NumberOfPeople);
 decimal CakeCost;
 if (CakeSize == 8)
 CakeCost = 40M + CakeWriting.Length * .25M;
 else
 CakeCost = 75M + CakeWriting.Length * .25M;
 return TotalCost + CakeCost;
 }

 private int numberOfPeople;
 public int NumberOfPeople {
 get { return numberOfPeople; }
 set {
 numberOfPeople = value;
 CalculateCostOfDecorations(fancyDecorations);
 CalculateCakeSize();
 this.CakeWriting = cakeWriting;
 }
 }

 public void CalculateCostOfDecorations(bool fancy) {
 fancyDecorations = fancy;
 if (fancy)
 CostOfDecorations = (NumberOfPeople * 15.00M) + 50M;
 else
 CostOfDecorations = (NumberOfPeople * 7.50M) + 30M;
 }
}

Curly brackets are optional for single-line blocks
A lot of times you’ll have an if statement or while loop that’s just got a single

statement inside its block. When that happens a lot, you can end up with a whole lot

of curly brackets—and that can be a real eyesore! C# helps you avoid that problem

by letting you drop the curly brackets if th
ere’s just one statement. So this is

perfectly valid syntax for a loop and an if st
atement:

 for (int i = 0; i < 10; i++) if (myValue == 36)

 DoTheJob(i); myValue *= 5;

We’re using decimal because we’re dealing with
prices and currency.

Making the CakeWriting method cut down
the size of the cake is only half of the
solution. The other half is making sure
that the CakeWriting set accessor gets run
every time the number of people changes.

The CalculateCost() method is a
lot like the one from DinnerParty,
except that it adds the cost of
the cake instead of the Healthy
Choice option.

Add	birthday	parties	to	Kathleen’s	party	planning	program.

So when the number of people
changes, the class first
recalculates the cake size, and
then it uses its set accessor for
CakeWriting to cut the text
down—so if a 10-person party
turns into a 4-person one, their
36-letter message will be cut
down to one that’ll fit on the
smaller cake.

This method is just like the one in
the DinnerParty class.

exercise solution

Download at WoweBook.Com

you are here 4 213

inheritance

One more thing... can you add a
$100 fee for parties over 12?
Kathleen’s gotten so much business using your program that she
can afford to charge a little more for some of her larger clients. So
what would it take to change your program to add in the extra
charge?

Change the DinnerParty.CalculateCost() to check
NumberOfPeople and add $100 to the return value if it’s
over 12.

Do the exact same thing for BirthdayParty.CalculateCost().

Take a minute and think about how you’d add a fee to both the
DinnerParty and BirthdayParty class. What code would you write?
Where would it have to go?

Easy enough... but what happens if there are three similar classes?
Or four? Or twelve? And what if you had to maintain that code
and make more changes later? What if you had to make the same
exact change to five or six closely related classes?

≥

≥

Wow, I’d have to write the same
code over and over again. That’s
a really inefficient way to work.
There’s got to be a better way!

You’re right! Having the same code repeated in
different classes is inefficient and error-prone.
Lucky for us, C# gives us a better way to build classes that are
related to each other, and share behavior: inheritance.

Download at WoweBook.Com

214 Chapter 6

When your classes use inheritance, you only need
to write your code once
It’s no coincidence that your DinnerParty and BirthdayParty classes have a lot of the
same code. When you write C# programs, you often create classes that represent things
in the real world—and those things are usually related to each other. Your classes have
similar code because the things they represent in the real world—a birthday party
and a dinner party—have similar behaviors.

DinnerParty
NumberOfPeople
CostOfDecorations
HealthyOption
CostOfBeveragesPerPerson

CalculateCostOfDecorations()
CalculateCost()
SetHealthyOption()

BirthdayParty
NumberOfPeople
CostOfDecorations
CakeSize
CakeWriting

CalculateCostOfDecorations()
CalculateCost()

Party
NumberOfPeople
CostOfDecorations

CalculateCostOfDecorations()
CalculateCost()

BirthdayParty
NumberOfPeople
CakeSize
CakeWriting

CalculateCost()

DinnerParty
NumberOfPeople
HealthyOption
CostOfBeveragesPerPerson

CalculateCost()
SetHealthyOption()

A birthday party
handles the number
of people and the
cost of decorations
in almost the same
way as a dinner
party.

Kathleen needs
to figure out
the cost of her
parties, no matter
what kind of
parties they are.

Dinner parties and birthday parties are both parties
When you have two classes that are more specific cases of something more
general, you can set them up to inherit from the same class. When you do
that, each of them is a subclass of the same base class.

Both kinds of parties
have to keep track of the
number of people and the
cost of decorations, so you
can move that into the
base class.

The way both parties handle the number of people and calculating the total cost is similar but
distinct. We can break up the
behavior for these things so the
similar part is in the base class,
while putting the distinct pieces
in the two subclasses.

Both subclasses
inherit the
decoration
calculation from
the base class, so
they don’t need
to include it.

This arrow in
the class diagram
means the
DinnerParty class
inherits from the
Party class.

no need to use gold when anything shiny will do

Download at WoweBook.Com

you are here 4 215

inheritance

in-her-it, verb.
to derive an attribute from one’s
parents or ancestors. She wanted the
baby to inherit her big brown eyes,
and not her husband’s beady blue ones.

Build up your class model by starting general and
getting more specific

General General

Specific Specific

Food

Dairy Product

Cheese

Cheddar

Aged Vermont Cheddar

Animal

Bird

Songbird

Mockingbird

Northern Mockingbird

C# programs use inheritance because it mimics the relationship that the things
they model have in the real world. Real-world things are often in a hierarchy
that goes from more general to more specific, and your programs have their
own class hierarchy that does the same thing. In your class model, classes
further down in the hierarchy inherit from those above it.

If you have a recipe that calls
for cheddar cheese, then you
can use aged Vermont cheddar. But if it specifically needs aged Vermont, then you can’t just
use any cheddar—you need that specific cheese.

Every bird is an
animal, but not every
animal is a bird.

To someone looking for a pet, any songbird might do. But to an ornithologist studying the mimidae bird family, confusing the Northern and Southern mockingbirds would be unacceptable.

In a class model,
Cheese might inherit
from DairyProduct,
which would inherit
from Food.

Something lower on the hierarchy inherits
most or all of the attributes of everything
above it. All animals eat and mate, so
Northern Mockingbirds eat and mate.

Download at WoweBook.Com

216 Chapter 6

How would you design a zoo simulator?
Lions and tigers and bears... oh my! Also, hippos, wolves, and the
occasional cat. Your job is to design a program that simulates a zoo. (Don’t
get too excited—we’re not going to actually build the code, just design the
classes to represent the animals.)

We’ve been given a list of some of the animals that will be in the program,
but not all of them. We know that each animal will be represented by
an object, and that the objects will move around in the simulator, doing
whatever it is that each particular animal is programmed to do.

More importantly, we want the program to be easy for other programmers
to maintain, which means they’ll need to be able to add their own classes
later on if they want to add new animals to the simulator.

So what’s the first step? Well, before we can talk about specific animals,
we need to figure out the general things they have in common,
abstract characteristics that all animals have. Then we can build those
characteristics into a class that all animal classes can inherit from.

Look for things the animals have in common
Take a look at these six animals. What do a lion, a hippo, a tiger,
a cat, a wolf, and a dalmatian have in common? How are they
related? You’ll need to figure out their relationships so you can
come up with a class model that includes all of them.

11

it’s a jungle out there

Download at WoweBook.Com

you are here 4 217

inheritance

Animal
Picture
Food
Hunger
Boundaries
Location

MakeNoise()
Eat()
Sleep()
Roam()

You’ve already got a good idea that duplicate code sucks. It’s hard to
maintain, and always leads to headaches down the road. So let’s choose
fields and methods for an Animal base class that you only have to write
once, so each of the animal subclasses can inherit from them. Let’s start
with the public fields:

Picture: an image that you can put into a PictureBox.

Food: the type of food this animal eats. Right now, there can be only
two values: meat or grass.

Hunger: an int representing the hunger level of the animal. It
changes depending on when (and how much) the animal eats.

Boundaries: a reference to a class that stores the height, width and
location of the pen that the animal will roam around in.

Location: the X and Y coordinates where the animal’s standing.

And the Animal class has four methods the animals can inherit:

MakeNoise(): a method to let the animal make a sound.

Eat(): behavior for when the animal encounters its preferred food.

Sleep(): a method to make the animal lie down and take a nap.

Roam(): the animals like to wander around their pens in the zoo.

≥

≥

≥

≥

≥

≥

≥

≥

≥

Use inheritance to avoid duplicate
code in subclasses Build a base class to give

the animals everything
they have in common
The fields, properties, and methods
in the base class will give all of
the animals that inherit from it
a common state and behavior.
They’re all animals, so it makes
sense to call the base class Animal.

22

Choosing a base class is
about making choices. You
could have decided to
use a ZooOccupant class
that defines the feed
and maintenance costs,
or an Attraction class
with methods for how
the animals entertain the
zoo visitors. But we think
Animal makes the most
sense here. Do you agree?

Lion

Hippo
Tiger

Dog

Cat

Wolf

Download at WoweBook.Com

218 Chapter 6

Animal
Picture
Food
Hunger
Boundaries
Location

MakeNoise()
Eat()
Sleep()
Roam()

Different animals make different noises
Lions roar, dogs bark, and as far as we know hippos don’t
make any sound at all. Each of the classes that inherit from
Animal will have a MakeNoise() method, but each of those
methods will work a different way and will have different code.
When a subclass changes the behavior of one of the methods
that it inherited, we say that it overrides the method.

Think about what you need to override
When a subclass changes the behavior of a method it
inherited, we call it overriding. Every animal needs to
eat. But a dog might take little bites of meat, while a hippo
eats huge mouthfuls of grass. So what would the code for
that behavior look like? Both the dog and the hippo would
override the Eat() method. The hippo’s method would have
it consume, say, 20 pounds of hay each time it was called.
The dog’s Eat() method, on the other hand, would reduce
the zoo’s food supply by one 12-ounce can of dog food.

Grass is yummy! I
could go for a good
pile of hay right now.

I beg to differ.

We already know that some animals will override the
MakeNoise() and Eat() methods. Which animals will
override Sleep() or Roam()? Will any of them? What about
the properties—which animals will override some properties?

Figure out what each animal
does that the Animal class does
differently—or not at all
What does each type of animal do that
all the other animals don’t? Dogs eat dog
food, so the dog’s Eat() method will need
to override the Animal.Eat() method.
Hippos swim, so a hippo will have a
Swim() method that isn’t in the Animal
class at all.

33

Just because a property or a method
is in the Animal base class, that
doesn’t mean every subclass has to use
it the same way... or at all!

So when you’ve got a subclass
that inherits from a base
class, it must inherit all of
the base class’s behaviors...
but you can modify them in
the subclass so they’re not
performed exactly the same
way. That’s what overriding is
all about.

warning: don’t feed the programmers

Download at WoweBook.Com

you are here 4 219

inheritance

Think about how to group the animals
Aged Vermont cheddar is a kind of cheese, which is a dairy
product, which is a kind of food, and a good class model for food
would represent that. Lucky for us, C# give us an easy way to do
it. You can create a chain of classes that inherit from each other,
starting with the topmost base class and working down. So you
could have a Food class, with a subclass called DairyProduct that
serves as the base class for Cheese, which has a subclass called
Cheddar, which is what AgedVermontCheddar inherits from.

Look for classes that have a lot
in common
Don’t dogs and wolves seem pretty similar?
They’re both canines, and it’s a good bet
that if you look at their behavior they have a
lot in common. They probably eat the same
food and sleep the same way. What about
domestic cats, tigers, and lions? It turns out
all three of them move around their habitats
in exactly the same way. It’s a good bet that
you’ll be able to have a Feline class that
lives between Animal and those three cat
classes that can help prevent duplicate code
between them.

44

Animal
Picture
Food
Hunger
Boundaries
Location

MakeNoise()
Eat()
Sleep()
Roam()

Hippo

MakeNoise()
Eat()

Tiger

MakeNoise()
Eat()

Dog

MakeNoise()
Eat()

Cat

MakeNoise()
Eat()

Wolf

MakeNoise()
Eat()

There’s a pretty good chance that we’ll be able to add a Canine class that the dogs and wolves both inherit from.

Lion

MakeNoise()
Eat()The subclasses

inherit all four
methods from
Animal, but
we’re only having
them override
MakeNoise() and
Eat().

That’s why we only
show those two
methods in the
class diagrams.

Download at WoweBook.Com

220 Chapter 6

Feline

Roam()

Canine

Eat()
Sleep()

Animal
Picture
Food
Hunger
Boundaries
Location

MakeNoise()
Eat()
Sleep()
Roam()

Lion

MakeNoise()
Eat()

Hippo

MakeNoise()
Eat()

Tiger

MakeNoise()
Eat()

Dog

MakeNoise()
Cat

MakeNoise()
Eat()

Wolf

MakeNoise()

Our wolves and
dogs eat the
same way, so
we moved their
common Eat()
method up to
the Canine class.

The three cats roam the same way, so they share an inherited Roam() method. But each one still eats and makes noise differently, so they’ll all override Eat() and MakeNoise() that they inherited from Animal.

Since Feline overrides Roam(),
anything that inherits from it
gets its new Roam() and not
the one in Animal.

Create the class hierarchy
When you create your classes so that there’s a base class at the top with
subclasses below it, and those subclasses have their own subclasses that
inherit from them, what you’ve built is called a class hierarchy. This is
about more than just avoiding duplicate code, although that is certainly
a great benefit of a sensible hierarchy. But when it comes down to it, the
biggest benefit you’ll get is that your code becomes really easy to understand
and maintain. When you’re looking at the zoo simulator code, when you see
a method or property defined in the Feline class, then you immediately know
that you’re looking at something that all of the cats share. Your hierarchy
becomes a map that helps you find your way through your program.

Finish your class hierarchy
Now that you know how you’ll organize the animals,
you can add the Feline and Canine classes.

55

extend your objects

Download at WoweBook.Com

you are here 4 221

inheritance

Dog spot = new Dog();

spot.MakeNoise();

spot.Roam();

spot.Eat();

spot.Sleep();

spot.Fetch();

You’re not limited to the methods that a subclass inherits
from its base class... but you already know that! After all,
you’ve been building your own classes all along. When you
add inheritance to a class, what you’re doing is taking the
class you’ve already built and extending it by adding all of
the fields, properties, and methods in the base class. So if you
wanted to add a Fetch() method to the dog, that’s perfectly
normal. It won’t inherit or override anything—only the dog
will have that method, and it won’t end up in Wolf, Canine,
Animal, Hippo, or any other class.

makes a new Dog object

calls the version in Dog

calls the version in Animal

calls the version in Canine

calls the version in Canine

calls the version in Dog

C# always calls the most specific method
If you tell your dog object to roam, there’s only one method that can
be called—the one in the Animal class. But what about telling your
dog to make noise? Which MakeNoise() is called?

Well, it’s not too hard to figure it out. A method in the Dog class tells
you how dogs do that thing. If it’s in the Canine class, it’s telling you
how all canines do it. And if it’s in Animal, then it’s a description of
that behavior that’s so general that it applies to every single animal. So
if you ask your dog to make a noise, first C# will look inside the dog
class to find the behavior that applies specifically to dogs. If Dog didn’t
have one, it’d then check Canine, and after that it’d check Animal.

hi-er-ar-chy, noun.
an arrangement or classification

in which groups or things are

ranked one above the other. The

president of Dynamco had worked

his way up from the mailroom to the

top of the corporate hierarchy.

Animal
Picture
Food
Hunger
Boundaries
Location

MakeNoise()
Eat()
Sleep()
Roam()

Canine

Eat()
Sleep()

Dog

MakeNoise()
Fetch()

Every subclass extends its
base class

Download at WoweBook.Com

222 Chapter 6

Use a colon to inherit from a base class
When you’re writing a class, you use a colon (:) to have it inherit from
a base class. That makes it a subclass, and gives it all of the fields,
properties, and methods of the class it inherits from.

Bird
Wingspan

Fly()

Animal
NumberOfLegs

Eat()

public class Animal
{
 public int NumberOfLegs;
 public void Eat() {
 // code to make the animal eat
 }
}

public class Bird : Animal
{
 public double Wingspan;
 public void Fly() {
 // code to make the bird fly
 }
}

public button1_Click(object sender, EventArgs e) {
 Bird tweety = new Bird();
 tweety.Wingspan = 7.5;
 tweety.Fly();
 tweety.NumberOfLegs = 2;
 tweety.Eat();
}

tweety is an instance
of Bird, so it’s got
the Bird methods
and fields as usual.

The Bird class uses a colon to inherit from the

Animal class. This means that it inherits all of the

fields, properties, and methods from Animal.

You extend a class
by adding a colon to
the end of the class
declaration, followed by
the base class to inherit
from.

Since the Bird class inherits
from Animal, every instance
of Bird also has the fields
and methods defined in the
Animal class.

When a subclass
inherits from a
base class, all
of the fields,
properties, and
methods in the
base class are
automatically
added to the
subclass.

base how low can you go?

Q: Why does the arrow point up, from the subclass to the
base class? Wouldn’t the diagram look better with the arrow
pointing down instead?

A:	It	might	look	better,	but	it	wouldn’t	be	as	accurate.	When	you	
set	up	a	class	to	inherit	from	another	one,	you	build	that	relationship	
into	the	subclass—the	base	class	remains	the	same.	And	that	makes	
sense	when	you	think	about	it	from	the	perspective	of	the	base	class.	
	

		
Its	behavior	is	completely	unchanged	when	you	add	a	class	that	
inherits	from	it.	The	base	class	isn’t	even	aware	of	this	new	class	
that	inherited	from	it.	Its	methods,	fields,	and	properties	remain	
entirely	intact.	But	the	subclass	definitely	changes	its	behavior.	Every	
instance	of	the	subclass	automatically	gets	all	of	the	properties,	fields,	
and	methods	from	the	base	class,	and	it	all	happens	just	by	adding	a	
colon.	That’s	why	you	draw	the	arrow	on	your	diagram	so	that	it’s	part	
of	the	subclass,	and	points	to	the	base	class	that	it	inherits	from.

Download at WoweBook.Com

you are here 4 223

inheritance

Take a look at these class models and declarations, and then
circle the statements that won’t work.

FirePlane
BucketCapacity

FillBucket()

Aircraft
AirSpeed
Altitude

TakeOff()
Land()

public class Aircraft {
 public double AirSpeed;
 public double Altitude;
 public void TakeOff() { ... };
 public void Land() { ... };
}

public class FirePlane : Aircraft {
 public double BucketCapacity;
 public void FillBucket() { ... };
}

public void FireFightingMission() {
 FirePlane myFirePlane = new FirePlane();
 new FirePlane.BucketCapacity = 500;
 Aircraft.Altitude = 0;
 myFirePlane.TakeOff();
 myFirePlane.AirSpeed = 192.5;
 myFirePlane.FillBucket();
 Aircraft.Land();
}

BLT
SlicesOfBacon
AmountOfLettuce

AddSideOfFries()

Sandwich
Toasted
SlicesOfBread

CountCalories()

public class Sandwich {
 public boolean Toasted;
 public int SlicesOfBread;
 public int CountCalories() { ... }
}

public class BLT : Sandwich {
 public int SlicesOfBacon;
 public int AmountOfLettuce;
 public int AddSideOfFries() { ... }
}

public BLT OrderMyBLT() {
 BLT mySandwich = new BLT();
 BLT.Toasted = true;
 Sandwich.SlicesOfBread = 3;
 mySandwich.AddSideOfFries();
 mySandwich.SlicesOfBacon += 5;
 MessageBox.Show(“My sandwich has ”
 + mySandwich.CountCalories + “calories”.);
 return mySandwich;
}

Download at WoweBook.Com

224 Chapter 6

i can think of one way to make a penguin fly...

Take a look at these class models and declarations, and then
circle the statements that won’t work.

FirePlane
BucketCapacity

FillBucket()

Aircraft
AirSpeed
Altitude

TakeOff()
Land()

public class Aircraft {
 public double AirSpeed;
 public double Altitude;
 public void TakeOff() { ... };
 public void Land() { ... };
}

public class FirePlane : Aircraft {
 public double BucketCapacity;
 public void FillBucket() { ... };
}

public void FireFightingMission() {
 FirePlane myFirePlane = new FirePlane();
 new FirePlane.BucketCapacity = 500;
 Aircraft.Altitude = 0;
 myFirePlane.TakeOff();
 myFirePlane.AirSpeed = 192.5;
 myFirePlane.FillBucket();
 Aircraft.Land();
}

BLT
SlicesOfBacon
AmountOfLettuce

AddSideOfFries()

Sandwich
Toasted
SlicesOfBread

CountCalories()

public class Sandwich {
 public boolean Toasted;
 public int SlicesOfBread;
 public int CountCalories() { ... }
}

public class BLT : Sandwich {
 public int SlicesOfBacon;
 public int AmountOfLettuce;
 public int AddSideOfFries() { ... }
}

public BLT OrderMyBLT() {
 BLT mySandwich = new BLT();
 BLT.Toasted = true;
 Sandwich.SlicesOfBread = 3;
 mySandwich.AddSideOfFries();
 mySandwich.SlicesOfBacon += 5;
 MessageBox.Show(“My sandwich has ”
 + mySandwich.CountCalories + “calories”.);
 return mySandwich;
}

These statements all use the

class names instead of the nam
e

of the instance, myFirePlane.

That’s not how you use the new keyword.

CountCalories is a method, but this statement doesn’t include the parentheses () after the call to the method.

These properties are part of the
instance, but the statements are
trying to call them incorrectly
using the class names.

Download at WoweBook.Com

you are here 4 225

inheritance

We know that inheritance adds the base class fields,
properties, and methods to the subclass...
Inheritance is simple when your subclass
needs to inherit all of the base class
methods, properties, and fields.

Bird
Fly()
LayEggs()
PreenFeathers()

Pigeon
Coo()

... but some birds don’t fly!
What do you do if your base class has a
method that your subclass needs to modify?

Bird
Fly()
LayEggs()
PreenFeathers()

Pigeon
Coo()

Penguin
Swim()

Pigeons fly, lay eggs, an
d

preen their feathers,
so

there’s no problem with the

Pigeon class inheriting f
rom

Bird.

Penguin objects shouldn’t be able to fly! But if the Penguin class inherits from Bird, then you’ll have penguins flying all over the place. So what do we do?

public class Bird {
 public void Fly() {
 // here’s the code to make the bird fly
 }

 public void LayEggs() { ... };

 public void PreenFeathers() { ... };
}

public class Pigeon : Bird {
 public void Coo() { ... }
}

public class Penguin : Bird {
 public void Swim() { ... }
}

public void BirdSimulator() {

 Pigeon Harriet = new Pigeon();

 Penguin Izzy = new Penguin();

 Harriet.Fly();

 Harriet.Coo();

 Izzy.Fly();

}

If this were your Bird Simulator code, what would
you do to keep the penguins from flying?

Izzy is an instance of Penguin. Since it inherited the Fly() method, there’s nothing stopping it from flying.

Both Pigeon and Penguin
inherit from Bird, so
they both get the
Fly(), LayEggs(), and
PreenFeathers() methods.

Pigeon is a
subclass of Bird,
so any fields and
methods in Bird
are automatically
part of Pigeon,
too.

Download at WoweBook.Com

226 Chapter 6

A subclass can override methods to change or
replace methods it inherited
Sometimes you’ve got a subclass that you’d like to inherit
most of the behaviors from the base class, but not all of them.
When you want to change the behaviors that a class has
inherited, you can override the methods.

public class Bird {

 public virtual void Fly() {

 // code to make the bird fly

 }

}

public class Penguin : Bird {

 public override void Fly() {

 MessageBox.Show(“Penguins can’t fly!”)

 }
} Use the override keyword to

add a method to your subclass
that replaces one that it
inherited. Before you can
override a method, you need to
mark it virtual in the base class.

Adding the virtual
keyword to the Fly()
method tells C# that
a subclass is allowed to
override it.

Add the virtual keyword to the method in the base class
A subclass can only override a method if it’s marked with the virtual keyword, which
tells C# to allow the subclass to override methods.

11

Add a method with the same name to the derived class
You’ll need to have exactly the same signature—meaning the same return value and
parameters—and you’ll need to use the override keyword in the declaration.

22

When you override a method, your new
method needs to have exactly the same
signature as the method in the base
class it’s overriding. In this case, that
means it needs to be called Fly, return
void, and have no parameters.

To override the Fly() method, add an identical method to the subclass and use the override keyword.

manual override

Download at WoweBook.Com

you are here 4 227

inheritance

Any place where you can use a base class, you can
use one of its subclasses instead
One of the most useful things you can do with inheritance is use a subclass in
place of the base class it inherits from. So if your Recipe() method takes a
Cheese object and you’ve got an AgedVermontCheddar class that inherits
from Cheese, then you can pass an instance of AgedVermontCheddar to
the Recipe() method. Recipe() only has access to the fields, properties,
and methods that are part of the Cheese class, though—it doesn’t have access
to anything specific to AgedVermontCheddar.

public void SandwichAnalyzer(Sandwich specimen) {
 int calories = specimen.CountCalories();
 UpdateDietPlan(calories);
 PerformBreadCalculations(specimen.SlicesOfBread, specimen.Toasted);
}

Let’s say we have a method to analyze sandwich objects:11

You could pass a sandwich to the method—but you could also pass a BLT. Since a BLT is a
kind of sandwich, we set it up so that it inherits from the Sandwich class.

22

public button1_Click(object sender, EventArgs e) {
 BLT myBLT = new BLT();
 SandwichAnalyzer(myBLT);
}

You can always move down the class diagram—a reference variable can always be set equal
to an instance of one of its subclasses. But you can’t move up the class diagram.

33

public button2_Click(object sender, EventArgs e) {
 Sandwich mySandwich = new Sandwich();
 BLT myBLT = new BLT();
 Sandwich someRandomSandwich = myBLT;

 BLT anotherBLT = mySandwich; // <--- THIS WON’T COMPILE!!!
}

You can assign myBLT to any
Sandwich variable because a BLT
is a kind of sandwich.

But you can’t assign mySandwich to a BLT variable, because not every sandwich is a BLT! That’s why this last line will cause an error.

BLT
SlicesOfBacon
AmountOfLettuce

AddSideOfFries()

Sandwich
Toasted
SlicesOfBread

CountCalories()

We’ll talk about this more
in the next chapter!

Download at WoweBook.Com

228 Chapter 6

 a = 6; 56
 b = 5; 11
 a = 5; 65

A short C# program is listed below. One block of
the program is missing! Your challenge is to match
the candidate block of code (on the left), with the
output—what’s in the messagebox that the program
pops up—that you’d see if the block were inserted.
Not all the lines of output will be used, and some of
the lines of output might be used more than once.
Draw lines connecting the candidate blocks of code
with their matching output.

candidate code
goes here
(three lines)

public class A {
 public int ivar = 7;

 public ___________ string m1() {
 return “A’s m1, ”;
 }
 public string m2() {
 return “A’s m2, ”;
 }

 public ___________ string m3() {
 return “A’s m3, ”;
 }
}

public class B : A {

 public ___________ string m1() {
 return “B’s m1, ”;
 }
}

public class C : B {

 public ___________ string m3() {
 return “C’s m3, ” + (ivar + 6);
 }
}

public class Mixed5 {
 public static void Main(string[] args) {
 A a = new A();
 B b = new B();
 C c = new C();
 A a2 = new C();
 string q = “”;

 System.Windows.Forms.MessageBox.Show(q);
 }
}

code
candidates:

output:q += b.m1();
q += c.m2();
q += a.m3();

q += c.m1();
q += c.m2();
q += c.m3();

q += a.m1();
q += b.m2();
q += c.m3();

q += a2.m1();
q += a2.m2();
q += a2.m3();

A’s m1, A’s m2, C’s m3, 6

B’s m1, A’s m2, A’s m3,

A’s m1, B’s m2, A’s m3,

B’s m1, A’s m2, C’s m3, 13

B’s m1, C’s m2, A’s m3,

B’s m1, A’s m2, C’s m3, 6

A’s m1, A’s m2, C’s m3, 13}

}
}

}

 Mixed
Messages

Here’s the entry point for the program—it doesn’t show a form, it just pops up a messagebox.

Instructions:
 1. Fill in the four blanks in the code.
 2. Match the code candidates to the output.

(Don’t just type this into the IDE—you’ll learn
a lot more if you figure this out on paper!)

get a little practice

Hint: Think really hard about what this line really means.

Download at WoweBook.Com

you are here 4 229

inheritance

public class TestBoats {

 Main(){
 xyz = “”;
 b1 = new Boat();
 Sailboat b2 = new ();
 Rowboat = new Rowboat();
 b2.setLength(32);

 xyz = b1. ();
 xyz += b3. ();
 xyz += .move();
 System.Windows.Forms.MessageBox.Show(xyz);

 }
}

public class : Boat {

 public () {
 return “ ”;
 }
}

OUTPUT:

Rowboat
Sailboat

Boat

subclasses

int length
int b1

override

stroke natasha

Testboats drift
return int len

publicint b2
private

hoist sail

continue

int b2

int b3
break

length

b1

b2 b3
len

move
rowTheBoat

setLength

getLength

string

int
void

static

:

virtual

;

Hint: This is the
entry point for
the program.

Pool Puzzle
Your job is to take code snippets from the pool and place them into
the blank lines in the code. You may use the same snippet more
than once, and you might not need to use all the snippets. Your
goal is to make a set of classes that will compile and run together
as a program. Don’t be fooled—this one’s harder than it looks.

public class Rowboat {
 public rowTheBoat() {
 return “stroke natasha”;

 }

}

public class {
 private int ;
 void () {
 length = len;

 }

 public int getLength() {

 ;
 }

 public move() {
 return “ ”;
 }

}

Download at WoweBook.Com

230 Chapter 6

not all penguins are birds

q += b.m1();
q += c.m2();
q += a.m3();

q += c.m1();
q += c.m2();
q += c.m3();

q += a.m1();
q += b.m2();
q += c.m3();

q += a2.m1();
q += a2.m2();
q += a2.m3();

A’s m1, A’s m2, C’s m3, 6

B’s m1, A’s m2, A’s m3,

A’s m1, B’s m2, C’s m3, 6

B’s m1, A’s m2, C’s m3, 13

B’s m1, C’s m2, A’s m3,

A’s m1, B’s m2, A’s m3,

B’s m1, A’s m2, C’s m3, 6

A’s m1, A’s m2, C’s m3, 13
}

}
}

}

public class A {

 public ___________ string m1() {
...

 public ___________ string m3() {
}

virtual
virtual

public class B : A {

 public ___________ string m1() {
...
public class C : B {

 public ___________ string m3() {

override

override

 a = 6; 56
 b = 5; 11
 a = 5; 65

 Mixed
Messages

Pool Puzzle Solution
public class Rowboat : Boat {
 public string rowTheBoat() {
 return “stroke natasha”;

 }

}

public class Boat {
 private int length ;
 public void setLength (int len) {
 length = len;

 }

 public int getLength() {

 return length ;
 }

 public virtual string move() {
 return “ drift ”;
 }

}

public class TestBoats {

 public static void Main(){
 string xyz = “”;
 Boat b1 = new Boat();
 Sailboat b2 = new Sailboat ();
 Rowboat b3 = new Rowboat();
 b2.setLength(32);

 xyz = b1. move ();
 xyz += b3. move ();
 xyz += b2 .move();
 System.Windows.Forms.MessageBox.Show(xyz);

 }
}

public class Sailboat : Boat {

 public override string move () {
 return “ hoist sail ”;
 }
}

You can always substitute a reference to a subclass in place of
a base class. In other words, you can always use something
more specific in place of something more general—so if
you’ve got a line of code that asks for a Canine, you can
send it a reference to a Dog. So this line of code:

A a2 = new C();

means that you’re instantiating a new C object, and then
creating an A reference called a2 and pointing it at that
object. Names like A, a2 and C make for a good puzzle,
but they’re a little hard to understand. Here are a few lines
that follow the same pattern, but have names that you can
understand:

Sandwich mySandwich = new BLT();

Cheese ingredient= new AgedVermontCheddar();

Songbird tweety = new NorthernMockingbird();

Download at WoweBook.Com

you are here 4 231

inheritance

Q: About the entry point that you
pointed out in the Pool Puzzle—does this
mean I can have a program that doesn’t
have a Form1 form?

A:	Yes.	When	you	create	a	new	Windows	
Application	project,	the	IDE	creates	all	
the	files	for	that	project	for	you,	including	
Program.cs	(which	contains	a	static	class	
with	an	entry	point)	and	Form1.cs	(which	
contains	an	empty	form	called	Form1).	
	

Try this:	instead	of	creating	a	new	Windows	
Application	project,	create	an	empty	project	
by	selecting	“Empty	Project”	instead	of	

“Windows	Application”	when	you	create	a	
new	project	in	the	IDE.	Then	add	a	class	
file	to	it	in	the	Solution	Explorer	and	type	in	
everything	in	the	Pool	Puzzle	solution.	Since	
your	program	uses	a	messagebox,	you	
need	to	add	a	reference	by	right-clicking	
on	“References”	in	the	Solution	Explorer,	
selecting	“Add	Reference”,	and	choosing	
System.Windows.Forms	from	the	.NET	tab.	
(That’s	another	thing	the	IDE	does	for	you	
automatically	when	you	create	a	Windows	
Application.)	Finally,	select	“Properties”	from	
the	Project	menu	and	choose	the	“Windows	
Application”	output	type.	
	
Now	run	it...	you’ll	see	the	results!	
Congratulations,	you	just	created	a	C#	
program	from	scratch.

Q: Can I inherit from the class that
contains the entry point?

A:	Yes.	The	entry	point	must	be	a	static	
method,	but	that	method	doesn’t have
to be	in	a	static	class.	(Remember,	the	
static	keyword	means	that	the	class	
can’t	be	instantiated,	but	that	its	methods	
are	available	as	soon	as	the	program	starts.	
So	in	the	Pool	Puzzle	program,	you	can	call	
TestBoats.Main()	from	any	other	method	
without	declaring	a	reference	variable	
or	instantiating	an	object	using	a	new	
statement.)

Q: I still don’t get why they’re called
“virtual” methods—they seem real to me!

A:	The	name	“virtual”	has	to	do	with	how	
.NET	handles	the	virtual	methods	behind	the	
scenes.	It	uses	something	called	a	virtual	
method	table	(or	vtable).	That’s	a	table	that	
.NET	uses	to	keep	track	of	which	methods	
are	inherited	and	which	ones	have	been	
overridden.	Don’t	worry—you	don’t	need	to	
know	how	it	works	to	use	virtual	methods!

Q: What did you mean by only being
able to move up the class diagram but
not being able to move down?

A:	When	you’ve	got	a	diagram	with	one	
class	that’s	above	another	one,	the	class	
that’s	higher	up	is	more	abstract		than	the	
one	that’s	lower	down.	More	specific	or	
concrete	classes	(like	Shirt	or	Car)	inherit	
from	more	abstract	ones	(like	Clothing	or	
Vehicle).	When	you	think	about	it	that	way,	
it’s	easy	to	see	how	if	all	you	need	is	any	
vehicle,	a	car	or	van	or	motorcycle	will	do.	
But	if	you	need	a	car,	a	motorcycle	won’t	be	
useful	to	you.	
	
Inheritance	works	exactly	the	same	way.	If	
you	have	a	method	with	Vehicle	as	a	
parameter,	and	if	the	Motorcycle	class	
inherits	from	the	Vehicle	class,	then	you	
can	pass	an	instance	of	Motorcycle	
to	the	method.	But		if	the	method	takes	
Motorcycle	as	a	parameter,	you	can’t	
pass	any	Vehicle	object,	because	it	may	
be	a	Van	instance.	Otherwise	C#	wouldn’t	
know	what	to	do	when	the	method	tries	to	
access	the	Handlebars	property!

You can always
pass an instance
of a subclass to
any method whose
parameters expect
a class that it
inherits from.

Flip back to the beginning
of Chapter 2 if you need a
refresher on Main() and the
entry point!

Download at WoweBook.Com

232 Chapter 6

A subclass can access its base class using the base keyword
Even when you override a method or property in your base class,
sometimes you’ll still want to access it. Luckily, we can use base, which
lets us access any method in the base class.

Chameleon
TongueLength
Color

CatchWithTongue()

Animal
NumberOfLegs

Eat()
Swallow()
Digest()

public class Animal {

 public virtual void Eat(Food morsel) {

 Swallow(morsel);

 Digest();

 }

}

public class Chameleon : Animal {

 public override void Eat(Food morsel) {

 CatchWithTongue(morsel);

 Swallow(morsel);

 Digest();

 }

}

All animals eat, so the Animal class has an Eat() method that takes a
Food object as its parameter.

11

Chameleons eat by catching food with their tongues. So the Chameleon class inherits
from Animal but overrides Eat().

22

The chameleon needs to swallow and digest the food, just like any other animal. Do we really need to duplicate this code, though?

Instead of duplicating the code, we can use the base keyword to call the method that
was overridden. Now we have access to both the old and the new version of Eat().

33

public class Chameleon : Animal {

 public override void Eat(Food morsel) {

 CatchWithTongue(morsel);

 base.Eat(morsel);
 }

}

This line calls the Eat() method in the base

class that Chameleon inherited from.

detour: construction ahead

Download at WoweBook.Com

you are here 4 233

inheritance

When a base class has a constructor, your subclass needs one too
If your class has constructors which take parameters, then any class that
inherits from it must call one of those constructors. The subclass’s
constructor can have different parameters from the base class constructor.

public class Subclass : BaseClass {

 public Subclass(parameter list)

 : base(the base class’s parameter list) {

 // first the base class constructor is executed
 // then any statements here get executed
 }
}

The base class constructor is executed
before the subclass constructor
But don’t take our word for it—see for yourself !

Fix the error by making the constructor call the one from the base class
Then instantiate the subclass and see what order the two message boxes pop up!
public class MySubclass : MyBaseClass{
 public MySubclass(string baseClassNeedsThis, int anotherValue)
 : base(baseClassNeedsThis)
 {
 // the rest of the subclass is the same

33

Do this!
Create a base class with a constructor that pops up a messagebox
Then add a button to a form that instantiates this base class and shows a messagebox:
 public class MyBaseClass {
 public MyBaseClass(string baseClassNeedsThis) {
 MessageBox.Show(“This is the base class: ” + baseClassNeedsThis);
 }
}

11

Try adding a subclass, but don’t call the constructor
Then add a button to a form that instantiates this subclass and shows a messagebox:
 public class MySubclass : MyBaseClass{
 public MySubclass(string baseClassNeedsThis, int anotherValue) {
 MessageBox.Show(“This is the subclass: ” + baseClassNeedsThis
 + “ and ” + anotherValue);
 }
}

22

Keep an eye
out for this
slightly cryptic
error. It means
that your
subclass didn’t
call the base
constructor.

Add this extra line to the end of your subclass’s constructor declaration to tell C# that it needs to call the base class’s constructor every time the subclass is instantiated.

Add this line to tell C# to call the constructor in

the base class. It has a parameter list that shows

what gets passed to the base class cons
tructor. Then

the error will go away and you can make a button to

see the two message boxes pop up!

Here’s the
constructor for
the subclass.

Select Build >> Build Solution in the IDE and you’ll get an error from this code.

This is a parameter that the
base class constructor needs.

This is how
we send the
base class the
parameter its
constructor
needs.

Download at WoweBook.Com

234 Chapter 6

Now you’re ready to finish the job for Kathleen!
When you last left Kathleen, you’d finished adding
birthday parties to her program. She needs you to
charge an extra $100 for parties over 12. It seemed
like you were going to have to write the same exact
code twice, once for each class. Now that you know
how to use inheritance, you can have them inherit
from the same base class that contains all of their
shared code, so you only have to write it once.

DinnerParty
NumberOfPeople
CostOfDecorations
CostOfBeveragesPerPerson
HealthyOption
CalculateCostOfDecorations()
CalculateCost()
SetHealthyOption()

BirthdayParty
NumberOfPeople
CostOfDecorations
CakeSize
CakeWriting
CalculateCostOfDecorations()
CalculateCost()

Let’s create the new class model
We’ll still have the same DinnerParty and BirthdayParty classes, but now they’ll inherit from a
single Party class. We need them to have exactly the same methods, properties and fields, so we
don’t have to make any changes to the form. But some of those methods, properties, and fields
will be moved into the Party base class, and we may have to override a few of them.

11

If we play our cards right, we should be able to change the
two classes without making any changes to the form!

DinnerParty
NumberOfPeople
CostOfDecorations
CostOfBeveragesPerPerson
HealthyOption
CalculateCostOfDecorations()
CalculateCost()
SetHealthyOption()

BirthdayParty
NumberOfPeople
CostOfDecorations
CakeSize
CakeWriting
CalculateCostOfDecorations()
CalculateCost()

Party
NumberOfPeople
CostOfDecorations

CalculateCostOfDecorations()
CalculateCost()

kathleen still needs our help

Download at WoweBook.Com

you are here 4 235

inheritance

Build the Party base class
Create the Party class—make sure it’s public. You’ll need to look really closely at the
properties and methods in the class diagram, and figure out what you need to move out of
DinnerParty and BirthdayParty and into Party.

Move the NumberOfPeople and CostOfDecorations properties into it so that they’re
compatible with both DinnerParty and BirthdayParty.

Do the same for the CalculateCostOfDecorations() and CalculateCost() methods. If
those methods need any private fields, you’ll need to move them too. (Remember,
subclasses can only see public fields—once you move a private field to Party, the
DinnerParty and BirthdayParty classes won’t have access to it.)

You’ll also need a constructor. Take a close look at the BirthdayParty and
DinnerParty constructors—anything they have in common should be moved to it.

Now add the $100 bonus for parties over 12 people. After all, that’s why we’re
doing this! It’s common to both birthday and dinner parties, so it belongs in Party.

≥

≥

≥

≥

22

Make DinnerParty inherit from Party
Now that Party does a lot of the things DinnerParty does, you can eliminate the overlap and
only keep the part of DinnerParty that’s unique to dinner parties.

Make sure the constructor is working properly. Does it do anything the Party
constructor doesn’t? If so, keep that and then leave everything else to the base class
constructor.

Any logic that has to do with setting the healthy option should stay in DinnerParty.

Uh-oh—we can’t override the CalculateCost() method here if we want to
keep the form code the same, because our form needs to pass it a bool called
healthyOption. So instead, we’ll overload it—which just means adding a
new CalculateCost() method to the class that takes different parameters. So you’ll
use exactly the same declaration for the method that you used at the beginning
of the chapter. But you can still take advantage of inheritance by calling base.
CalculateCost() to access the CalculateCost() method in the Party class.

≥

≥

≥

33

Make BirthdayParty inherit from Party
Do the same thing for BirthdayParty—leave anything not specific to birthdays to the base
class, and only keep the birthday-specific functionality in BirthdayParty.

What does the BirthdayParty constructor need to do that’s not part of Party?

You’ll need to deal with the cost of the cake inside of BirthdayParty. That touches a
method and a property, so you’ll need to override them.

Yes, you can override a property! It’s just like overriding a method. When you set the
value of base.NumberOfPeople, it calls the property’s set accessor in the base
class. You’ll need to use the base keyword to both get and set the value.

≥

≥

≥

44

You’ll learn all
about overloading
in Chapter
8—this is just a
sneak preview to
give you a leg up
on it later.

Later on, you’ll
learn about
the ‘protected’
keyword. A
protected
field is public
to a subclass,
but private to
everyone else.”

Download at WoweBook.Com

236 Chapter 6

public class Party
{
 const int CostOfFoodPerPerson = 25;
 private bool fancyDecorations;
 public decimal CostOfDecorations = 0;

 public Party(int numberOfPeople, bool fancyDecorations) {
 this.fancyDecorations = fancyDecorations;
 this.NumberOfPeople = numberOfPeople;
 }

 private int numberOfPeople;
 public virtual int NumberOfPeople {
 get { return numberOfPeople; }
 set {
 numberOfPeople = value;
 CalculateCostOfDecorations(fancyDecorations);
 }
 }

 public void CalculateCostOfDecorations(bool fancy) {
 fancyDecorations = fancy;
 if (fancy)
 CostOfDecorations = (NumberOfPeople * 15.00M) + 50M;
 else
 CostOfDecorations = (NumberOfPeople * 7.50M) + 30M;
 }

 public virtual decimal CalculateCost() {
 decimal TotalCost = CostOfDecorations + (CostOfFoodPerPerson * NumberOfPeople);
 if (NumberOfPeople > 12)
 {
 TotalCost += 100M;
 }
 return TotalCost;
 }
}

Check	it	out—you	changed	the	DinnerParty	and	BirthdayParty	
classes	so	that	they	inherited	from	the	same	base	class,	
Party.	Then	you	were	able	to	make	the	change	to	the	cost	
calculation	to	add	the	$100	fee,	and	you	didn’t	have	to	
change	the	form	at	all.	Neat!

The decoration calculation is
identical in both birthday and
dinner parties, so it makes sense
to move it to Party. That way
none of the code is duplicated
in multiple classes.

The cost calculation needs to be a virtual method because the birtday party overrides it (and also extends it by calling the base class method).

NumberOfPeople needs to be virtual
because BirthdayParty needs to override
it (so that a change to the number of
people calculates a new cake size).

exercise solution

The Party constructor does
everything that was previously
in both the DinnerParty and
BirthdayParty constructors.

This code was moved straight out of
the DinnerParty and BirthdayParty
classes and into Party.

Download at WoweBook.Com

you are here 4 237

inheritance

public class BirthdayParty : Party {
 public int CakeSize;

 public BirthdayParty(int numberOfPeople, bool fancyDecorations, string cakeWriting)
 : base(numberOfPeople, fancyDecorations) {
 CalculateCakeSize();
 this.CakeWriting = cakeWriting;
 CalculateCostOfDecorations(fancyDecorations);
 }

 private void CalculateCakeSize() {
 if (NumberOfPeople <= 4)
 CakeSize = 8;
 else
 CakeSize = 16;
 }

 private string cakeWriting = “”;
 public string CakeWriting {
 get { return this.cakeWriting; }
 set {
 int maxLength;
 if (CakeSize == 8)
 maxLength = 16;
 else
 maxLength = 40;
 if (value.Length > maxLength) {
 MessageBox.Show(“Too many letters for a “ + CakeSize + “ inch cake”);
 if (maxLength > this.cakeWriting.Length)
 maxLength = this.cakeWriting.Length;
 this.cakeWriting = cakeWriting.Substring(0, maxLength);
 } else
 this.cakeWriting = value;
 }
 }

 public override decimal CalculateCost() {
 decimal CakeCost;
 if (CakeSize == 8)
 CakeCost = 40M + CakeWriting.Length * .25M;
 else
 CakeCost = 75M + CakeWriting.Length * .25M;
 return base.CalculateCost() + CakeCost;
 }

 public override int NumberOfPeople {
 get { return base.NumberOfPeople; }
 set {
 base.NumberOfPeople = value;
 CalculateCakeSize();
 this.CakeWriting = cakeWriting;
 }
 }
}

The CakeWriting
property stays intact
in the BirthdayParty
class too.

The constructor relies on the base class to do most of the work. Then it calls CalculateCakeSize(), just like the old BirthdayParty constructor did.

The NumberOfPeople property has to
override the one in Party because the set
accessor needs to recalculate the cake
size. The set accessor needs to call base.
NumberOfPeople so that the set accessor
in Party also gets executed.

CalculateCost() also needs to be
overridden, because it needs to
first calculate the cost of the cake,
and then add it to the cost that’s
calculated in the Party class’s
CalculateCost() method.

The CalculateCakeSize()
method is specific to
birthday parties, so it stays
in the BirthdayParty class.

Continues on page 238.

Download at WoweBook.Com

238 Chapter 6

continued
from p.237

public class DinnerParty : Party
{
 public decimal CostOfBeveragesPerPerson;

 public DinnerParty(int numberOfPeople, bool healthyOption,
 bool fancyDecorations)
 : base(numberOfPeople, fancyDecorations) {
 SetHealthyOption(healthyOption);
 CalculateCostOfDecorations(fancyDecorations);
 }

 public void SetHealthyOption(bool healthyOption) {
 if (healthyOption)
 CostOfBeveragesPerPerson = 5.00M;
 else
 CostOfBeveragesPerPerson = 20.00M;
 }

 public decimal CalculateCost(bool healthyOption) {
 decimal totalCost = base.CalculateCost()
 + (CostOfBeveragesPerPerson * NumberOfPeople);

 if (healthyOption)
 return totalCost * .95M;
 else
 return totalCost;
 }
}

Here’s the last class in Kathleen’s solution.
(There’s no change to the form code.)

This public field is only used in dinner
parties, not birthday parties, so it
stays in the class.

To do what the old
DinnerParty class did, the
new constructor calls the
Party constructor and then
calls SetHealthyOption().

The SetHealthyOption() method stays exactly the same.

DinnerParty needs a different
CalculateCost() that takes a
parameter, so instead of overriding
it we overloaded it. It calls the
CalculateCost() method in Party using
the base keyword, and then adds
the cost of the beverages and adds in
the healthy option discount.The program’s

perfect. It’s so much easier to run
my business now—thanks so much!

great job!

You’ll learn all about
how overloading works in
Chapter 8.

Uh-oh—there’s still a potential bug still in the program!

Now the DinnerParty class has two CalculateCost() methods, one that it inherits from Party and this new
one that we added. We haven’t fully encapsulated the class—someone could easily misuse this code by
calling the wrong Calculatecost() method. So if you do this:

DinnerParty dinner = new DinnerParty(5, true, true);
decimal cost1 = dinner.CalculateCost(true);
decimal cost2 = dinner.CalculateCost();

cost1 will be set to 261.25, while cost2 will be set to 250. This isn’t an academic question -- it’s a real problem.
Sometimes there’s code in the base class that you don’t want to call directly. Even worse, we never intended the
Party class to be instantiated... but there’s nothing stopping someone from doing it. Do we even know what will
happen if someone creates an instance of Party? We can be pretty sure it’ll do something we didn’t plan for.

Luckily, C# gives us a really good solution to these problems, which you’ll learn about in the next chapter!

Download at WoweBook.Com

you are here 4 239

inheritance

Build a beehive management system
A queen bee needs your help! Her hive is out of control, and
she needs a program to help manage it. She’s got a beehive full
of workers, and a whole bunch of jobs that need to be done
around the hive. But somehow she’s lost control of which bee
is doing what, and whether or not she’s got the beepower to do
the jobs that need to be done.

It’s up to you to build a beehive management system to help
her keep track of her workers. Here’s how it’ll work:

The queen assigns jobs to her workers
There are six possible jobs that the workers can do. Some
know how to collect nectar and manufacture honey, others
can maintain the hive and patrol for enemies. A few bees can
do every job in the hive. So your program will need to give
her a way to assign a job to any bee that’s available to do it.

11

This dropdown list shows all six jobs that the
workers can do.The queen knows what jobs need
to be done, and she doesn’t really care which bee
does each job. So she just selects which job has to
be done—the program will figure out if there’s a
worker available to do it and assign the job to him.

The bees work shifts,
and most jobs require
more than one shift.
So the queen enters
the number of shifts
the job will take, and
clicks the “Assign
this job” button.

If there’s a bee
available to do the job,
the program assigns
the job to the bee and
lets the queen know
it’s taken care of.

When the jobs are all assigned, it’s time to work
Once the queen’s done assigning the work, she’ll tell the bees to work the next
shift by clicking the “Work the next shift” button. The program then generates
a shift report that tells her which bees worked that shift, what jobs they did, and
how many more shifts they’ll be working each job.

22

Download at WoweBook.Com

240 Chapter 6

First you’ll build the basic system
This project is divided into two parts. The first part is a bit of a review,
where you’ll create the basic system to manage the hive. It’s got two classes,
Queen and Worker. You’ll build the form for the system, and hook it up to
the two classes. And you’ll make sure the classes are well encapsulated so
they’re easy to change when you move on to the second part.

Queen
private	workers:	Worker[]
private	shiftNumber:	int

AssignWork()
WorkTheNextShift()

Worker
CurrentJob:	string
ShiftsLeft:	int
	
private	jobsICanDo:	string[]
private	shiftsToWork:	int
private	shiftsWorked:	int

DoThisJob()
WorkOneShift()

String.IsNullOrEmpty()
Each bee stores its current job as a string. So a worker can figure out if he’s currently doing a job by checking his CurrentJob property – it’ll be equal to an empty string if he’s waiting for his next job. C# gives you an easy way to do that: String.IsNullOrEmpty(CurrentJob) will return true if the CurrentJob string is either empty or null, false otherwise.

Sometimes class diagrams
list private fields and types.

The program has one Queen object that manages the work being done.

The Queen uses an array of Worker objects to track each of the
worker bees and whether or not those bees have been assigned jobs.
It’s stored in a private Worker[] field called worker.

The form calls the AssignWork() method, passing a string for the
job that needs to be performed and an int for the number of shifts.
It’ll return true if it find a worker to assign the job to, or false if it
couldn’t find a worker to do that job.

The form’s “Work the next shift” button calls WorkTheNextShift(),
which tells the workers to work and returns a shift report to display.
It tells each Worker object to work one shift, and then checks that
worker’s status so it can add a line to the shift report.

≥

≥

≥

The queen uses an array of Worker objects to keep track of all of the
workers and what jobs they’re doing.

CurrentJob is a read-only property that tells the Queen object what
job the worker’s doing (“Sting patrol”, “Hive maintenance”, etc.)
If the worker isn’t doing any job, it’ll return an empty string.

The Queen object attempts to assign a job to a worker using its
DoThisJob() method. If that worker is not already doing the job,
and if that’s a job that he knows how to do, then he’ll accept the
assignment and the method returns true. Otherwise, it returns false.

When the WorkOneShift() method is called, the worker works a
shift. He keeps track of how many shifts are left in the current job.
If the job is done, then he resets his current job to an empty string
so that he can take on his next assignment.

≥

≥

≥

CurrentJob and ShiftsLeft are
read-only properties.

help the queen

Download at WoweBook.Com

you are here 4 241

inheritance

public Form1() {
 InitializeComponent();
 Worker[] workers = new Worker[4];
 workers[0] = new Worker(new string[] { “Nectar collector”, “Honey manufacturing” });
 workers[1] = new Worker(new string[] { “Egg care”, “Baby bee tutoring” });
 workers[2] = new Worker(new string[] { “Hive maintenance”, “Sting patrol” });
 workers[3] = new Worker(new string[] { “Nectar collector”, “Honey manufacturing”,
 “Egg care”, “Baby bee tutoring”, “Hive maintenance”, “Sting patrol” });
 queen = new Queen(workers);
}

Each Worker object’s constructor takes one
parameter, an array of strings that tell it
what jobs it knows how to do.

Your form will need a Queen field called queen. You’ll pass that array
of Worker object references to the Queen object’s constructor.

Build the form
The form is pretty simple—all of the intelligence is in the Queen and Worker classes. The form
has a private Queen field, and two buttons call its AssignWork() and WorkTheNextShift() methods.
You’ll need to add a ComboBox control for the bee jobs (flip back to the previous page to see its list
items), a NumericUpDown control, two buttons, and a multiline textbox for the shift report. You’ll
also need the form’s constructor—it’s below the screenshot.

11

Look closely at this
shift report, which the
Queen object generates.
It starts with a shift
number, and then reports
what each worker is doing.
Use the escape sequences
“\r\n” to add a line break
in the middle of a string.

The nextShift button
calls the queen’s
WorkTheNextShift()
method, which returns a
string that contains the
shift report.

This is a ComboBox control
named workerBeeJob. Use
its Items property to
set the list, and set its
DropDownStyle property
to “DropDownList” so
the user is only allowed
to choose items from the
list. The Shifts box is a
NumericUpDown control
called shifts.
Name this text box “report”
and set its MultiLine
property to true.

A	queen	bee	needs	your	help!	Use	what	you’ve	learned	about	classes	and	objects	to	build	a	
beehive	management	system	to	help	her	track	her	worker	bees.

Build the Worker and Queen classes
You’ve got almost everything you need to know about the Worker and Queen classes. There are
just a couple more details. Queen.AssignWork() loops through the the Queen object’s worker
array and attempts to assign the job to each Worker using its DoThisJob() method. The Worker
object checks its jobsICanDo string array to see if it can do the job. If it can, it sets its private
shiftsToWork field to the job duration, its CurrentJob to the job, and its shiftsWorked to zero.
When it works a shift, it increases shiftsWorked by one. The read-only ShiftsLeft property returns
shiftsToWork - shiftsWorked—the queen uses it to see how many shifts are left on the job.

22

Download at WoweBook.Com

242 Chapter 6

public class Worker {
 public Worker(string[] jobsICanDo) {
 this.jobsICanDo = jobsICanDo;
 }

 public int ShiftsLeft {
 get {
 return shiftsToWork - shiftsWorked;
 }
 }

 private string currentJob = “”;
 public string CurrentJob {
 get {
 return currentJob;
 }
 }

 private string[] jobsICanDo;
 private int shiftsToWork;
 private int shiftsWorked;

 public bool DoThisJob(string job, int numberOfShifts) {
 if (!String.IsNullOrEmpty(currentJob))
 return false;
 for (int i = 0; i < jobsICanDo.Length; i++)
 if (jobsICanDo[i] == job) {
 currentJob = job;
 this.shiftsToWork = numberOfShifts;
 shiftsWorked = 0;
 return true;
 }
 return false;
 }

 public bool WorkOneShift() {
 if (String.IsNullOrEmpty(currentJob))
 return false;
 shiftsWorked++;
 if (shiftsWorked > shiftsToWork) {
 shiftsWorked = 0;
 shiftsToWork = 0;
 currentJob = “”;
 return true;
 }
 else
 return false;
 }
}

CurrentJob is a read-
only property that
tells the queen which
job needs to be done.

The constructor just
sets the JobsICanDo
property, which is a
string array. It’s private
because we want the
queen to ask the worker
to do a job, rather than
make her check whether
he knows how to do it.

The queen uses the worker’s
DoThisJob() method to assign
work to him—he checks his
JobsICanDo property to see if
he knows how to do the job.

The queen uses the worker’s
WorkOneShift() method to
tell him to work the next
shift. The method only
returns true if this is the
very last shift that he’s
doing the job. That way the
queen can add a line to the
report that the bee will be
done after this shift.

Take a close look at the logic here. First it
checks the currentJob field: if the worker’s
not working on a job, it just returns false,
which stops the method. If not, then it
increments ShiftsWorked, and then checks
to see if this is the job’s done by comparing
it with ShiftsToWork. If it is, the method
returns true. Otherwise it returns false.

exercise solution

We used !—the NOT operator—to
check if the string is NOT null or
empty. It’s just like checking to see
if something’s false.

ShiftsLeft is a read-only
property that calculates
how many shifts are left
on the current job.

Download at WoweBook.Com

you are here 4 243

inheritance

public class Queen {
 public Queen(Worker[] workers) {
 this.workers = workers;
 }

 private Worker[] workers;
 private int shiftNumber = 0;

 public bool AssignWork(string job, int numberOfShifts) {
 for (int i = 0; i < workers.Length; i++)
 if (workers[i].DoThisJob(job, numberOfShifts))
 return true;
 return false;
 }

 public string WorkTheNextShift() {
 shiftNumber++;
 string report = “Report for shift #” + shiftNumber + “\r\n”;
 for (int i = 0; i < workers.Length; i++)
 {
 if (workers[i].WorkOneShift())
 report += “Worker #” + (i + 1) + “ finished the job\r\n”;
 if (String.IsNullOrEmpty(workers[i].CurrentJob))
 report += “Worker #” + (i + 1) + “ is not working\r\n”;
 else
 if (workers[i].ShiftsLeft > 0)
 report += “Worker #” + (i + 1) + “ is doing ‘“ + workers[i].CurrentJob
 + “’ for “ + workers[i].ShiftsLeft + “ more shifts\r\n”;
 else
 report += “Worker #” + (i + 1) + “ will be done with ‘“
 + workers[i].CurrentJob + “’ after this shift\r\n”;
 }
 return report;
 }
}

Queen queen;

private void assignJob_Click(object sender, EventArgs e) {
 if (queen.AssignWork(workerBeeJob.Text, (int)shifts.Value) == false)
 MessageBox.Show(“No workers are available to do the job ‘”
 + workerBeeJob.Text + “’”, “The queen bee says...”);
 else
 MessageBox.Show(“The job ‘” + workerBeeJob.Text + “’ will be done in ”
 + shifts.Value + “ shifts”, “The queen bee says...”);
}

private void nextShift_Click(object sender, EventArgs e) {
 report.Text = queen.WorkTheNextShift();
}

We already gave you the constructor. Here’s the rest of the code for the form:

The queen keeps her array of workers private
because once they’re assigned, no other class
should be able to change them... or even see
them, since she’s the only one who gives them
orders. The constructor sets the field’s value.

When she assigns work to her worker bees, she starts with the first one and tries assigning him the job. If he can’t do it, she moves on to the next. When a bee who can do the job is found, the method returns (which stops the loop).

The queen’s
WorkTheNextShift() method tells each worker to work a
shift and adds a
line to the report depending on the
worker’s status.

The form uses its queen field to
keep a reference to the Queen
object, which in turn has an array
of references to the worker objects.

The assignJob button calls the queen’s AssignWork() method to assign work to a worker, and displays a messagebox depending on whether or not a worker’s available to do the job.
The nextShift button tells the queen to work the next shift. She

generates a report, which it displays in the report text box.

Download at WoweBook.Com

244 Chapter 6

Objectcross
Before you move on to the next part of the exercise,
give your brain a break with a quick crossword.

you’re not done

1

2 3

4

5

6 7

8

9 10

11

Across
5. This method gets the value of a property.
7. This method returns true if you pass it “”.
8. The constructor in a subclass class doesn’t need the same
_____ as the constructor in its base class.
9. A control on a form that lets you create tabbed applications.
11. This type of class can't be instantiated.

Down
1. A _______ can override methods from its base class.
2. If you want a subclass to override a method, mark the
method with this keyword in the base class.
3. A method in a class that’s run as soon as it’s instantiated.
4. What a subclass does to replace a method in the base
class.
6. This contains base classes and subclasses
7. What you’re doing when add a colon to a class declaration.
10. A subclass uses this keyword to call the members of the
class it inherited from.

1

2 3

4

5

6 7

8

9 10

11

Across
5. This method gets the value of a property.
7. This method returns true if you pass it “”.
8. The constructor in a subclass class doesn’t need the same
_____ as the constructor in its base class.
9. A control on a form that lets you create tabbed applications.
11. This type of class can't be instantiated.

Down
1. A _______ can override methods from its base class.
2. If you want a subclass to override a method, mark the
method with this keyword in the base class.
3. A method in a class that’s run as soon as it’s instantiated.
4. What a subclass does to replace a method in the base
class.
6. This contains base classes and subclasses
7. What you’re doing when add a colon to a class declaration.
10. A subclass uses this keyword to call the members of the
class it inherited from.

Answers on page 250.

Download at WoweBook.Com

you are here 4 245

inheritance

Add Existing Item
Whenever you have a two-part exercises, it’s always a good idea to start a new project for

the second part. That way you can always get back to the first solutio
n if you need it. An

easy way to do that is to right-click on the project name in the new project’s Solution

Explorer in the IDE, select ‘Add Existing Item’ from the menu, navigate to the old project’
s

folder, and select the files you w
ant to add. The IDE will make new copies of those files in

the new project’s folder, and add them to the project. There are a few things to watch out

for, though. The IDE will NOT change the namespace, so you’ll need to edit eac
h class file

and change its namespace line by hand. And if you add a form, make sure to add its designer

(.Designer.cs) and resource (.resx) f
iles—and make sure you change their namespaces, too.

Use inheritance to extend the
bee management system
Now that you have the basic system in place, use inheritance to let it track how much
honey each bee consumes. Different bees consume different amounts of honey, and
the queen consumes the most honey of all. So you’ll use what you’ve learned about
inheritance to create a Bee base class that Queen and Worker inherit from.

Queen
private	workers:	Worker[]
private	shiftNumber:	int

AssignWork()
WorkTheNextShift()

Worker
CurrentJob:	string
ShiftsLeft:	int
	
private	jobsICanDo:	string[]
private	shiftsToWork:	int
private	shiftsWorked:	int
DoThisJob()
WorkOneShift()

Bee
public	ShiftsLeft:	int

virtual
			GetHoneyConsumption():
			double

The Bee class has the basic honey
consumption behavior. Since honey
consumption requires the number
of shifts left, we’ll move the
ShiftsLeft property into it and
mark it virtual so the Worker can
override it.

The worker just needs to
subclass Bee overide the
ShiftsLeft method with
the one you already wrote.

The queen needs to
change her report to add
honey consumption data.
That means she needs
to add each worker’s
honey consumption—and
since she consumes honey
herself, she’ll need to
inherit from Bee and
override its virtual
GetHoneyConsumption()
method.

Sometimes we’ll show you return values and private members in class diagrams.

All bees consume honey, so we’ll add a GetHoneyConsumption() method to the base class so the queen and workers can inherit it. But bees and workers consume honey differently. We’ll make it a virtual method, so one of the subclasses can override it.

Download at WoweBook.Com

246 Chapter 6

The queen needs to know how much honey the hive uses
The queen just got a call from her accountant bees, who told her that the hive isn’t producing enough
honey. She’ll need to know how much honey she and her workers are using so she can decide whether to
divert workers from egg maintenance to honey production.

All bees eat honey, so the hive runs through a lot of honey. That’s why they need to keep making
more of it.

Worker bees use more honey when they’re working. They need the most honey when the job
starts, to give them plenty of energy for the job,. They consume less and less as the job goes on.
On the last shift the bee uses 10 units of honey, the second-to-last shift he uses 11 units, the shift
before that he uses 12 units, etc. So if the bee’s working (meaning its ShiftsLeft is greater than
zero), then you can find out how many units of honey to consume by adding 9 to ShiftsLeft.

If a bee doesn’t have a job (i.e., its ShiftsLeft is zero), he only uses 7.5 units of honey for the shift.

Those numbers are all for normal bees. If a bee weighs over 150 milligrams, it uses 35% more
honey. This doesn’t include queens, though (see below).

Queens require a lot of honey. A queen uses more honey when she’s got more workers doing
jobs, because it’s a lot of work overseeing them. She needs to consume as much honey as if she’d
worked as many shifts as the worker with the most shifts left on his job.

Then she needs even more honey: she uses 20 extra units of honey per shift if there are 2 or fewer
workers working, or 30 extra units of honey if there are 3 or more worker bees doing jobs. The
queen’s consumption isn’t subject to the 35% rule, since all queens weigh 275 milligrams.

The queen needs all the honey consumption numbers added to the end of each shift report.

≥

≥

≥

≥

≥

≥

≥

11

Create a Bee class to handle the honey calculations
Since the workers and queen all do their honey calculations in similar ways, you’ll be able to avoid
duplicating your code by having a Bee base class that Worker and Queen can inherit from. You know
that each bee needs to know its weight (so it knows whether to multiply its honey expenditure by 35%).

Create a GetHoneyConsumption() method that calculates the amount of honey that a worker
uses. Since the workers and queen all need to do this calculation but the queen needs to do extra
calculations as well, it makes sense for the worker to inherit it and the queen to override it.

The GetHoneyConsumption() method needs the number of shifts left, so add a virtual read-only
property called ShiftsLeft that returns zero. The worker’s ShiftsLeft will override it.

The honey consumption calculation needs to know the bee’s weight, so the Bee constructor will
need to take the weight as a parameter and store it in a field. Since no other class needs to use it,
you should make it private.

≥

≥

≥

22

We’re	not	done	yet!	The	queen	needs	to	keep	track	of	how	much	honey	the	hive	is	spending	on	
its	workers.	Here’s	a	perfect	chance	to	use	your	new	inheritance	skills!

Here’s a good rule of thumb. You should make fields and methods
private by default, and only make them public if another class needs
them. That way you avoid bugs in your programs caused by one class
accessing another class’s properties or methods incorrectly.

we’re all just bees

Download at WoweBook.Com

you are here 4 247

inheritance

Make the Worker class inherit from Bee
You’ll need to set up the constructor to call the base class constructor, like you did with
Kathleen. You’ll need to change the Worker constructor so that it takes the bee’s weight as
a parameter, and pass that parameter on to the base class constructor. Then, just add the
override keyword to the Worker’s ShiftLeft method. Once you do that, each worker will
be able to calculate his honey consumption for the queen... and you don’t have to make any
more changes to the Worker class!

33

Make the Queen class inherit from Bee
The Queen class needs a little more alteration than the Worker class, since she needs to actually do the
honey calculation and add it to the shift report.

Override the Bee.GetHoneyConsumption() method and add the queen’s extra calculation. She’ll
need to figure out whether she has 2 or fewer workers with jobs, so she knows whether she needs
20 or 30 units. Then she’ll need to add that to the number of units she’d use if she had the same
number of shifts left as the worker with the most shifts left.

Update the queen’s WorkTheNextShift() by adding the a honey consumption line to the
report. Add a loop to add up the honey consumptions for each worker and also find the worker
with the largest honey consumption—do it before the queen tells each worker to work each
shift (so she gets the consumption numbers for the current shift). She’ll add those up, add her
own consumption, and then add a line to the end of the shift report that says, “Total Honey
Consumption: xxx units” (where xxx is the number of units of honey consumed).

You’ll need to update the Queen constructor just like you did for Worker.

≥

≥

≥

44

Update the form to instantiate the bees properly
Since you changed the Queen and Worker constructors, you’ll also need to change the way they’re called.
Each constructor has a new Weight parameter, so you’ll need weights to use:

Worker Bee #1: 175mg; Worker Bee #2: 114mg; Worker Bee #3: 149mg;
Worker Bee#4: 155mg; Queen Bee: 275mg

That’s the only change you’ll need to make to the form!

≥

55

Hint: You can use the slightly cryptic “no overload” error message to your advantage! Have the Worker class inherit from Bee, then build your project. When the IDE displays the error, double-click on it and the IDE will jump right to the Worker constructor automatically. How convenient!

Go to the Queen class and type “public
override”—when you press the space
bar, the IDE automatically lists all the
methods you can override. Select the
method you want to override and it’ll fill
in the base method call automatically.

Download at WoweBook.Com

248 Chapter 6

public Form1() {
 InitializeComponent();

 Worker[] workers = new Worker[4];
 workers[0] = new Worker(new string[] { “Nectar collector”, “Honey manufacturing” }, 175);
 workers[1] = new Worker(new string[] { “Egg care”, “Baby bee tutoring” }, 114);
 workers[2] = new Worker(new string[] { “Hive maintenance”, “Sting patrol” }, 149);
 workers[3] = new Worker(new string[] { “Nectar collector”, “Honey manufacturing”,
 “Egg care”, “Baby bee tutoring”, “Hive maintenance”, “Sting patrol” }, 155);
 queen = new Queen(workers);
}

Inheritance made
it easy for you to
update your code
and add the new
honey consumption
behavior to the
Queen and Worker
classes. It would
have been a lot
harder to make
this change if
you’d had a lot of
duplicated code.

public class Bee {
 public Bee(double weight) {
 this.weight = weight;
 }

 public virtual int ShiftsLeft {
 get { return 0; }
 }

 private double weight;

 public virtual double GetHoneyConsumption() {
 double consumption;
 if (ShiftsLeft == 0)
 consumption = 7.5;
 else
 consumption = 9 + ShiftsLeft;
 if (weight > 150)
 consumption *= 1.35;
 return consumption;
 }
}

The only change to the form is that the
weights need to be added to the Worker
constructors.

The Bee class has a constructor that sets its Weight field and a HoneyConsumption() method that calculates how much honey a worker consumes.

If a bee has 1 shift
left, he consumes 10;
if 2 left, he consumes
11, etc. If he has no job,
then he consumes 7.5. If
ShiftsLeft is zero, then
the bee has no job.

If the bee weighs more than 150mg, then consumption goes up by 35%.

Here’s the Bee class. It does the basic honey consumption calculation that’s used by both the Worker and Queen classes.

Only the form constructor changed—the rest of the form is exactly the same.

exercise solution

Download at WoweBook.Com

you are here 4 249

inheritance

public class Worker : Bee {
 public Worker(string[] jobsICanDo, int weight)
 : base(weight) {
 this.jobsICanDo = jobsICanDo;
 }
 public override int ShiftsLeft {
 // ... the rest of the class is the same ...

All the Worker class needed was to inherit from Bee and have its constructor adjusted so that it takes a Weight parameter and passes it on to the base class constructor, and overrides the Bee.ShiftsLeft property by adding the override keyword to the property declaration.
The Queen class needed a few changes,
starting with inheriting from Bee.

This loop
looks at the
consumption
of all the
workers and
finds the
one with
the largest
consumption.

public class Queen : Bee {
 public Queen(Worker[] workers)
 : base(275) {
 this.workers = workers;
 }

 public string WorkTheNextShift()
 {
 double totalConsumption = 0;
 for (int i = 0; i < workers.Length; i++)
 totalConsumption += workers[i].GetHoneyConsumption();
 totalConsumption += GetHoneyConsumption();

 // ... here’s where the orignal code for this method goes

 report += “Total honey consumption: ” + totalConsumption + “ units”;
 return report;
 }

 public override double GetHoneyConsumption() {
 double consumption = 0;
 double largestWorkerConsumption = 0;
 int workersDoingJobs = 0;
 for (int i = 0; i < workers.Length; i++) {
 if (workers[i].GetHoneyConsumption() > largestWorkerConsumption)
 largestWorkerConsumption = workers[i].GetHoneyConsumption();
 if (workers[i].ShiftsLeft > 0)
 workersDoingJobs++;
 }
 consumption += largestWorkerConsumption;
 if (workersDoingJobs >= 3)
 consumption += 30;
 else
 consumption += 20;
 return consumption;
 }
}

The queen overrides the Bee’s
GetHoneyConsumption() method to
do her honey calculation. It finds the
worker with the largest consumption
and adds either 20 or 30 to it based
on how many workers are working.

The WorkTheNextShift() has a loop added to the top that calls each worker’s GetHoneyConsumption() method, and then calls her own GetHoneyConsumption() method to come up with a total consumption.

The queen weighs 275mg, so her constructor
calls the base Bee constructor and passes it a
weight of 275.

The rest of WorkTheNextShift() is the same,
except that it adds the honey line to the report.

If there are 3 or more workers
doing jobs, the queen needs 30
more units of honey; otherwise,
she needs 20 more units.

Download at WoweBook.Com

250 Chapter 6

Objectcross Solution

crossword solution

S
1

U V
2

C
3

B I O
4

O

A
5

C C E S S O R V N

L T E S

H
6

A I
7

S N U L L O R E M P T Y

I S N A R R

E S H L I U

R E D C

P
8

A R A M E T E R S E T

R I O

C T T
9

A B
10

C O N T R O L

H A

Y S
11

T A T I C

E

Across
5. This method gets the value of a property. [ACCESSOR]
7. This method returns true if you pass it “”.
[ISNULLOREMPTY]
8. The constructor in a subclass class doesn’t need the same
_____ as the constructor in its base class. [PARAMETERS]
9. A control on a form that lets you create tabbed applications.
[TABCONTROL]
11. This type of class can't be instantiated. [STATIC]

Down
1. A _______ can override methods from its base class.
[SUBCLASS]
2. If you want a subclass to override a method, mark the
method with this keyword in the base class. [VIRTUAL]
3. A method in a class that’s run as soon as it’s instantiated.
[CONSTRUCTOR]
4. What a subclass does to replace a method in the base
class. [OVERRIDE]
6. This contains base classes and subclasses [HIERARCHY]
7. What you’re doing when add a colon to a class declaration.
[INHERIT]
10. A subclass uses this keyword to call the members of the
class it inherited from. [BASE]

Download at WoweBook.Com

this is a new chapter 251

Okay, okay, I know I implemented
the BookieCustomer interface,
but I can’t code the PayMoney()

method until next weekend.

interfaces and abstract classes7

Making classes
keep their promises

Actions speak louder than words.
Sometimes you need to group your objects together based on the things they can

do rather than the classes they inherit from. That’s where interfaces come in—they

let you work with any class that can do the job. But with great power comes great

responsibility, and any class that implements an interface must promise to fulfill all of

its obligations... or the compiler will break their kneecaps, see?

Actions speak louder than words.
Sometimes you need to group your objects together based on the things they can

do rather than the classes they inherit from. That’s where interfaces come in—they

let you work with any class that can do the job. But with great power comes great

responsibility, and any class that implements an interface must promise to fulfill all of

its obligations... or the compiler will break their kneecaps, see?

You’ve got three days before
I send some Thug objects by to
make sure you implement the
WalksWithALimp() method.

Download at WoweBook.Com

252 Chapter 7

Let’s get back to bee-sics
The General Bee-namics corporation wants to make the
Beehive Management System you created in the last chapter
into a full-blown Hive Simulator. Here’s an overview of the
specification for the new version of the program:

General Bee-namics Hive Simulator

To better represent life in the hive, we’ll need to add specialized

capabilities to the worker bees.

All bees consume honey and have a weight.

Queens assign work, monitor shift reports, and tell workers to

work the next shift.

All worker bees work shifts.

Sting patrol bees will need to be able to sharpen their stingers,

look for enemies, and sting them.

Nectar collector bees are responsible for finding flowers,

gathering nectar and then returning to the hive.

•

•

•

•

•

The bees in the new hive simulator will still consume honey in
the same way they did before. The queen still needs to be able
to assign work to the workers and see the shift reports that
tell who’s doing what. The workers work shifts just like they
did before, too, it’s just that the jobs they are doing have been
elaborated a little bit.

The Bee and Worker classes don’t look like they’ll change much. We can extend the classes we already have to handle these new features.

Looks like we’ll need to be able to store different data for the worker bees depending on the job they do.

worker bees, unite!

Lots of things are still the same

Download at WoweBook.Com

you are here 4 253

interfaces and abstract classes

We can use inheritance to create
classes for different types of bees
Here’s a class hierarchy with Worker and Queen classes that
inherit from Bee, and Worker has subclasses NectarCollector
and StingPatrol.

Worker
Job
ShiftsToWork
ShiftsWorked
ShiftsLeft

DoThisJob()
WorkOneShift()

Bee
Weight

HoneyConsumption()

StingPatrol
StingerLength
EnemyAlert

SharpenStinger()
LookForEnemies()
Sting()

NectarCollector
Nectar

FindFlowers()
GatherNectar()
ReturnToHive()

Queen
Worker[]
ShiftNumber	

AssignWork()
WorkTheNextShift()
HoneyConsumption()

What happens if you have a bee that
needs to sting and collect nectar?

class StingPatrol : Worker
{ int StingerLength;
 bool enemyAlert;
 public bool SharpenStinger (int Length)
 {...}
 public bool LookForEnemies(){...}
 public void Sting(string Enemy){...}
}

class NectarCollector : Worker
{
 int Nectar;
 public void FindFlowers (){...}
 public void GatherNectar(){...}
 public void ReturnToHive(){...}
}

This is what the new
subclasses will look like.

Here’s where information about the weight and honey consumption is stored.

And these classes hold the information particular to each job.

Here’s where all of the information about working shifts is kept.

StingPatrol and NectarCollector inherit from the Worker class.

Remember how the queen needed extra honey? Here’s where we overrode her HoneyConsumption() method.

Download at WoweBook.Com

254 Chapter 7

NectarCollan
 o

bj
ec

t
NectalCollar

 o
bj

ec
t

An interface tells a class that it must implement
certain methods and properties
A class can only inherit from one other class. So creating two separate subclasses for
the StingPatrol and NectarCollector bees won’t help us if we have a bee
that can do both jobs.

You use an
interface to
require a class
to include all
of the methods
and properties
listed inside the
interface—if
it doesn’t, the
compiler will
throw an error.

interfaces for jobs

The queen’s DefendTheHive() method can only tell
StingPatrol objects to keep the hive safe. She’d love to train
the other bees to use their stingers, but she doesn’t have
any way to command them to attack:

There are NectarCollector objects that know how to collect nectar from flowers, and
instances of StingPatrol that can sharpen their stingers and patrol for enemies. But even
if the queen could teach the NectarCollector to defend the hive by adding methods like
SharpenStinger() and LookForEnemies() to its class definition, she still couldn’t pass it
into her DefendTheHive() method. Maybe she could use two different methods:

I wish you guys
could help defend
the hive. Queen objec

t
public class Queen {
 private void DefendTheHive(StingPatrol patroller) { ... }
}

private void DefendTheHive(StingPatrol patroller);
private void AlternateDefendTheHive(NectarCollector patroller);

Even if the queen adds sting patrol methods
to a NectarCollector object, she still can’t
pass it to her DefendTheHive() method
because it expects a StingPatrol reference.
She can’t just set a StingPatrol reference
equal to a NectarCollector object.

But that’s not a particularly good solution. Both of those methods
would be identical, because they’d call the same methods in the
objects passed to them. The only difference is that one method would
take a StingPatrol, and the other would take a NectarCollector that
happens to have the methods necessary for patrolling the hive. And
you already know how painful it is to maintain two identical methods.

Luckily, C# gives us interfaces to handle situations like that.
Interfaces let you define a bunch of methods that a class must have.

An interface requires that a class has certain methods, and the way
that it does that is that it makes the compiler throw errors if it
doesn’t find all the methods required by the interface in every class
that implements it. Those methods can be coded directly in the class,
or they can be inherited from a base class. The interface doesn’t care
how the methods or properties get there, as long as they’re there
when the code is compiled.

She could add a second method called
AlternateDefendTheHive() that takes a
NectarCollector reference instead, but that would
be cumbersome and difficult to work with.

Plus, the DefendTheHive() and
AlternateDefendTheHive() methods would be identical
except for the type of the parameter. If she wanted
to teach the BabyBeeCare or Maintenance objects to
defend the hive, she’d need to keep adding new methods.
What a mess!

Download at WoweBook.Com

you are here 4 255

interfaces and abstract classes

Queen objec
t

public interface IStingPatrol
{
 int AlertLevel { get;}
 int StingerLength { get; set;}
 bool LookForEnemies();
 int SharpenStinger(int Length);
}

public interface INectarCollector
{
 void FindFlowers();
 void GatherNectar();
 void ReturnToHive();
}

You declare an
interface like this:

Everything inside an

interface is meant to

be actually used ins
ide

another class. So a
ll of the

methods in an interf
ace are

automatically public.

Interfaces don’t store data. So they don’t have fields... but they can have properties.

You don’t write the code for t
he

methods in the inter
face, just their

names. You write the code in th
e class

that implements it.

Any class that implements this method must have all of these methods and properties, or the program won’t compile.

Everything in a
public interface
is automatically
public, because
you’ll use it to
define the public
methods and
properties of
any class that
implements it.

Interface names start with I
Whenever you create an interface, you should make
its name start with an uppercase I. There’s no rule

that says you need to do it, but it makes your code

a lot easier to understand. You can see for yourself

just how much easier that can make your life. Just
go into the IDE to any blank line inside any method

and type “I”—IntelliSense shows .NET interfaces.

Use the interface keyword to define an interface
Adding an interface to your program is a lot like adding a class,
except you never write any methods. You just define the methods’
return type and parameters, but instead of a block of statements
inside curly brackets you just end the line with a semicolon.

Interfaces do not store data, so you can’t add any fields. But
you can add definitions for properties. The reason is that get and set
accessors are just methods, and interfaces are all about forcing classes
to have certain methods with specific names, types and parameters. So
if you’ve got a problem that looks like it might be solved by adding a
field to an interface, try using a property instead – the odds are
that it’ll do what you’re looking for..

Any class that implements
this interface will need a
SharpenStinger() method that
takes an int parameter.

Now that I know you can
defend the hive, we’ll all be
a lot safer!

So how does this help the queen? Now she can make one single method that takes any
object that knows how to defend the hive:

private void DefendTheHive(IStingPatrol patroller)

This gives the queen a single method that can take a StingPatrol,
NectarStinger, and any other bee that knows how to defend the hive—it
doesn’t matter which class she passes to the method. As long as it implements
IStingPatrol, the DefendTheHive() is guaranteed that the object has the
methods and properties it needs to defend the hive.

Since this takes an
IStingPatrol reference, you
can pass it ANY object that
implements IStingPatrol.

Download at WoweBook.Com

256 Chapter 7

Q: I still don’t quite get how interfaces improve
the beehive code. You’ll still need to add a
NectarStinger class, and it’ll still have duplicate
code…right?

A:	Interfaces	aren’t	about	preventing	you	from	
duplicating	code.	They’re	about	letting	you	use	one	class	in	
more	than	one	situation.	The	goal	is	to	create	one	worker	
bee	class	that	can	do	two	different	jobs.	You’ll	still	need	
to	create	classes	for	them—that’s	not	the	point.	The	point	
of	the	interfaces	is	that	now	you’ve	got	a	way	to	have	a	
class	that	does	any	number	of	jobs.	Let’s	say	you	have	
a	PatrolTheHive()	method	that	takes	a	StingPatrol	object	
and	a	CollectNectar()	method	that	takes	a	NectarCollector	
object.	But	you	don’t	want	StingPatrol	to	inherit	from	
NectarCollector	or	vice	versa—each	class	has	public	
methods	and	properties	that	the	other	one	shouldn’t	have.	
Now	take	a	minute	and	try	to	think	of	a	way	to	create	one	
single	class	whose	instances	could	be	passed	to	both	
methods.	Seriously,	put	the	book	down,	take	a	minute	and	
try	to	think	up	a	way!	How	do	you	do	it?	
	
Interfaces	fix	that	problem.	Now	you	can	create	an	
IStingPatrol	reference—and	that	reference	can	point	to	
any	object	that	implements	IStingPatrol,	no	matter	what	
the	actual	class	is.	It	can	point	to	a	StingPatrol,	or	a	
NectarStinger,	or	even	a	totally	unrelated	object.	If	you’ve	
got	an	IStingPatrol	reference	pointing	to	an	object,	then	you	
know	you	can	use	all	of	the	methods	and	properties	that	are	
part	of	the	IStingPatrol	interface,	regardless	of	the	actual	
type	of	the	object.	
	
But	the	interface	is	only	part	of	the	solution.	You’ll	still	
need	to	create	a	new	class	that	implements	the	interface,	
because	it	doesn’t	actually	come	with	any	code.	Interfaces	
aren’t	about	avoiding	the	creation	of	extra	classes	or	
avoiding	duplicate	code.	They’re	about	making	one	class	
that	can	do	more	than	one	job	without	relying	on	inheritance,	
because	inheritance	brings	along	a	lot	of	extra	baggage—
you’ll	have	to	inherit	every	method,	property	and	field,	not	
just	the	ones	that	have	to	do	with	the	specific	job.	
	
Can	you	think	of	ways	that	you	could	still	avoid	duplicating	
code	while	using	an	interface?	You	could	create	a	separate	
class	called	Stinger	or	Proboscis	to	contain	the	code	that’s	
specific	to	stinging	or	collecting	nectar.	NectarStinger	and	
NectarCollector	could	both	create	a	private	instance	of	
Proboscis,	and	any	time	they	need	to	collect	nectar,	they’d	
call	its	methods	and	set	its	properties.

class NectarStinger : Worker, INectarCollector,
IStingPatrol {
 public int AlertLevel {
 get { return alertLevel; }
 }

 public int StingerLength {
 get { return stingerLength; }
 set {
 stingerLength = value;
 }
 }

 public bool LookForEnemies() {...}
 public int SharpenStinger(int Length)

 {...}
 public void FindFlowers() {...}
 public void GatherNectar() {...}
 public void ReturnToHive() {...}
}

You implement an interface with a colon
operator, just like you inherit.

You can use
more than one
interface if you
separate them
with commas.

Every method
in the interface
has a method
in the class.
Otherwise it
wouldn’t compile.

When you create a NectarStinger object, it
will be able to do the the job of both a
NectarCollector and a StingPatrol worker bee.

This class inherits from Worker and
implements INectarCollector and
IStingPatrol.

The NectarStinger
sets the backing
field for the
AlertLevel
property in its
LookForEnemies()
method.

When you’ve got a class that implements an interface, it acts just like
any other class. You can instantiate it with new and use its methods:

 NectarStinger bobTheBee = new NectarStinger();

 bobTheBee.LookForEnemies();

 bobTheBee.FindFlowers();

Now you can create an instance of
NectarStinger that does both jobs
You use the colon operator to declare an interface, just like you do for
inheritance. It works like this: the first thing after the colon is the class
it inherits from, followed by a list of interfaces -- unless it doesn’t inherit
from a class, in which case it’s just a list of interfaces (in no particular
order).

The bee retracts its stinger when there are no enemies around, so the backing field changes its value over time.

a little bit nectarcollector and a little bit stingpatrol

Download at WoweBook.Com

you are here 4 257

interfaces and abstract classes

Classes that implement interfaces have to
include ALL of the interface’s methods
Implementing an interface means that you have to have a method in the class
for each and every property and method that’s declared in the interface—if it
doesn’t have every one of them, it won’t compile. If a class implements more
than one interface, then it needs to include all of the properties and methods in
each of the interfaces it implements. But don’t take our word for it... Do this!

Create a new application and add a new class file called IStingPatrol.cs
Instead of adding a class, type in the IStingPatrol interface on the previous page.

11

Add a Bee class to the project
Don’t add any properties or methods yet. Just have it implement IStingPatrol:

public class Bee : IStingPatrol {

22

Try to compile the program
Select “Rebuild” from the Build menu. Uh-oh—the compiler won’t let you do it:

33

Add the methods and properties to the Bee class
Add a LookForEnemies method and a SharpenStinger method—they don’t have to
do anything, they just need to compile. Then add a get accessor for an int called AlertLevel
and get and set accessors for an int called StingerLength. Now the program will compile!

44

You’ll see one of these
“does not implement” errors
for every member of
IStingPatrol that’s not
implemented in the class.
The compiler really wants
you to implement every
method in the interface.

Download at WoweBook.Com

258 Chapter 7

public class TallGuy {
 public string Name;
 public int Height;
 public void TalkAboutYourself() {
 MessageBox.Show(“My name is ” + Name + “ and I’m ”
 + Height + “ inches tall.”);
 }
}
 private void button1_Click(object sender, EventArgs e) {
 TallGuy tallGuy = new TallGuy() { Height = 74, Name = “Jimmy” };
 tallGuy.TalkAboutYourself();
}

You don’t need to type “public” inside the interface, because it automatically makes every property and method public.

Here’s the TallGuy class, and the code for a button that creates it using an object initializer
and calls its TalkAboutYourself() method. Nothing new here—we’ll use it in a minute:

11

Let’s create an IClown interface for the class.

You already know that everything inside an interface has to be public. But don’t take our
word for it. Create a new project and declare an interface on your own, like this:

public interface IClown

Now try to declare a private method inside the interface:

private void Honk();

Select Build>>Build Solution in the IDE. You’ll see this error:

Now go ahead and delete the private access modifier—the error will go away and
your program will compile just fine.

22

Before you go on to the next page, see if you can create the rest of the IClown interface, and modify the
TallGuy class to implement this interface. Add your interface to your project just like you add a class:
right-click on the project in the Solution Explorer and add a class file called IClown.cs.

Your new IClown interface should have a void method called Honk that doesn’t take any parameters,
and a string read-only property called FunnyThingIHave that has a get accessor but no set accessor.

33

clowning around

Do this!

Get a little practice using interfaces
Interfaces are really easy to use, but the best way to understand is to
start using them. So create a new Windows Forms Application project,
drag a button onto the form, and get started!

Download at WoweBook.Com

you are here 4 259

interfaces and abstract classes

Here’s the interface—did you get it right?

public interface IClown
{
 string FunnyThingIHave { get; }
 void Honk();
}

44

Okay, now modify the TallGuy class so that it implements clown. Remember,
the colon operator is always followed by the base class to inherit from (if any),
and then a list of interfaces to implement, all separated by commas. Since
there’s no base class and only one interface to implement, the declaration looks
like this:

public class TallGuy : IClown

Then make sure the rest of the class is the same, including the two fields and the
method. Select “Build Solution” from the Build menu in the IDE to compile
and build the program. You’ll see two errors, including this one:

‘TallGuy’ does not implement interface
member ‘IClown.Honk()’X

The errors will go away as soon as you add all of the methods and properties
defined in the interface. So go ahead and implement the interface. Add a read-
only string property called FunnyThingIHave with a get accessor that always
returns the string “big shoes”. Then add a Honk() method that pops up a
message box that says, “Honk honk!”.

Here’s what it’ll look like:

public string FunnyThingIHave {

 get { return “big shoes”; }

}

public void Honk() {

 MessageBox.Show(“Honk honk!”);

}

66

Now your code will compile! Update your button so that it calls the
TallGuy object’s Honk() method.

77

All the interface requi
res is that a class th

at

implements it has a propert
y called FunnyThingIHave

with a get accessor. Yo
u can put any get acc

essor in

there, even one that
just returns the same string every

time. Most get accessors won’t do this, but this
 will

work just fine if it do
es what you need it to do

.

The interface says that you need a public void method called Honk, but it doesn’t say what that method needs to do. It can do anything at all—no matter what it does, the code will compile as long as some method is there with the right signature.

What the IDE is telling
you is that when you said
TallGuy would implement
IClown, you promised to
add all of the properties
and methods in that
interface... and then you
broke that promise!

TallGuy will implement the IClown interface.

Here’s an example of an interface that has a get accessor without a set accessor. Remember, interfaces can’t contain fields, but when you implement this read-only property in a class, it’ll look like a field to other objects.

Download at WoweBook.Com

260 Chapter 7

You can’t instantiate an interface,
but you can reference an interface
Say you had a method that needed an object that could perform
the FindFlowers() method. Any object that implemented the
INectarCollector interface would do. It could be a Worker object,
or a Robot object or a Dog object as long as it implements the
INectarCollector interface.

That’s where interface references come in. You can use
one to refer to an object that implements the interface you need
and you’ll always be sure that it has the right methods for your
purpose—even if you don’t know much else about it.

NectarStinger fred = new NectarStinger();
IStingPatrol george = fred;
The first line is an ordinary new statement, creating reference called Fred
and pointing it to a NectarStinger object.

The second line is where things start to get interesting, because that line
of code creates a new reference variable using IStingPatrol.
That line may look a little odd when you first see it. But look at this:

 NectarStinger ginger = fred;

You know what this third statement does—it creates a new NectarStinger
reference called ginger and points it at whatever object fred is
pointing to. The george statement uses IStingPatrol the same way.

Even though this
object can do
more, when you
use an interface
reference you only
have access to
the methods in
the interface.

IStingPatrol dennis = new IStingPatrol();

If you try to the
instantiate an interface,
the compiler will complain.

This won’t work…

…but this will.

You can’t use the new keyword with an interface, which makes sense—the
methods and properties don’t have any implementation. If you could
create an object from an interface, how would it know how to behave?

interfaces don’t make objects

So what happened?
There’s only one new statement, so only one object was created. The
second statement created a reference variable called george that can
point to an instance of any class that implements IStingPatrol.

NectarStinger
 o

bj
ec

t
fred

Remember how you
could pass a BLT
reference into any
class that expects a
Sandwich, because BLT
inherits from Sandwich?
Well, this is the same
thing—you can use a
NectarStinger in any
method or statement
that expects an
IStingPatrol.

george

ginger

You can create an array of IWorker
referenes, but you can’t instantiate an
interface. But what you can do is point
those references at new instances of classes
that implement IWorker. Now you can have
an array that holds many different kinds of
objects!

Download at WoweBook.Com

you are here 4 261

interfaces and abstract classes

StingPatrol
NectarCollec

to
r

NectarSting
er

StingPatrol NectarCollec
to

r

StingPatrol NectarCollec
to

r

StingPatrol NectarCollec
to

r

Interface references work just like object references
You already know all about how objects live on the heap.
When you work with an interface reference, it’s just another
way to refer to the same objects you’ve already been dealing
with. Look—it’s easy!

BERT
HABIFF

Create a couple of bees
This is totally familiar stuff by now.

StingPatrol biff = new StingPatrol();
NectarCollector bertha = new NectarCollector();

11

Add IStingPatrol and INectarCollector references
You can use interface references just like you use any other
reference type.

IStingPatrol defender = biff;
INectarCollector cutiePie = bertha;

22

BERT
HA

BIFF

defe
nder

Assign a new instance to an interface reference
You don’t actually need an object reference—you can create a new
object and assign it straight to an interface reference variable.

INectarCollector gatherer = new NectarStinger();

44
BERT

HA

defe
nder

gatherer

An interface reference will keep an object alive
When there aren’t any references pointing to an object, it
disappears. But there’s no rule that says those references all have
to be the same type! An interface reference is just as good as an
object reference when it comes to keeping track of objects.

biff = null;

33

cutie
Pie

BERT
HAdefe

nder
cutie

Pie

cutie
Pie

This object didn’t disappear
because defender is still
pointing to it.

These two statements use interfaces to
create new references to existing objects. You
can only point an interface reference at an
instance of a class that implements it.

NectarStinger
 o

bj
ec

t

Let’s assume that StingPatrol implements the
IStingPatrol interface and NectarCollector
implements the INectarCollector interface.

Download at WoweBook.Com

262 Chapter 7

Worker[] Bees = new Worker[3];

Bees[0] = new NectarCollector();

Bees[1] = new StingPatrol();

Bees[2] = new NectarStinger();

for (int i = 0; i < Bees.Length; i++)

{

 if (Bees[i] is INectarCollector)

 {

 Bees[i].DoThisJob(“Nectar Collector”, 3);

 }

}

You can find out if a class implements a
certain interface with “is”
Sometimes you need to find out if a certain class implements an interface. Suppose
we have all our worker bees in an array, called Bees. We can make the array hold
the type Worker, since all worker bees will be Worker classes, or subclasses of that
type.

But which of the worker bees can collect nectar? In other words, we want to know
if the class implements the INectarCollector interface. We can use the is
keyword to find out exactly that.

We’ve got an array of
Worker bees who are all
eligible to go on a nectar

collecting mission. So we’ll
loop though the array,
and use “is” to figure out

which ones have the right
methods and properties
to do the job.

Now that we know the bee is a nectar

collector, we can assign it the job of

collecting nectar.

is works like an equals operat
or

(==) for interfaces

If you have some other class that doesn’t inherit from Worker but does implement the
INectarCollector interface, then it’ll be able to do the job, too! But since it doesn’t inherit
from Worker, you can’t get it into an array with other bees. Can you think of a way to
get around the problem and create an array with both bees and this new class?

All the workers are in an array of Workers. We’ll use “is” to sort out which type of worker each bee is.

This is like saying, if this bee implements the INectarCollector interface... do this.

we’re expecting a big inheritance

Q: Wait a minute. When I put a
property in an interface, it looks just
like an automatic property. Does
that mean I can only use automatic
properties when I implement an
interface?

A:	No,	not	at	all.	Yes,	a	property	
inside	an	interface	looks	very	similar	
to	an	automatic	property—like	Job	
and	Left	in	IWorker	interface	on	the	
next	page.	But	they’re	definitely	not	
automatic	properties.	You	could	use	
implement	Job	like	this:	

public Job { get; private
set; }	
	
You	need	that	private	set,	because	
automatic	properties	require	you	to	
have	both	a	set	and	a	get	(even	if	
they’re	private).	But	you	could	also	
implement	it	like	this:	
	
public job { get { return
“Accountant”; } }	

	
and	the	compiler	will	be	perfectly	happy	
with	that,	too.	You	can	also	add	a	set	
accessor—the	interface	requires	a	get,	
but	it	doesn’t	say	you	can’t	have	a	set,	
too.	(If	you	use	an	automatic	property	
to	implement	it,	you	can	decide	for	
yourself	whether	you	want	the	set	to	be	
private	or	public.)

Download at WoweBook.Com

you are here 4 263

interfaces and abstract classes

Interfaces can inherit from other interfaces
When one class inherits from another, it gets all of the methods and
properties from the base class. Interface inheritance is even simpler.
Since there’s no actual method body in any interface, you don’t have
to worry about calling base constructors or methods. The inherited
interfaces simply accumulate all of the methods and properties from
the interfaces they inherit from.

(interface)
IWorker

Job
ShiftsLeft

DoThisJob()
WorkOneShift()

public interface IWorker

{

 string Job { get; }

 int Left { get; }

 void DoThisJob(string Job, int Shifts)

 void WorkOneShift()

}

public interface IStingPatrol : IWorker
{
 int AlertLevel { get;}
 int StingerLength { get; set;}
 bool LookForEnemies();
 int SharpenStinger(int Length);
}

Any class that implements an interface that inherits from
IWorker must implement its methods and properties
When a class implements an interface, it has to include every property and
method in that interface. And if that interface inherits from another one, then all
of those properties and methods need to be implemented, too.

We’ve created a new
IWorker interface that
the other interfaces
inherit from.

Here’s the same IStingPatrol
interface, but now it inherits from the IWorker interface. It looks
like a tiny change, but it makes a huge difference in any class that implements IStingPatrol.

When we draw an
interface on a class
diagram, we’ll show
inheritance using
dashed lines.

(interface)
INectarCollector
Nectar

FindFlowers()
GatherNectar()
ReturnToHive()

(interface)
IStingPatrol

StingerLength
EnemyAlert

SharpenStinger()
LookForEnemies()
Sting()

A class that implements

IStingPatrol must not only

implement these methods...
(interface)

IWorker
Job
ShiftsLeft

DoThisJob()
WorkOneShift()

...but the methods of the IWorker interface this interface inherits from, too.

Download at WoweBook.Com

264 Chapter 7

 public class RoboBee : Robot, IWorker
 {
 private int shiftsToWork;
 private int shiftsWorked;
 public int ShiftsLeft
 {get {return shiftsToWork - shiftsWorked;}}
 private string job;
 public string Job;{get{return job;}}
 public bool DoThisJob(string Job, int shiftsToWork){...}
 public void WorkOneShift() {...}
 }

The RoboBee 4000 can do a worker bee’s job
without using valuable honey
Let’s create a new bee, a RoboBee 4000, that runs on gas. We can
have it inherit from the IWorker interface, though, so it can do
everything a normal worker bee can.

 public class Robot
 {
 public void ConsumeGas() {...}
 }

The RoboBee class
implements all the
methods from the
IWorker interface.

If RoboBee didn’t implement everything in the IWorker

Interface, the code wouldn’t compile.

This is our basic Robot
class, so robots can run
on gasoline.

Any class can implement
ANY interface as long
as it keeps the promise
of implementing the
interface’s methods and
properties.

The RoboBee class inherits from Robot and implements IWorker. That means it’s a robot, but can do the job of a worker bee. Perfect!

RoboBee
ShiftsToWork
ShiftsWorked
ShiftsLeft
Job

DoThisJob()

Remember, for other classes in the application, there’s no
functional difference between a RoboBee and a normal worker
bee. They both implement the IWorker interface, so both act like
worker bees as far as the rest of the program is concerned.

But, you could distringuish between the types by using is:

if (workerBee is Robot) {
 // now we know workerBee
 // is a Robot object
}

We can see what class
or interface workerBee
implements or subclasses
with “is.”

Icanhascheezburger

Download at WoweBook.Com

you are here 4 265

interfaces and abstract classes

is tells you what an object implements,
as tells the compiler how to treat your object
Sometimes you need to call a method that an object gets from an interface it
implements. But what if you don’t know if that object is the right type? You
use is to find that out. Then, you can use as to treat that object—which
you now know is the right type—as having the method you need to call.

IWorker[] Bees = new IWorker[3];
 Bees[0] = new NectarStinger();
 Bees[1] = new RoboBee();
 Bees[2] = new Worker();

for (int i = 0; i < Bees.Length; i++) {

 if (Bees[i] is INectarCollector) {

 INectarCollector thisCollector;

 thisCollector = Bees[i] as INectarCollector;

 thisCollector.GatherNectar();

All these bees implement IWorker, but we don’t know which ones implement other interfaces, like INectarCollector.

We can’t call
INectarCollector methods
on the bees. They’re
of type IWorker, and
don’t know about
INectarCollector methods.

NOW we can call INectarCollector methods.

Take a look at the array on the left. For each of these statements,
write down which values of i would make it evaluate to true.
Also, two of them won’t compile—cross those lines out.

 IWorker[] Bees = new IWorker[8];
 Bees[0] = new NectarStinger();
 Bees[1] = new RoboBee();
 Bees[2] = new Worker();
 Bees[3] = Bees[0] as IWorker;
 Bees[4] = IStingPatrol;
 Bees[5] = null;
 Bees[6] = Bees[0];
 Bees[7] = new INectarCollector();

1. (Bees[i] is INectarCollector)

2. (Bees[i] is IStingPatrol)

3. (Bees[i] is IWorker)

We’re looping through each bee...

...and checking to
see if it implements
INectarCollector.

We use “as” to say,
treat this object AS
an INectarCollector
implementation.

Download at WoweBook.Com

266 Chapter 7

 IWorker[] Bees = new IWorker[8];
 Bees[0] = new NectarStinger();
 Bees[1] = new RoboBee();
 Bees[2] = new Worker();
 Bees[3] = Bees[0] as IWorker;
 Bees[4] = IStingPatrol;
 Bees[5] = null;
 Bees[6] = Bees[0];
 Bees[7] = new INectarCollector();

1. (Bees[i] is INectarCollector)

2. (Bees[i] is IStingPatrol)

3. (Bees[i] is IWorker)

0 and 6

0, 6

0, 1, 2, 3, and 6

Take a look at the array on the left. For each of these statements,
write down which values of i would make it evaluate to true.
Also, two of them won’t compile—cross them out.

NectarStinger()
implements the
IStingPatrol
interface.

A CoffeeMaker is also an Appliance
If you’re trying to figure out how to cut down your energy bill each month, you
don’t really care what each of your appliances does. You only really care that they
consume power. So if you were writing a program to monitor your electricity
consumption, you’d probably just write an Appliance class. But if you needed to
be able to distinguish a coffee maker from an oven, you’d have to build a class
hierarchy. So you’d add the methods and properties that are specific to a coffee
maker or oven to some CoffeeMaker and Oven classes, and they’d inherit from an
Appliance class that has their common methods and properties..

it looks like one thing, but it’s really another!

CoffeeMaker
CoffeeLeft

FillWithWater()
MakeCoffee()

Appliance
PluggedIn
Color

ConsumePower()

Oven
Capacity

Preheat()
HeatUp()
Reheat()

public void MonitorPower(Appliance appliance) {

 // code to add data to a household
 // power consumption database

}

 CoffeeMaker misterCoffee = new CoffeeMaker();

 MonitorPower(misterCoffee);

Here’s a method
in the program to
monitor the power
consumption for a
house.

This code would appear later on in the
program to monitor the coffee maker’s
power consumption.

Even though the MonitorPower() method takes a reference to an Appliance object, you can pass it the misterCoffee reference because CoffeeMaker is a subclass of Appliance.

You already saw this
in the last chapter,
when you saw how
you could pass a
BLT reference to
a method that
expected a Sandwich.

Download at WoweBook.Com

you are here 4 267

interfaces and abstract classes

Upcasting works with both objects and interfaces
When you substitute a subclass for a base class—like substituting a coffee maker for an
appliance or a BLT for a sandwich—it’s called upcasting. It’s a really powerful tool
that you get when you build class hierarchies. The only drawback to upcasting is that
you can only use the properties and methods of the base class. In other words, when you
treat a coffee maker like an appliance, you can’t tell it to make coffee or fill it with water.
But you can tell whether or not it’s plugged in, since that’s something you can do with
any appliance (which is why the PluggedIn property is part of the Appliance class).

Let’s create some objects
We can create a CoffeeMaker and Oven class as usual:

 CoffeeMaker misterCoffee = new CoffeeMaker();

 Oven oldToasty = new Oven();

11

What if we want to create an array of appliances?
You can’t put a CoffeeMaker in an Oven[] array, and you can’t put an Oven in a
CoffeeMaker[] array. But you can put both of them in an Appliance[] array:

 Appliance[] kitchenWare = new Appliance[2];

 kitchenWare[0] = misterCoffee;

 kitchenWare[1] = oldToasty;

22

But you can’t treat an appliance like an oven
When you’ve got an Appliance reference, you can only access the methods and properties
that have to do with appliances. You can’t use the coffee maker methods and properties
through the Appliance reference even if you know it’s really a CoffeeMaker. So these
statements will work just fine, because they treat a CoffeeMaker object like an Appliance:

 Appliance powerConsumer = new CoffeeMaker();

 powerConsumer.ConsumePower();

But as soon as you try to use it like a Coffee Maker:

 powerConsumer.MakeCoffee();

your code won’t compile, and the IDE will displays an error:

because once you upcast from a subclass to a base class, then you can only access the
methods and properties that match the reference that you’re using to access the object.

33

‘Appliance’ does not contain a
definition for ‘MakeCoffee’X CoffeeMaker o

bj
ec

tpowe
r

cons
umer

This line won’t compile because powerConsumer is an Appliance reference, so it can only be used to do Appliance things.

You can use upcasting to c
reate an

array of appliances that
can hold

both coffee makers and ovens.

We’ll start by instantiating
an Oven object and a
CoffeeMaker object as usual.

powerConsumer
is an Appliance
reference
pointing to a
CoffeeMaker
object.

Download at WoweBook.Com

268 Chapter 7

upcasting is easy downcasting is risky

When downcasting fails, as returns null
So what happens if you try to use as to convert an Oven object into a
CoffeeMaker? It returns null—and if you try to use it, .NET will cause your
program to break.

 if (powerConsumer is CoffeeMaker) {

 Oven foodWarmer = powerConsumer as Oven;

 foodWarmer.Preheat();

 }

Downcasting lets you turn your appliance
back into a coffee maker
Upcasting is a great tool, because it lets you use a coffee maker or an oven
anywhere you just need an appliance. But it’s got a big drawback—if you’re using
an Appliance reference that points to a CoffeeMaker object, you can only use the
methods and properties that belong to Appliance. And that’s where downcasting
comes in: that’s how you take your previously upcast reference and change
it back. You can figure out if your Appliance is really a CoffeeMaker using the
is keyword. And once you know that, you can convert the Appliance back to a
CoffeeMaker using the as keyword.

We’ll start with the coffee maker we already upcast
Here’s the code that we used:

 Appliance powerConsumer = new CoffeeMaker();

 powerConsumer.ConsumePower();

11

CoffeeMaker o
bj

ec
tpowe

r

cons
umer

But what if we want to turn the Appliance back into a CoffeeMaker?
The first step in downcasting is using the is keyword to check if it’s even an option.

 if (powerConsumer is CoffeeMaker)

 // then we can downcast!

22

Now that we know it’s a CoffeeMaker, let’s use it like one
The is keyword is the first step. Once you know that you’ve got an Appliance
reference that’s pointing to a CoffeeMaker object, you can use as to downcast it.
And that lets you use the CoffeeMaker class’s methods and properties. And since
CoffeeMaker inherits from Appliance, it still has its Appliance methods and properties.

 if (powerConsumer is CoffeeMaker) {

 CoffeeMaker javaJoe = powerConsumer as CoffeeMaker;

 javaJoe.MakeCoffee();

 }

33

CoffeeMaker o
bj

ec
tpowe

r

cons
umer

javaJ
oe

Here’s our Appliance
reference that points
to a CoffeeMaker
object from the last
page.

The javaJoe reference
points to the same
CoffeeMaker object
as powerConsumer. But
it’s a CoffeeMaker
reference, so it can
call the MakeCoffee()
method.

powerConsumer is NOT an Oven object. So when
you try to downcast it with “as”, the foodWarmer reference ends up set to null. And when you try
to use a null reference, this happens...

Uh-oh—these
don’t match!

Download at WoweBook.Com

you are here 4 269

interfaces and abstract classes

Upcasting and downcasting work with interfaces, too
You already know that is and as work with interfaces. Well, so do all of the
upcasting and downcasting tricks. Let’s add an ICooksFood interface for any
class that can heat up food. And we’ll add a Microwave class—both Microwave
and Oven implement the ICooksFood interface. Now there are three different
ways that you can access an Oven object. And the IDE’s IntelliSense can help
you figure out exactly what you can and can’t do with each of them:

(interface)
ICooksFood

Capacity

HeatUp()
Reheat()

Oven
Capacity

Preheat()
HeatUp()
Reheat()

Microwave
Capacity

HeatUp()
Reheat()
MakePopcorn()

Any class that
implements
ICooksFood
is an appliance
that can heat
up food.

Three different
references that
point to the
same object can
access different
methods and
properties,
depending on
the reference’s
type.

ICooksFood cooker;

if (misterToasty is ICooksFood)

 cooker = misterToasty as ICooksFood;

 cooker.

Appliance powerConsumer;

if (misterToasty is Appliance)

 powerConsumer = misterToasty;

 powerConsumer.

Oven misterToasty = new Oven();

misterToasty.

misterToasty is an Oven reference pointing to an Oven object, so it can access all of the methods and properties... but it’s the least general type, so you can only point it at Oven objects.

cooker is an ICooksFood reference
pointing to that same Oven object. It
can only access ICooksFood members
But it can also point to a Microwave
object.

powerConsumer is an
Appliance reference. It
only lets you get to the
public fields, methods and
properties in Appliance.
You can also point it at
a CoffeeMaker object if
you want.

As soon as you
type the dot,
the IntelliSense
window will pop
up with a list
of all of the
members you can
use.

Download at WoweBook.Com

270 Chapter 7

Q:So back up—you told me that I
can always upcast but I can’t always
downcast. Why?

A:Because	the	compiler	can	warn	you	
if	your	upcast	is	wrong.	The	only	time	an	
upcast	won’t	work	is	if	you’re	trying	to	set	an	
object	equal	to	a	class	that	it	doesn’t	inherit	
from	or	an	interface	that	it	doesn’t	implement.	
And	the	compiler	can	figure	out	immediately	
that	you	didn’t	upcast	properly,	and	will	give	
you	an	error.	
	
On	the	other	hand,	the	compiler	doesn’t	
know	how	to	check	if	you’re	downcasting	
from	an	object	or	interface	reference	to	a	
reference	that’s	not	valid.	That’s	because	it’s	
perfectly	legal	to	put	any	class	or	interface	
name	on	the	right-hand	side	of	the	as	
keyword.	If	the	downcast	is	illegal,	then	the	
as	statement	will	just	return	null.	And	
it’s	a	good	thing	that	the	compiler	doesn’t	
stop	you	from	doing	that,	because	there	are	
plenty	of	times	when	you’d	want	to	do	that.

Q:Someone told me that an interface
is like a contract, but I don’t really get
why. What does that mean?

A:Yes,	we’ve	heard	that	too—a	lot	
of	people	like	to	say	that	an	interface	is	
like	a	contract.	(That’s	a	really	common	
question	on	job	interviews.)	And	it’s	true,	to	
some	extent.	When	you	make	your	class	
implement	an	interface,	you’re	telling	the	
compiler	that	you	promise	to	put	certain	
methods	into	it.	The	compiler	will	hold	you	to	
that	promise.	
	
But	we	think	that	it’s	easier	to	remember	
how	interfaces	work	if	you	think	of	an	
interface	as	a	kind	of	checklist.	The	compiler	
runs	through	the	checklist	to	make	sure	that	
you	actually	put	all	of	the	methods	from	the	
interface	into	your	class.	If	you	didn’t,	it’ll	
bomb	out	and	not	let	you	compile.

Q:What if I want to put a method body
into my interface? Is that okay?

A:No,	the	compiler	won’t	let	you	do	
that.	An	interface	isn’t	allowed	to	have	any	
statements	in	it	at	all.	Even	though	you	use	
the	colon	operator	to	implement	an	interface,	
it’s	not	the	same	thing	as	inheriting	from	a	
class.	Implementing	an	interface	doesn’t	
add	any	behavior	to	your	class	at	all,	or	
make	any	changes	to	it.	All	it	does	is	tell	the	
compiler	to	make	sure	that	your	class	has	
all	of	the	methods	that	the	interface	says	it	
should	have.

Q:Then why would I want to use an
interface? It seems like it’s just adding
restrictions, without actually changing
my class at all.

A:Because	when	your	class	implements	
an	interface,	then	an	interface	reference	can	
point	to	any	instance	of	that	class.	And	that’s	
really	useful	to	you—it	lets	you	create	one	
reference	type	that	can	work	a	whole	bunch	
of	different	kinds	of	objects.	
	
Here’s	a	quick	example.	A	horse,	an	ox,	a	
mule,	and	a	steer	can	all	pull	a	cart.	But	
in	our	zoo	simulator,	Horse,	Ox,	Mule,	and	
Steer	would	all	be	different	classes.	Let’s	say	
you	had	a	cart-pulling	ride	in	your	zoo,	and	
you	wanted	to	create	an	array	of	any	animal	
that	could	pull	carts	around.	Uh-oh—you	
can’t	just	create	an	array	that	will	hold	all	
of	those.	If	they	all	inherited	from	the	same	
base	class,	then	you	could	create	an	array	
of	those.	But	it	turns	out	that	they	don’t.	So	
what’ll	you	do?	
	
That’s	where	interfaces	come	in	handy.	You	
can	create	an	IPuller	interface	that	has	
methods	for	pulling	carts	around.	Now	you	
could	declare	your	array	like	this:	
	
IPuller[] pullerArray;	

			
Now	you	can	put	a	reference	to	any	
animal	you	want	in	that	array,	as	long	as	it	
implements	the	IPuller	interface.

Q:Is there an easier way to implement
interfaces? It’s a lot of typing!

A:	Why	yes,	there	is!	The	IDE	gives	you	
a	very	powerful	shortcut	that	automatically	
implements	an	interface	for	you.	Just	start	
typing	your	class:	
	
		public class
 Microwave : ICooksFood
 { }

Click	on	ICooksFood—you’ll	see	a	small	bar	
appear	underneath	the	“I”.	Hover	over	it	and	
you’ll	see	an	icon	appear	underneath	it:	
	
	
	
	
	
Click	on	icon	and	choose	“Implement	
Interface	‘ICooksFood’”	from	the	menu.	It’ll	
automatically	add	any	members	that	you	
haven’t	implemented	yet.	Each	one	has	a	
single	throws	statement	in	it—they’ll	
cause	your	program	to	halt,	as	a	reminder	
in	case	you	forget	to	implement	one	of	them	
(You’ll	learn	about	throws	in	chapter	10.)

An interface is like
a checklist that the
compiler runs through
to make sure your
class implemented a
certain set of methods.

no dumb questions

Download at WoweBook.Com

you are here 4 271

interfaces and abstract classes

Start with the IClown interface from the last “Do This!” on page 258
 public interface IClown {
 string FunnyThingIHave { get; }
 void Honk();
}

11

Extend	the	IClown	interface	and	use	classes	that	implement	it.

Extend IClown by creating a new interface, IScaryClown, that
inherits from IClown. It should have an additional string
property called ScaryThingIHave with a get accessor but no set
accessor, and a void method called ScareLittleChildren().

22

Create these classes:

A funny clown class called FunnyFunny that uses a private string
variable to store a funny thing, and use a constructor that takes
a parameter called funnyThingIHave and uses it to set the
private field. The Honk()method should say, “Honk honk! I have
a ” followed by the funny thing it has. The FunnyThingIHave set
accessor should return the same thing.

A scary clown class called ScaryScary that uses a private variable to
store an integer that was passed to it by its constructor in a parameter
called numberOfScaryThings. The ScaryThingIHave get
accessor should return a string consisting of the number from the
constructor followed by “spiders”. The ScareLittleChildren()
pops up a message box that says, “Boo! Gotcha!”

≥

≥

33

Here’s code for a button—but it’s not working. Can you figure out how to fix it?

private void button1_Click(object sender, EventArgs e) {
 ScaryScary fingersTheClown = new ScaryScary(“big shoes”, 14);
 FunnyFunny someFunnyClown = fingersTheClown;
 IScaryClown someOtherScaryclown = someFunnyClown;
 someOtherScaryclown.Honk();
}

44

You better get this
one right... or else!

Fingers the Clown is scary.

IClown
(interface)

FunnyThingIHave

Honk()

ScaryScary
ScaryThingIHave

ScareLittleChildern()

FunnyFunny
FunnyThingIHave

Honk()

IScaryClown
(interface)

ScaryThingIHave

ScareLittleChildern()

Download at WoweBook.Com

272 Chapter 7

Extend	the	IClown	interface	and	use	classes	that	implement	it.

public interface IClown {
 string FunnyThingIHave { get; }
 void Honk();
}
 public interface IScaryClown : IClown {
 string ScaryThingIHave { get; }
 void ScareLittleChildren();
}
 public class FunnyFunny : IClown {
 public FunnyFunny(string funnyThingIHave) {
 this.funnyThingIHave = funnyThingIHave;
 }
 private string funnyThingIHave;
 public string FunnyThingIHave {
 get { return “Honk honk! I have ” + funnyThingIHave; }
 }
 public void Honk() {
 MessageBox.Show(this.FunnyThingIHave);
 }
}

public class ScaryScary : FunnyFunny, IScaryClown {
 public ScaryScary(string funnyThingIHave, int numberOfScaryThings)
 : base(funnyThingIHave) {
 this.numberOfScaryThings = numberOfScaryThings;
 }
 private int numberOfScaryThings;
 public string ScaryThingIHave {
 get { return “I have ” + numberOfScaryThings + “ spiders”; }
 }
 public void ScareLittleChildren() {
 MessageBox.Show(“Boo! Gotcha!”);
 }
}
 private void button1_Click(object sender, EventArgs e) {
 ScaryScary fingersTheClown = new ScaryScary(“big shoes”, 14);
 FunnyFunny someFunnyClown = fingersTheClown;
 IScaryClown someOtherScaryclown = someFunnyClown as ScaryScary;
 someOtherScaryclown.Honk();
}

Since ScaryScary is a subclass of FunnyFunny and FunnyFunny implements IClown, ScaryScary implements IClown too.

You can set a FunnyFunny reference equal to a ScaryScary object because ScaryScary inherits from FunnyFunny. But you can’t set any IScaryClown reference to just any clown, because you don’t know if that clown is scary. That’s why you need to use the as keyword.

no no! nooo! noo! no more scary clowns!

You could have
implemented the
IClown method and
property again, but
why not just inherit
from FunnyFunny?

The Honk()
method just uses
this set accessor
to display its
message—no need
to have the same
code twice.

You can also use the someOtherscaryClown reference to call
ScareLittleChildren()—but you can’t get to it from the
someFunnyClown reference.

Download at WoweBook.Com

you are here 4 273

interfaces and abstract classes

There’s more than just public and private
You already know how important the private keyword is, how you use it, and
how it’s different from public. C# has a name for them: they’re called access
modifiers. The name makes sense, because when you change an access
modifier on a property, field, or method of a class—its members—or the
entire class, you change the way other classes can access it. There are a few more
access modifiers that you’ll use, but we’ll start with the ones you know:

public means that anyone can access it
When you mark a class or class member public, you’re telling C# that any instance of any
other class can access it. It’s the least restrictive access modifier. And you’ve already seen how
it can get you in trouble—only mark class members public if you have a reason. That’s how
you make sure your clases are well-encapsulated.

≥≥

We call a class’s methods, fields and properties its members. Any member can be marked with the public or private access modifier.

private means that only other members can access it
When you mark a class member private, then it can only be accessed from other members
inside that class or other instances of that class. You can’t mark a class private—
unless that class lives inside another class, in which case it’s only available to instances
of its container class. Then it’s private by default, and if you want it to be public you need to
mark it public.

≥≥

protected means public to subclasses, private to everyone else
You’ve already seen how a subclass can’t access the private fields in its base class—it has
to use the base keyword to get to the public members of the base object. Wouldn’t it
be convenient if the subclass could access those private fields? That’s why you have the
protected access modifier. Any class member marked protected can be accessed by
any other member of its class, and any member of a subclass of its class.

≥≥

internal means public only to other classes in an assembly
The built-in .NET Framework classes are assemblies—libraries of classes that are in your
project’s list of references. You can see a list of assemblies by right-clicking on “References”
in the Solution Explorer and choosing “Add Reference...”—when you create a new Windows
Forms Application, the IDE automatically includes the references you need to build a
Windows application. When you build an assembly, you can use the internal keyword to
keep classes private to that assembly, so you can only expose the classes you want. You can
combine this with protected – anything you mark protected internal can only be accessed
from within the assembly or from a subclass.

≥≥

sealed says that this class can’t be subclassed
There are some classes which you just can’t inherit from. A lot of the .NET Framework
classes are like this—go ahead, try to make a class that inherits from String (that’s the class
whose IsEmptyOrNull() method you used in the last chapter.) What happens? The compiler
won’t let you build your code—it gives you the error, “cannot derive from sealed type
‘string’”. You can do that with your own classes—just add sealed after the access modifier.

≥≥

If you leave off the
access modifier when
you declare a class
member, it defaults
to private.

If you leave off the access
modifier when you declare
a class or an interface,
then by default it’s set to
internal. And that’s just
fine for most classes—it
means that any other class
in the assembly can read it.
If you’re not using multiple
assemblies, internal will
work just as well as public
for classes and interfaces.
Give it a shot—go to an
old project, change some
of the classes to internal,
and see what happens.

Sealed is a modifier,
but it’s not an access
modifier. That’s
because it only affects
inheritance – it doesn’t
change the way class
can be accessed.

Download at WoweBook.Com

274 Chapter 7

public class FunnyFunny : IClown {
 public FunnyFunny(string funnyThingIHave) {
 this.funnyThingIHave = funnyThingIHave;
 }
 protected string funnyThingIHave;
 public string FunnyThingIHave {
 get { return “Honk honk! I have ” + funnyThingIHave; }
 }

 public void Honk() {
 MessageBox.Show(this.FunnyThingIHave);
 }
}

Access modifiers change scope
Let’s take a closer look at the access modifers, and how they affect the scope
of the various class members. We made two changes: the funnyThingIHave
backing field is now protected, and we changed the ScareLittleChildren()
method so that it uses the funnyThingIHave field:

public interface IClown {
 string FunnyThingIHave { get; }
 void Honk();
}

public interface IScaryClown : IClown {
 string ScaryThingIHave { get; }
 void ScareLittleChildren();
}

This is a really common way to
use “this”, since the parameter
and backing field have the same
name. funnyThingIHave refers
to the parameter, while this.
funnyThingIHave is the backing field.

Make these two changes to your own execrise solution. Then change the protected access modifier back to private and see what errors you get.

By adding
“this”, we told
C# that we’re
talking about
the backing
field, not the
parameter that
has the same
name.

minty fresh scope

The “this” keyword also changes the scope
of a variable. It says to C#, “Look at
the current instance of the class to find
whatever I’m connected to—even if that
matches a parameter or local variable.”

When you use “this” with a property, it
tells C# to execute the set or get
accessor.

We changed this to protected.
Look and see how it affects the ScaryScary.ScareLittleChildren() method.

Here are two interfaces. IClown defines a clown who honks his
horn and has a funny thing. IScaryClown inherits from clown. A
scary clown does everything a clown does, plus he has a scary thing
and scares little children.

11

 The FunnyFunny class implements the IClown interface. We made the funnyThingIHave
field protected so that it can be accessed by any instance of a subclass of FunnyFunny.

22

Download at WoweBook.Com

you are here 4 275

interfaces and abstract classes

private void button1_Click(object sender, EventArgs e) {
 ScaryScary fingersTheClown = new ScaryScary(“big shoes”, 14);
 FunnyFunny someFunnyClown = fingersTheClown;
 IScaryClown someOtherScaryclown = someFunnyClown as ScaryScary;
 someOtherScaryclown.Honk();
}

public class ScaryScary : FunnyFunny, IScaryClown {
 public ScaryScary(string funnyThingIHave,
 int numberOfScaryThings)
 : base(funnyThingIHave) {
 this.numberOfScaryThings = numberOfScaryThings;
 }

 private int numberOfScaryThings;
 public string ScaryThingIHave {
 get { return “I have ” + numberOfScaryThings + “ spiders”; }
 }

 public void ScareLittleChildren() {
 MessageBox.Show(“You can’t have my ”
 + base.funnyThingIHave);
 }
}

The protected keyword
tells C# to make something
private to everyone except
instances of a subclass.

If we’d left funnyThingIHave private, this would cause the compiler to give you an error. But when we changed it to protected, that made it visible to any subclass of FunnyFunny.

Since this button click
event handler is not
part of FunnyFunny and
ScaryScary, it can’t
access the protected
funnyThingIHave field. It’s outside of both classes, so the statements

inside it only have access to the public members
of any FunnyFunny or ScaryScary objects.

The “base” keyword tells C# to use the value from the base class. That’s another way to change scope.

Access Modifiers
Up Close

numberOfScaryThings
is private, which is
typical of a backing
field. So only another
instance of ScaryScary
would be able to see it.

 The ScaryScary class implements the IScaryClown
interface. It also inherits from FunnyFunny, and since
FunnyFunny implements IClown, that means ScaryScary
does, too. Take a look at how the ScareLittleChildren()
method accesses the funnyThingIHave backing field—it can do
that because we used the protected access modifier. If we’d made
it private instead, then this code wouldn’t compile.

33

Here’s a button that instantiates FunnyFunny and ScaryScary. Take a look at how it uses as to
downcast someFunnyClown to an IScaryClown reference.

44

Download at WoweBook.Com

276 Chapter 7

Q: Why would I want to use an
interface instead of just writing all of the
methods I need directly into my class?

A:	You	might	end	up	with	a	lot	of	different	
classes	as	you	write	more	and	more	
complex	programs.		Interfaces	let	you	group	
those	classes	by	the	kind	of	work	they	do.	
They	help	you	be	sure	that	every	class	that’s	
going	to	do	a	certain	kind	of	work	does	it	
using	the	same	methods.	The	class	can	do	
the	work	however	it	needs	to	and,	because	
of	the	interface,	you	don’t	need	to	worry	
about	how	it	does	it	just	to	get	the	job	done.	
	
Here’s	an	example:	you	can	have	a	
truck	class	and	a	sailboat	class	that	
implement	ICarryPassenger.	Say	
the	ICarryPassenger	interface	
stipulates	that	any	class	that	implements	
it	has	to	have	a	ConsumeEnergy()	
method.		Your	program	could	use	them	
both	to	carry	passengers	even	though	the	
sailboat	class’s	ConsumeEnergy()	
method	uses	wind	power	and	the	truck	
class’s	method	uses	diesel	fuel.	
	
Imagine	if	you	didn’t	have	the	
ICarryPassenger	interface.	Then	it	
would	be	tough	to	tell	your	program	which	
vehicles	could	carry	people	and	which	
couldn’t.	You	would	have	to	look	through	
each	class	that	your	program	might	use	
and	figure	out	whether	or	not	there	was	a	
method	for	carrying	people	from	one	place	to	
another.		Then	you’d	have	to	call	each	of	the	
vehicles	your	program	was	going	to	use	with	
whatever	method	was	defined	for	carrying	
passengers.		And	since	there’s	no	standard	
interface,	they	could	be	named	all	sorts	of	
things	or	buried	inside	other	methods.	You	
can	see	how	that’ll	get	confusing	pretty	fast.		

Q:Why do I need to use a property?
Can’t I just include a field?

A:	Good	question.	An	interface	only	defines	
the	way	a	class	should	do	a	specific	kind	of	job.		
It’s	not	an	object	by	itself,	so	you	can’t	instantiate	
it	and	it	can’t	store	information.	If	you	added	a	
field	that	was	just	a	variable	declaration,	then	C#	
would	have	to	store	that	data	somewhere—and	
an	interface	can’t	store	data	by	itself.	A	property	
is	a	way	to	make	something	that	looks	like	a	field	
to	other	objects,	but	since	it’s	really	a	method,	it	
doesn’t	actually	store	any	data.

Q:What’s the difference between a
regular object reference and an interface
reference?

A:	You	already	know	how	a	regular,	
everyday	object	reference	works.		If	you	
create	a	instance	of	Skateboard	
called	VertBoard,	and	then	a	new	
reference	to	it	called	HalfPipeBoard,	
they	both	point	to	the	same	thing.		But	if	
Skateboard	implements	the	interface
IStreetTricks	and	you	create	an	
interface	reference	to	Skateboard called	
StreetBoard,	it	will	only	know	the	
methods	in	the	Skateboard	class	that	are		
also	in	the	IStreetTricks interface.		
	
	All	three	references	are	actually	pointing	to	the	
same	object.		If	you	call	the	object	using	the	
HalfPipeBoard	or	VertBoard	
references,	you’ll	be	able	to	access	any	
method	or	property	in	the	object.	If	you	call	
it	using	the	StreetBoard	reference,	
you’ll	only	have	access	to	the	methods	and	
properties	in	the	interface.		

Q: Then why would I ever want to use
an interface reference if it limits what I
can do with the object?

A:	Interface	references	give	you	a	way	
of	working	with	a	bunch	of	different	kinds	
of	objects	that	do	the	same	thing.		You	
can	create	an	array	using	the	interface	
reference	type	that	will	let	you	pass	
information	to	and	from	the	methods	in	
ICarryPassenger	whether	your	
working	with	a	truck	object,	a	horse	object,	
a	unicycle	object,	or	a	car	object.		The	way	
each	of	those	objects	do	the	job	is	probably	
a	little	different,	but	with	interface	references,	
you	know	that	they	all	have	the	same	
methods	that	take	the	same	parameters	and	
have	the	same	return	types.	So,	you	can	call	
them	and	pass	information	to	them	in	exactly	
the	same	way.	

Q: Why would I make something
protected instead of private or public?

A:	Because	it	helps	you	encapsulate	your	
classes	better.	There	are	a	lot	of	times	that	a	
subclass	needs	access	to	some	internal	part	
of	its	base	class.	For	example,	if	you	need	
to	override	a	property,	it’s	pretty	common	to	
use	the	backing	field	in	the	base	class	in	the	
get	accessor,	so	that	it	returns	some	sort	of	
variation	of	it.	But	when	you	build	classes,	
you	should	only	make	something	public	
if	you	have	a	reason	to	do	it.	Using	the	
protected	access	modifier	lets	you	expose	it	
only	to	the	subclass	that	needs	it,	and	keep	
it	private	to	everyone	else.

Interface references
only know about
the methods and
properties that
are defined in the
interface.

eew, duplicate code!

Download at WoweBook.Com

you are here 4 277

interfaces and abstract classes

Some classes should never be instantiated

Let’s start with a basic class for a student shopping at the student bookstore.

public class Shopper {

 public void ShopTillYouDrop()

 while (TotalSpent < CreditLimit)

 BuyFavoriteStuff();

 }

 public virtual void BuyFavoriteStuff () {

 // No implementation here - we don’t know

 // what our student likes to buy!

 }

}

Here’s the ArtStudent class—it subclasses Shopper:

public class ArtStudent : Shopper {

 public override void BuyFavoriteStuff () {

 BuyArtSupplies();

 BuyBlackTurtlenecks();

 BuyDepressingMusic();

 }

}

And the EngineeringStudent class also inherits from Shopper:

public class EngineeringStudent : Shopper {

 public override void BuyFavoriteStuff () {

 BuyPencils();

 BuyGraphingCalculator();

 BuyPocketProtector();

 }

}

Remember our zoo simulator class hierarchy? You’ll definitely end up
instantiating a bunch of hippos, dogs and lions. But what about the
Canine and Feline classes? How about the Animal class? It turns out that
there are some classes that just don’t need to be instantiated... and, in fact,
don’t make any sense if they are. Here’s an example.

Shopper
TotalSpent
CreditLimit

ShopTillYouDrop()
BuyFavoriteStuff()

ArtStudent

BuyFavoriteStuff()

Engineering
Student

BuyFavoriteStuff()

The ArtStudent and
EngineeringStudent
classes both override
the BuyFavoriteStuff()
method, but they buy
very different things.

So what happens when you instantiate Shopper? Does it ever make sense to do it?

Download at WoweBook.Com

278 Chapter 7

A method that has a declaration but no statements or method body is called an abstract method. Inheriting classes must implement all abstract methods, just like when they inherit from an interface.

An abstract class is like a cross
between a class and an interface
Suppose you need something like an interface, that requires classes to
implement certain methods and properties. But you need to include some
code in that interface, so that certain methods don’t have to be implemented
in each inheriting class. What you want is an abstract class. You get the
features of an interface, but you can write code in it like a normal class.

Only abstract classes can have abstract methods. If you put an abstract method into a class, then you’ll have to mark that class abstract or it won’t compile. You’ll learn more about how to mark a class abstract in a minute.

An abstract class is like a normal class
You define an abstract class just like a normal one. It has fields and
methods, and you can inherit from other classes, too, exactly like with
a normal class. There’s almost nothing new to learn here, because
you already know everything that an abstract class does!

≥≥

An abstract class is like an interface
When you create a class that implements an interface, you agree to
implement all of the properties and methods defined in that interface.
An abstract class works the same way—it can include declarations
of properties and methods that, just like in an interface, must be
implemented by inheriting classes.

≥≥

But an abstract class can’t be instantiated
The biggest difference between an abstract class and a concrete
class is that you can’t use new to create an instance of an abstract
class. If you do, C# will give you an error when you try to compile
your code.

≥≥

The opposite of abstract
is concrete. A concrete
method is one that has a
body, and all the classes
you’ve been working with so
far are concrete classes.

This error is because you have abstract methods without any code! The compiler won’t let you instantiate a class with missing code, just like it wouldn’t let you instantiate an interface.

Cannot create an instance of the
abstract class or interface ‘MyClass’X

i can’t believe it’s not an interface!

Download at WoweBook.Com

you are here 4 279

interfaces and abstract classes

Because you want to provide some code, but
still require that subclasses fill in the rest of the code.
Sometimes bad things happen when you create objects that should never be
created. The class at the top of your class diagram usually has some fields that it
expects its subclasses to set. An Animal class may have a calculation that depends
on a boolean called HasTail or Vertebrate, but there’s no way for it to set that itself.

Here’s an example...

public class Venus : PlanetMission {
 public Venus() {
 MilesToPlanet = 40000000;
 RocketFuelPerMile = 100000;
 RocketSpeedMPH = 25000;
 }
}
 public class Mars : PlanetMission {
 public Mars() {
 MilesToPlanet = 75000000;
 RocketFuelPerMile = 100000;
 RocketSpeedMPH = 25000;
 }
}

public class PlanetMission {
 public long RocketFuelPerMile;
 public long RocketSpeedMPH;
 public int MilesToPlanet;
 public long UnitsOfFuelNeeded() {
 return MilesToPlanet * RocketFuelPerMile;
 }
 public int TimeNeeded() {
 return MilesToPlanet / (int) RocketSpeedMPH;
 }
 public string FuelNeeded() {
 return “You’ll need ”
 + MilesToPlanet * RocketFuelPerMile
 + “ units of fuel to get there. It’ll take ”
 + TimeNeeded() + “ hours.”;
 }
}

private void button3_Click(object s, EventArgs e) {
 PlanetMission planet = new PlanetMission();
 MessageBox.Show(planet.FuelNeeded());
}

Wait, what? A class that I can’t instantiate?
Why would I even want something like that?

private void button1_Click(object s, EventArgs e) {
 Mars mars = new Mars();
 MessageBox.Show(mars.FuelNeeded());
}

private void button2_Click(object s, EventArgs e) {
 Venus venus = new Venus();
 MessageBox.Show(venus.FuelNeeded());
}

Before you flip the page, try to
figure out what will happen when
the user clicks the third button...

The constructors for the Mars and Venus
subclasses set the three fields they inherited
from Planet. But those fields won’t get set
if you instantiate Planet directly. So what
happens when FuelNeeded() tries to use them?

It doesn’t make sense to
set these fields in the
base class, because we
don’t know what rocket
or planet we’ll be using.

Here’s a class that the Objectville
Astrophysics Club uses to send
their rockets to different planets.

The astrophysicists have two missions—one to Mars, and one to Venus.

Download at WoweBook.Com

280 Chapter 7

private void button3_Click(object s, EventArgs e) {
 PlanetMission planet = new PlanetMission();
 MessageBox.Show(planet.FuelNeeded());
}

Like we said, some classes should never be instantiated
The problems all start when you create an instance of the
PlanetMission class. Its FuelNeeded() method expects
the fields to be set by the subclass. But when they aren’t,
they get their default values—zero. And when C# tries to
divide a number by zero…

When the FuelNeeded()
method tried to divide
by RocketSpeedMPH,
it was zero. And when
you divide by zero, this
happens.

The PlanetMission class wasn’t written to be instantiated. We were only supposed to inherit from it. But we did, and that’s where the problems started.

Solution: use an abstract class
When you mark a class abstract, C# won’t let you write
code to instantiate it. It’s a lot like an interface—it acts like a
template for the classes that inherit from it.

public abstract class PlanetMission {
 public long RocketFuelPerMile;
 public long RocketSpeedMPH;
 public int MilesToPlanet;

 public long UnitsOfFuelNeeded() {
 return MilesToPlanet * RocketFuelPerMile;
 }

 // the rest of the class is defined here
}

Now C# will
refuse to compile
our program until
we remove the
line that creates
an instance of
PlanetMission.

Adding the abstract keyword to the class
declaration tells C# this is an abstract class,
and can’t be instantiated.

abstract classes avoid this mess

Flip back to the solution to Kathleen’s party planning program in
the previous chapter on pages 236–238—take another look at the
encapsulation problems that we left in the code. Can you figure out
how you’d use an abstract class to solve them?

Download at WoweBook.Com

you are here 4 281

interfaces and abstract classes

It really sucks to be
an abstract method.
You don’t have a body.

An abstract method doesn’t have a body
You know how an interface only has declarations for methods and properties,
but it doesn’t actually have any method bodies? That’s because every
method in an interface is an abstract method. So let’s implement it!
Once we do, the error will go away. Any time you extend an abstract class,
you need to make sure that you override all of its abstract methods. Luckily,
the IDE makes this job easier. Just type “public override”—as soon as you
press space, the IDE will display a dropdown box with a list of any methods
that you can override. Select the SetMissionInfo method and fill it in:

public abstract class PlanetMission {

 public abstract void SetMissionInfo(
 int MilesToPlanet, int RocketFuelPerMile,
 long RocketSpeedMPH);

 // the rest of the class...

This abstract method is just like what you’d

see in an interface—it doesn’t have a body
,

but any class that inh
erits from PlanetMission

has to implement the SetMissionInfo() method

or the program won’t compile.

‘VenusMission’ does not implement inherited abstract
member ‘PlanetMission.SetMissionInfo(long, int, int)’

X

If we add that method in and try to build
the program, the IDE gives us an error:

So let’s implement it! Once we do, the error will go away.

public class Venus : PlanetMission {
 public Venus() {
 SetMissinInfo(40000000, 100000, 25000);
 }
 public override SetMissionInfo(int milesToPlanet, long rocketFuelPerMile,
 int rocketSpeedMPH) {
 this.MilesToPlanet = milesToPlanet;
 this.RocketFuelPerMile = rocketFuelPerMile;
 this.RocketSpeedMPH = rocketSpeedMPH;
 }
}

Every method in
an interface is
automatically abstract,
so you don’t need to use
the abstract keyword
in an interface, just in
an abstract class. Only
abstract classes can
have abstract methods...
but they can have
concrete methods too.

When you inherit
from an abstract
class, you need to
override all of its
abstract methods.

Download at WoweBook.Com

282 Chapter 7

Given:

public interface Foo { }

public class Bar : Foo { }

public interface Vinn { }

public abstract class Vout : Vinn { }

public abstract class Muffie : Whuffie { }

public class Fluffie : Muffie { }

public interface Whuffie { }

public class Zoop { }

public class Boop : Zoop { }

public class Goop : Boop { }

public class Gamma : Delta, Epsilon { }

public interface Epsilon { }

public interface Beta { }

public class Alpha : Gamma,Beta { }

public class Delta { }

What’s the Picture ?

(interface)
Foo

Bar

1)

2)

3)

4)

5)

Here’s your chance to demonstrate your artistic abilities. On the left you’ll find sets
of class and interface declarations. Your job is to draw the associated class diagrams
on the right. We did the first one for you. Don’t forget to use a dashed line for
implementing an interface and a solid line for inheriting from a class.

worth a thousand words

1)

2)

3)

4)

5)

Download at WoweBook.Com

you are here 4 283

interfaces and abstract classes

Click

Top

Fee

Clack

Tip

Fi

Foo

Bar

Baz

Zeta

Beta
Alpha

Delta

1

2

3

4

5

Given:
What’s the Declaration ?

1)

2)

3)

4)

5)

public class Click { }
public class Clack : Click { }

On the left you’ll find sets of class diagrams. Your job is to turn
these into valid C# declarations. We did number 1 for you.

Clack

Clack

Clack

extends

implements

class

interface

abstract class

 KEY

Download at WoweBook.Com

284 Chapter 7

What’s the Picture ?

(interface)
Vinn2)

Vout

3)

Fluffie

(interface)
Whuffie

Muffie

4)

Boop

Goop

Zoop 5) (interface)
Epsilon

(interface)
Beta

Alpha

Delta

Gamma

Tonight’s talk: An abstract class and an interface butt heads
over the pressing question, “Who’s more important?”

Abstract Class:
I think it’s obvious who’s more important between the
two of us. Programmers need me to get their jobs done.
Let’s face it. You don’t even come close.

You can’t really think you’re more important than
me. You don’t even use real inheritance—you only get
implemented.

Better? You’re nuts. I’m much more flexible than you.
I can have abstract methods or concrete ones. I can
even have virtual methods if I want. Sure, I can’t be
instantiated but then, neither can you. And I can do
pretty much anything else a regular class does.

Interface:

Nice. This oughta be good.

Great, here we go again. Interfaces don’t use real
inheritance. Interfaces only implement. That’s just plain
ignorant. Implementation is as good as inheritance, in
fact it’s better!

Yeah? What if you want a class that inherits from
you and your buddy? You can’t inherit from two
classes. You have to choose which class to inherit from.
And that’s just plain rude! There’s no limit to the number
of interfaces a class can implement. Talk about flexible!
With me, a programmer can make a class do anything.

them’s fightin’ words

Download at WoweBook.Com

you are here 4 285

interfaces and abstract classes

What’s the Declaration ?

public abstract class Top { }
public class Tip : Top { }

2) public abstract class Fee { }
public abstract class Fi : Fee { }

3)

public interface Foo { }
public class Bar : Foo { }
public class Baz : Bar { }

4) public interface Zeta { }
public class Alpha : Zeta { }
public interface Beta { }
public class Delta : Alpha, Beta { }

5)

Abstract Class:
You might be overstating your power a little bit.

That’s exactly the kind of drivel I’d expect from an
interface. Code is extremely important! It’s what
makes your programs run.

Really? I doubt that—programmers always care
what’s in their properties and methods.

Yeah, sure, tell a coder he can’t code.

Interface:

You think that just because you can contain code,
you’re the greatest thing since sliced bread. But
you can’t change the fact that a program can only
inherit from one class at a time. So, you’re a little
limited. Sure, I can’t include any code. But really,
code is overrated.

Nine times out of ten, a programmer wants to make
sure an object has certain properties and methods,
but doesn’t really care how they’re implemented.

Okay, sure. Eventually. But think about how many
times you’ve seen a programmer write a method
that takes an object that just needs to have a certain
method, and it doesn’t really matter right at that
very moment exactly how the method’s built. Just
that it’s there. So bang! The programmer just needs
to write an interface. Problem solved!

Whatever!

Delta inherits
from Alpha and
implements Beta.

Download at WoweBook.Com

286 Chapter 7

I’m still hung up on not being able to inherit from two classes. If I
can’t inherit from more than one class, so I have to use interfaces.

That’s a pretty big limitation of C#, right?

It’s not a limitation, it’s a protection.
If C# let you inherit from more than one base class, it would
open up a whole can of worms. When a language lets one
sublcass inherit from two base classes, it’s called multiple
inheritance. And by giving you interfaces instead, C# saves
you from a big fat mess that we like to call...

The Deadly Diamond of Death!

Television

ShowAMovie()

MovieTheater

MoviePlayer
int	ScreenWidth

ShowAMovie()

ShowAMovie()

HomeTheater

?

Which ShowAMovie() method runs when you call ShowAMovie() on the HomeTheater object?

Imagine that the Scree
nWidth

property is used by b
oth Television and

MovieTheater, with different values.

What happens if HomeTheater needs to

use both values of Sc
reenWidth—say,

to show both made-for-TV movies and

feature films?

A language that allows the Deadly Diamond of Death can lead to some
pretty ugly situations, because you need special rules to deal with this kind
of ambiguous situation... which means extra work for you when you’re
building your program! C# protects you from having to deal with this by
giving you interfaces. If Television and MovieTheater are interfaces
instead of classes, then the same ShowAMovie() method can satisfy both
of them. All the interface cares about is that there’s some method called
ShowAMovie().

Television and MovieTheater both inherit
from MoviePlayer, and both override the
ShowAMovie() method. Both inherit the
ScreenWidth property, too.

multiple inheritance sucks

Avoid ambiguity!

Download at WoweBook.Com

you are here 4 287

interfaces and abstract classes

public Nose {
 ;
 string Face { get; }
}

public abstract class : {
 public virtual int Ear()
 {
 return 7;
 }
 public Picasso(string face)
 {
 = face;
 }
 public virtual string Face {
 { ; }
 }
 string face;
}

public class : {
 public Clowns() : base(“Clowns”) { }
}

public class : {
 public Acts() : base(“Acts”) { }
 public override {
 return 5;
 }
}

public class : {
 public override string Face {
 get { return “Of76”; } }
 public static void Main(string[] args) {
 string result = “”;
 Nose[] i = new Nose[3];
 i[0] = new Acts();
 i[1] = new Clowns()
 i[2] = new Of76();
 for (int x = 0; x < 3; x++) {
 result += (+ “ ”
 +) + “\n”;
 }
 MessageBox.Show(result);
 }
}

Note: each snippet
from the pool can
be used more than
once!

int Ear()
this
this.
face
this.face

:
;
class
abstract
interface

Acts();
Nose();
Of76();
Clowns();
Picasso(); Acts

Nose
Of76
Clowns
Picasso

i
i()
i(x)
i[x]

i.Ear(x)
i[x].Ear()
i[x].Ear(
i[x].Face

Of76 [] i = new Nose[3];
Of76 [3] i;
Nose [] i = new Nose();
Nose [] i = new Nose[3];

class
5 class
7 class
7 public class

Here’s the entry point—this is a complete C# program.

get
set
return

Output

Answers on page 306.

Pool Puzzle
Your job is to take code snippets from the pool and place them
into the blank lines in the code and output. You may use the
same snippet more than once, and you won’t need to use all the
snippets. Your goal is to make a set of classes that will compile
and run and produce the output listed.

Download at WoweBook.Com

288 Chapter 7

Okay, I think I’ve got
a pretty good handle
on objects now!

You’re an object oriented programmer.
There’s a name for what you’ve been doing. It’s called
object oriented programming, or OOP. Before
languages like C# came along, people didn’t use
objects and methods when writing their code. They
just used functions (which is what they called methods
in a non-OOP program) that were all in one place—as
if each program were just one big static class that only
had static methods. It made it a lot harder to create
programs that modeled the problems they were solving.
Luckily, you’ll never have to write programs without
OOP, because it’s a core part of C#.

The four princples of object oriented programming
When programmers talk about OOP, they’re referring to four important principles.
They should seem very familiar to you by now because you’ve been working
with every one of them. You’ll recognize the first three principles just from their
names: inheritance, abstraction, and encapsulation. The last one’s called
polymorphism. It sounds a little odd, but it turns out that you already know all
about it too.

Polymorphism

EncapsulationInheritance

Abstraction

Encapsulation means creating an object that keeps track of its state internally using private fields, and uses public properties and methods to let other classes work with only the part of the internal data that they need to see.

You’re using abstraction when you
create a class model that starts with
more general—or abstract—classes,
and then has more specific classes
that inherit from it.

The word
“polymorphism” literally
means “many forms”.
Can you think of a
time when an object
has taken on many
forms in your code?

This just means having one
class or interface that
inherits from another.

The idea that you could combine your data and your code into classes and objects was a revolutionary one when it was first introduced—but that’s how you’ve been building all your C# programs so far, so you can think of it as just plain programming.

form of... a bucket of eagles!

Download at WoweBook.Com

you are here 4 289

interfaces and abstract classes

Polymorphism means that one object can
take many different forms
Any time you use a mockingbird in place of an animal or aged
Vermont cheddar in a recipe that just calls for cheese, you’re using
polymorphism. That’s what you’re doing any time you upcast or
downcast. It’s taking an object and using it in a method or a statement
that expects something else

Keep your eyes open for polymorphism in the next
exercise!
You’re about to do a really big exercise—the biggest one you’ve seen so
far—and you’ll be using a lot of polymorphism in it. So keep your eyes
open for it. Here’s a list of four typical ways that you’ll use polymorphism.
We gave you an example of each of them (you won’t see these particular
lines in the exercise, though). As soon as you see similar code in the code
that you write for the exercise, check it off the following list:

Taking any reference variable that uses one class and setting it
equal to an instance of a different class.

NectarStinger bertha = new NectarStinger();

INectarCollector gatherer = bertha;

You’re using
polymorphism
when you take an
instance of one
class and use it
in a statement
or a method that
expects a different
type, like a
parent class or an
interface that the
class implements.

Upcasting by using a subclass in a statement or method that expects its
base class.

spot = new Dog();

zooKeeper.FeedAnAnimal(spot);

Creating a reference variable whose type is an interface and
pointing it to an object that implements that interface.

IStingPatrol defender = new StingPatrol();

Downcasting using the as keyword.

void MaintainTheHive(IWorker worker) {

 if (worker is HiveMaintainer) {

 HiveMaintainer maintainer = worker as HiveMaintainer;

 ...

If FeedAnAnimal() expects an Animal object, and Dog inherits from Animal, then you can pass Dog to FeedAnAnimal().

The MaintainTheHive() method
takes any IWorker as a parameter. It
uses as to point a HiveMaintainer
reference to the worker.

This is upcasting, too!

Download at WoweBook.Com

290 Chapter 7

Let’s build a house!	Create	a	model	of	a	house	using	classes	to	represent	the	
rooms	and	locations,	and	an	interface	for	any	place	that	has	a	door.

Location
Name
Exits

Description()

Start with this class model
Every room or location in your house will be represented by its own
object. The interior rooms all inherit from Room, and the outside
places inherit from Outside, which subclass the same base class,
Location. It has two fields: Name is the name of the location
(“Kitchen”), and Exits is an array of Location objects that the
current location connects to. So diningRoom.Name will be equal
to “Dining Room”, and diningRoom.Exits will be equal to
the array { LivingRoom, Kitchen }.

 Create a Windows Application project and add
Location, Room and Outside classes to it.

11

You can move
between the back
yard and the front
yard, and both of
them connect to the
garden.

Living Room
Dining
Room

Kitchen
Front Yard

Back Yard

Garden

You’ll need the blueprint for the house
This house has three rooms, a front yard, and a garden.
There are two doors: the front door connects the living
room to the front yard, and the back door connects the
kitchen to the back yard.

22

Room
Decoration

Outside
Hot

The living room
connects to
the dining room,
which also
connects to
the kitchen.

IHasExteriorDoor
DoorDescription
DoorLocation

Use the IHasExteriorDoor interface for rooms with an exterior door
There are two exterior doors in the house, the front door and the back door. Every
location that has one (the front yard, back yard, living room, and kitchen) should
implement IHasExteriorDoor. The DoorDescription read-only property
contains a description of the door (the front door is “an oak door with a brass
knob”, the back door is “a screen door”). The DoorLocation property contains a
reference to the Location where the door leads (kitchen).

33

Inside locations each have
some kind of a decoration
in a read-only property.

This symbol is an exterior door
between the front yard and the living
room. There’s also an exterior door
between the kitchen and back yard.

let’s get started

Outside locations can be hot,
so the Outside class has a
read-only boolean property
called Hot.

Location is an
abstract class.
That’s why
we shaded it
darker in the
class diagram.

All rooms have doors, but only a few
rooms have an exterior door that
leads inside or outside the house.

Download at WoweBook.Com

you are here 4 291

interfaces and abstract classes

public abstract class Location {
 public Location(string name) {
 this.name = name;
 }
 public Location[] Exits;
 private string name;
 public string Name {
 get { return name; }
 }
 public virtual string Description {
 get {
 string description = “You’re standing in the “ + name
 + “. You see exits to the following places: ”;
 for (int i = 0; i < Exits.Length; i++) {
 description += “ ” + Exits[i].Name;
 if (i != Exits.Length - 1)
 description += “,”;
 }
 description += “.”;
 return description;
 }
 }
}

Here’s the Location class
To get you started, here’s the Location class:

44

Remember, Location is an abstract class—you can inherit from it and declare reference variables of type Location, but you can’t instantiate it.

We’re not done yet—flip the page!

The constructor sets the name field, which is the read-only Name property’s backing field.

The Room class
will override
and extend
Description
to add the
decoration,
and Outside
will add the
temperature.

Create the classes
First create the Room and Outside classes based on the class model. Then
create two more classes: OutsideWithDoor, which inherits from Outside
and implements IHasExteriorDoor, and RoomWithDoor, which subclasses
Room and implements IHasExteriorDoor.

Here are the class declarations to give you a leg up:

66

public class OutsideWithDoor : Outside, IHasExteriorDoor
{
 // The DoorLocation property goes here
 // The read-only DoorDescription property goes here
}

public class RoomWithDoor : Room, IHasExteriorDoor
{
 // The DoorLocation property goes here
 // The read-only DoorDescription property goes here
}

The Description property
returns a string that
describes the room, including
the name and a list of all
of the locations it connects
to (which it finds in the
Exits[] field). Its subclasses
will need to change the
description slightly, so
they’ll override it.

The public Exits field is an a
rray of

Location referenc
es that keeps tr

ack

of all of the ot
her places that t

his

location connects
 to.

This one’s going
to be a pretty big
exercise... but we
promise it’s a lot
of fun! And you’ll
definitely know this
stuff once you get
through it.

Description is a
virtual method.
You’ll need to
override it.

Get the classes started now—we’ll give you more details about them on the next page.

Download at WoweBook.Com

292 Chapter 7

RoomWithDoo
r o

bj
ec

t

Outside obje
ct

OutsideWith

Doo
r

ob
je

ct

Room object

Outside obje
ct

 (continued)
Now	that	you’ve	got	the	class	model,	you	can	create	the	objects	for	all	of	the	parts	of	the	
house,	and	add	a	form	to	explore	it.

Finish building the classes, and instantiate their instances
You’ve got all the classes, now it’s time to finish them and build your objects.

You’ll need to make sure that the constructor for the Outside class sets the read-only Hot property and
overrides the Description property to add the text “It’s very hot here.” if Hot is true. It’s hot in the back
yard but not the front yard or garden.

The constructor for Room needs to set the Decoration, and should override the Description property to
add, “You see (the decoration) here.” The living room has an antique carpet, the dining room has a crystal
chandelier, and the kitchen has stainless steel appliances and a screen door that leads to the back yard.

Your form needs to create each of the objects and keep a reference to each one. So add a method to the
form called CreateObjects() and call it from the form’s constructor.

Instantiate each of the objects for the six locations in the house. Here’s one of those lines:

RoomWithDoor livingRoom = new RoomWithDoor(“Living Room”,
 “an antique carpet” , “an oak door with a brass knob”);

Your CreateObjects() method needs to populate the Exits[] field in each object:

frontYard.Exits = new Location[] { backYard, garden };

≥

≥

≥

≥

≥

77

How your house objects work
Here’s the architecture for two of your objects, frontYard and diningRoom. Since each of
them has a door, they both need to be instances of a class that implements IHasExteriorDoor.
The DoorLocation property keeps a reference to the location on the other side of the door.

66

Exits[]Exits[]

DoorLocation

LivingRoom

DoorLocation

Garden BackYard

FrontYard

DiningRoom

FrontYard is an
OutsideWithDoor
object, which is a
subclass of Outside
that implements
IHasExteriorDoor.

LivingRoom is an instance of
RoomWithDoor, which inherits
from Room and implements
IHasExteriorDoor.

Exits is an
array of
Location
references,
so this line
creates one and that
has two references in it.

You started building the IHasExteriorDoor
interface and added these two classes that
implement it. One inherits from Room, the other is
a subclass of Outside. Now it’s time to finish them.

These are
curly brackets.
Anything else will
cause an error.

watch your objects do stuff!

Exits is an array of Location
references. LivingRoom has
one exit, so its Exits array
has a length of 1.

Every location
will have its
own field in
the form class.

Download at WoweBook.Com

you are here 4 293

interfaces and abstract classes

Build a form to explore the house
Build a simple form to let you explore the house. It’ll have a big multiline textbox called
description to show the description of the current room. A ComboBox called exits lists all of
the exits in the current room. It’s got two buttons: goHere moves to the room selected in the
ComboBox, and goThroughTheDoor is only visible when there’s an exterior door.

88

This is a multiline TextBox that
displays the Description() of
the current location. It’s name
is description.

This is a ComboBox

Click the goHere
button to move to another location.

This button is only visible
when you’re in a room with
an exterior door. You can
make it visible or invisible by
setting its Visible property
to true or false. It’s called
goThroughTheDoor.

The ComboBox contains a
list of all of the exits, so
name it exits. Make sure
its DropDownStyle is set
to DropDownList.

Now you just need to make the form work!
You’ve got all the pieces, now you just need to put them together.

You’ll need a field in your form called currentLocation to keep track of your current location.

Add a MoveToANewLocation() method that has a Location as its parameter. This method
should first set currentLocation to the new location. Then it’ll clear the combo box using its
Items.Clear() method, and then add the name of each location in the Exits[] array using the
combo box’s Items.Add() method. Finally, reset the combo box so it displays the first item in the
list by setting its SelectedIndex property to zero.

Set the textbox so that it has the description of the current location.

Use the is keyword to check if the current location has a door. If it does, make the “Go
through the door” button visible using its Visible property. If not, make it invisible.

If the “Go here:” button is clicked, move to the location selected in the combo box.

If the “Go through the door” button is clicked, move to the location that the door connects to.

≥

≥

≥

≥

≥

≥

99

Hint: When you choose an item in the combo box, its
selected index in the combo box will be the same as the
index of the corresponding location in the Exits[] array.

Another hint: Your form’s currentLocation field is a Location reference. So even though it’s pointing to an object that implements IHasExteriorDoor, you can’t just type “currentLocation.DoorLocation” because DoorLocation isn’t a field in Location. You’ll need to downcast if you want to get the door location out of the object.

Here’s where you’ll
set up what populates
the ComboBox.

Download at WoweBook.Com

294 Chapter 7

public interface IHasExteriorDoor {
 string DoorDescription { get; }
 Location DoorLocation { get; set; }
}

public class Room : Location {
 private string decoration;

 public Room(string name, string decoration)
 : base(name) {
 this.decoration = decoration;
 }

 public override string Description {
 get {
 return base.Description + “ You see ” + decoration + “.”;
 }
 }
}

public class RoomWithDoor : Room, IHasExteriorDoor {
 public RoomWithDoor(string name, string decoration, string doorDescription)
 : base(name, decoration)
 {
 this.doorDescription = doorDescription;
 }

 private string doorDescription;
 public string DoorDescription {
 get { return doorDescription; }
 }

 private Location doorLocation;
 public Location DoorLocation {
 get { return doorLocation; }
 set { doorLocation = value; }
 }
}

Here’s	the	code	to	model	the	house.	We	used	classes	to	represent	the	rooms	
and	locations,	and	an	interface	for	any	place	that	has	a	door.

Here’s the IHasExteriorDoor interface.

The Room class inherits from Location and adds a backing field for the read-only Decoration property. Its constructor sets the field.

The RoomWithDoor class inherits
from Room and implements
IHasExteriorDoor. It does everything
that the room does, but it adds a
description of the exterior door
to the constructor. It also adds
DoorLocation, a reference to the
location that the door leads to.
DoorDescription and DoorLocation
are required by IHasExteriorDoor.

exercise solution

Download at WoweBook.Com

you are here 4 295

interfaces and abstract classes

public class Outside : Location {
 private bool hot;
 public bool Hot { get { return hot; } }

 public Outside(string name, bool hot)
 : base(name)
 {
 this.hot = hot;
 }

 public override string Description {
 get {
 string NewDescription = base.Description;
 if (hot)
 NewDescription += “ It’s very hot.”;
 return NewDescription;
 }
 }
}

public class OutsideWithDoor : Outside, IHasExteriorDoor {
 public OutsideWithDoor(string name, bool hot, string doorDescription)
 : base(name, hot)
 {
 this.doorDescription = doorDescription;
 }

 private string doorDescription;
 public string DoorDescription {
 get { return doorDescription; }
 }

 private Location doorLocation;
 public Location DoorLocation {
 get { return doorLocation; }
 set { doorLocation = value; }
 }

 public override string Description {
 get {
 return base.Description + “ You see ” + doorDescription + “.”;
 }
 }
}

Outside is a lot like Room—it
inherits from Location, and adds a
backing field for the Hot property,
which is used in the Description()
method extended from the base
class.

OutsideWithDoor inherits from Outside and implements IHasExteriorDoor, and it looks a lot like RoomWithDoor.

We’re not done yet—flip the page!

The base class’s Description property
fills in whether or not the location
is hot. And that relies on the original
Location class’s Description property
to add the main description and exits.

Download at WoweBook.Com

296 Chapter 7

public partial class Form1 : Form
{
 Location currentLocation;

 RoomWithDoor livingRoom;
 Room diningRoom;
 RoomWithDoor kitchen;

 OutsideWithDoor frontYard;
 OutsideWithDoor backYard;
 Outside garden;

 public Form1() {
 InitializeComponent();
 CreateObjects();
 MoveToANewLocation(livingRoom);
 }

 private void CreateObjects() {
 livingRoom = new RoomWithDoor(“Living Room”, “an antique carpet”,
 “an oak door with a brass knob”);
 diningRoom = new Room(“Dining Room”, “a crystal chandelier”);
 kitchen = new RoomWithDoor(“Kitchen”, “stainless steel appliances”, “a screen door”);

 frontYard = new OutsideWithDoor(“Front Yard”, false, “an oak door with a brass knob”);
 backYard = new OutsideWithDoor(“Back Yard”, true, “a screen door”);
 garden = new Outside(“Garden”, false);

 diningRoom.Exits = new Location[] { livingRoom, kitchen };
 livingRoom.Exits = new Location[] { diningRoom };
 kitchen.Exits = new Location[] { diningRoom };
 frontYard.Exits = new Location[] { backYard, garden };
 backYard.Exits = new Location[] { frontYard, garden };
 garden.Exits = new Location[] { backYard, frontYard };

 livingRoom.DoorLocation = frontYard;
 frontYard.DoorLocation = livingRoom;

 kitchen.DoorLocation = backYard;
 backYard.DoorLocation = kitchen;
 }

The form uses these reference variables to keep track of each of the rooms in the house.

This is how the form keeps track
of which room is being displayed.

The form’s constructor creates
the objects and then uses the
MoveToANewLocation method. When the form creates the objects, first it needs to instantiate the classes and pass the right information to each one’s constructor.

Here’s where the Exits[] array
for each instance is populated.
We need to wait to do this
until after all the instances are
created, because otherwise we
wouldn’t have anything to put into
each array!For the IHasExteriorDoor objects, we need to set their door locations.

Here’s where we pass
the door description to
the OutsideWithDoor
constructors.

Here’s	the	code	for	the	form.	It’s	all	in	the	Form1.cs,	inside	the	Form1	declaration.

exercise solution

 (continued)

Download at WoweBook.Com

you are here 4 297

interfaces and abstract classes

 private void MoveToANewLocation(Location newLocation) {
 currentLocation = newLocation;

 exits.Items.Clear();
 for (int i = 0; i < currentLocation.Exits.Length; i++)
 exits.Items.Add(currentLocation.Exits[i].Name);
 exits.SelectedIndex = 0;

 description.Text = currentLocation.Description;

 if (currentLocation is IHasExteriorDoor)
 goThroughTheDoor.Visible = true;
 else
 goThroughTheDoor.Visible = false;
 }

 private void goHere_Click(object sender, EventArgs e) {
 MoveToANewLocation(currentLocation.Exits[exits.SelectedIndex]);
 }

 private void goThroughTheDoor_Click(object sender, EventArgs e) {
 IHasExteriorDoor hasDoor = currentLocation as IHasExteriorDoor;
 MoveToANewLocation(hasDoor.DoorLocation);
 }
}

But we’re not done yet!
It’s fine to create a model of a house, but wouldn’t it be cool to turn it into a game?
Let’s do it! You’ll play Hide and Seek against the computer. We’ll need to add an
Opponent class and have him hide in a room. And we’ll need to make the house a
lot bigger. Oh, and he’ll need someplace to hide! We’ll add a new interface so that
some rooms can have a hiding place. Finally, we’ll update the form to let you check
the hiding places, and keep track of how many moves you’ve made trying to find
your opponent. Sound fun? Definitely!

First we need to clear the combo box,
then we can add each of the locations’
names to it. Finally, we set its selected
index (or which line is highlighted)
to zero so it shows the first item
in the list. Don’t forget to set the
ComboBox’s DropDownStyle property
to “DropDownList”—that way the
user won’t be able to type anything
into the combo box.

The MoveToANewLocation() method displays a new location in the form.

This makes the “Go through the door” button invisible if the
current location doesn’t implement IHasExteriorDoor.

When the user clicks
the “Go here:” button,
it moves to the
location selected in
the combo box.

We need to use the as keyword in order
to downcast currentLocation to an
IHasExteriorDoor so we can get access to
the DoorLocation field.

Let’s get started!

Download at WoweBook.Com

298 Chapter 7

Time for hide and seek!	Build	on	your	original	house	program	to	add	more	rooms,	hiding	
places,	and	an	opponent	who	hides	from	you.

Add an IHidingPlace interface
We don’t need to do anything fancy here. Any Location subclass that implements IHidingPlace
has a place for the opponent to hide. It just needs a string to store the name of the hiding place (“in
the closet”, “under the bed”, etc.)

Give it a get accessor, but no set accessor—we’ll set this in the constructor, since once a room
has a hiding place we won’t ever need to change it.

≥

11

Add classes that implement IHidingPlace
You’ll need two more classes: OutsideWithHidingPlace (which inherits from Outside) and
RoomWithHidingPlace (which inherits from Room). Also, let’s make any room with a door have a
hiding place, so it’ll have to inherit from RoomWithHidingPlace instead of Room.

22

Add a class for your opponent
The Opponent object will find a random hiding place in the house, and it’s your job to find him.

He’ll need a private Location field (myLocation) so he can keep track of where he is, and a
private Random field (random) to use when he moves to a random hiding place.

The constructor takes the starting location and sets myLocation to it, and sets random
to a new instance of Random. He starts in the front yard (that’ll be passed in by the form),
and moves from hiding place to hiding place randomly. He moves 10 times when the game
starts. When he encounters an exterior door, he flips a coin to figure out whether or not to go
through it.

Add a Move() method that moves the opponent from his current location to a new location.
First, if he’s in a room with a door, then he flips a coin to decide whether or not to go through
the door, so if random.Next(2) is equal to 1, he goes through it. Then he chooses one of
the exits from his current location at random and goes through it. If it doesn’t have a hiding
place, then he’ll do it again—he’ll choose a random exit from his current location and go
there, and he’ll keep doing it over and over until he finds a place to hide.

Add a Check() method that takes a location as a parameter and returns true if he’s hiding
in that location, or false otherwise.

≥

≥

≥

≥

33

Add more rooms to the house
Update your CreateObjects() method to add more rooms:

Add stairs with a wooden bannister that connect the living room to the upstairs hallway,
which has a picture of a dog and a closet to hide in.

The upstairs hallway connects to three rooms: a master bedroom with a large bed, a
second bedroom with a small bed, and a bathroom with a sink and a toilet. Someone
could hide under the bed in either bedroom or in the shower.

The front yard and back yard both connect to the driveway, where someone could hide in
the garage. Also, someone could hide in the shed in the garden.

≥

≥

≥

44

build your opponent

Create a new project, and use the IDE’s
“Add Existing Item” feature to add the
classes from the first part of the exercise.

So every room with an exterior
door will also have a hiding place.

Download at WoweBook.Com

you are here 4 299

interfaces and abstract classes

Okay, time to update the form
You’ll need to add a few buttons to the form. And we’ll get a little more intricate with
making them visible or invisible, depending on the state of the game.

55

When the game first starts, the hide buton is the only one displayed. When you click it, the form counts to 10 in the text box, and calls the opponent’s Move() method 10 times. Then it makes this button invisible.

You use the top two buttons and the

combo box exactly the same way as

before, except that they’re on
ly visible

while the game is running.
This is the button you’ll use to
check the room’s hiding place. It’s
only visible if you’re in a room that
has a place to hide. When it’s shown,
the Text property is changed from

“button3” to “Check” followed by
the name of the hiding place—so
for a room with a hiding place
under the bed, the button will say,
“Check under the bed”.

Add a method to redraw the form, and another one to reset the game
Add a RedrawForm() method that puts the right text in the description textbox, makes the buttons
visible or invisible, and puts the correct label on the middle button. Then add a ResetGame()
method that’s run when you find the opponent. It resets the opponent object so that he starts in the
front yard again—he’ll hide when the user clicks the “Hide!” button. It should leave the form with
nothing but the text box and “Hide!” button visible. The text box should say where you found the
opponent, and how many moves it took.

77

Make the buttons work
There are two new buttons to add to the form.

The middle button checks the hiding place in the current room and is only visible when
you’re in a room with a place to hide using the opponent’s Check() method. If you found
him, then it resets the game.

The bottom button is how you start the game. It counts to 10 by showing “1...”, waiting 200
milliseconds, then showing “2...”, then “3...”, etc. in the text box. After each number, it tells
the opponent to move by calling his Move() method. Then it shows, “Ready or not, here I
come!” for half a second, and then the game starts.

≥

≥

66

Make it look right when you start the program
When you first start the program, all you should see is an empty text box
and the “Hide!” button. When you click the button, the fun begins!

99

Keep track of how many moves the player made
Make sure the text box displays the number of times the player checked a
hiding place or moved between rooms. When you find the opponent, he
should pop up a mesage box that says, “You found me in X moves!”

88

The middle button’s called check. You
don’t need to set its Text propert

y.

Flip back to
Chapter 2 for
a refresher on
DoEvents() and
Sleep()—they’ll
come in handy.

Download at WoweBook.Com

300 Chapter 7

Build	on	your	original	house	program	to	add	more	rooms,	hiding	places,	and	an	opponent	who	
hides	from	you.

public interface IHidingPlace {
 string HidingPlaceName { get; }
}

public class RoomWithHidingPlace : Room, IHidingPlace {
 public RoomWithHidingPlace(string name, string decoration, string hidingPlaceName)
 : base(name, decoration)
 {
 this.hidingPlaceName = hidingPlaceName;
 }
 private string hidingPlaceName;
 public string HidingPlaceName {
 get { return hidingPlaceName; }
 }
 public override string Description {
 get {
 return base.Description + “ Someone could hide “ + hidingPlaceName + “.”;
 }
 } }

public class RoomWithDoor : RoomWithHidingPlace, IHasExteriorDoor {
 public RoomWithDoor(string name, string decoration,
 string hidingPlaceName, string doorDescription)
 : base(name, decoration, hidingPlaceName)
 {
 this.doorDescription = doorDescription;
 }

 private string doorDescription;
 public string DoorDescription {
 get { return doorDescription; }
 }

 private Location doorLocation;
 public Location DoorLocation {
 get { return doorLocation; }
 set { doorLocation = value; }
 }
}

Here’s the new IHidingPlace interface. It just has one string field with a get accessor that returns the name of the hiding place.

The RoomWithHidingPlace class inherits
from Room and implements IHidingPlace by
adding the HidingPlaceName property. The
constructor sets its backing field.

Since we decided every room with a door also needed a hiding place, we made RoomWithDoor inherit from RoomWithHidingPlace. The only change to it is that its constructor takes a hiding place name and sends it on to the RoomWithHidingPlace constructor.

exercise solution

Download at WoweBook.Com

you are here 4 301

interfaces and abstract classes

public class OutsideWithHidingPlace : Outside, IHidingPlace {
 public OutsideWithHidingPlace(string name, bool hot, string hidingPlaceName)
 : base(name, hot)
 { this.hidingPlaceName = hidingPlaceName; }

 private string hidingPlaceName;
 public string HidingPlaceName {
 get { return hidingPlaceName; }
 }

 public override string Description {
 get {
 return base.Description + “ Someone could hide ” + hidingPlaceName + “.”;
 }
 } }

public class Opponent {
 private Random random;
 private Location myLocation;
 public Opponent(Location startingLocation) {
 myLocation = startingLocation;
 random = new Random();
 }
 public void Move() {
 if (myLocation is IHasExteriorDoor) {
 IHasExteriorDoor LocationWithDoor =
 myLocation as IHasExteriorDoor;
 if (random.Next(2) == 1)
 myLocation = LocationWithDoor.DoorLocation;
 }
 bool hidden = false;
 while (!hidden) {
 int rand = random.Next(myLocation.Exits.Length);
 myLocation = myLocation.Exits[rand];
 if (myLocation is IHidingPlace)
 hidden = true;
 }
 }
 public bool Check(Location locationToCheck) {
 if (locationToCheck != myLocation)
 return false;
 else
 return true;
 }
}

The Opponent class constructor takes a
starting location. It creates a new instance
of Random, which it uses to move randomly
between rooms.

The Move() method first checks if the current
room has a door using the is keyword—if so, it
has a 50% chance of going through it. Then it
moves to a random location, and keeps moving
until it finds a hiding place.

The guts of the Move() method is this while loop. It
keeps looping until the variable hidden is true—and it sets
it to true when it finds a room with a hiding place.

The Check() method just checks the
opponent’s location against the location
that was passed to it using a Location
reference. If they point to the same
object, then he’s been found!

The OutsideWithHidingPlace class inherits
from Outside and implements IHidingPlace
just like RoomWithHidingPlace does.

We’re not done yet—flip the page!

Download at WoweBook.Com

302 Chapter 7

int Moves;

Location currentLocation;

RoomWithDoor livingRoom;
RoomWithHidingPlace diningRoom;
RoomWithDoor kitchen;
Room stairs;
RoomWithHidingPlace hallway;
RoomWithHidingPlace bathroom;
RoomWithHidingPlace masterBedroom;
RoomWithHidingPlace secondBedroom;

OutsideWithDoor frontYard;
OutsideWithDoor backYard;
OutsideWithHidingPlace garden;
OutsideWithHidingPlace driveway;

Opponent opponent;

private void MoveToANewLocation(Location newLocation) {
 Moves++;
 currentLocation = newLocation;
 RedrawForm();
}

private void RedrawForm() {
 exits.Items.Clear();
 for (int i = 0; i < currentLocation.Exits.Length; i++)
 exits.Items.Add(currentLocation.Exits[i].Name);
 exits.SelectedIndex = 0;
 description.Text = currentLocation.Description + “\r\n(move #” + Moves + “)”;
 if (currentLocation is IHidingPlace) {
 IHidingPlace hidingPlace = currentLocation as IHidingPlace;
 check.Text = “Check “ + hidingPlace.HidingPlaceName;
 check.Visible = true;
 }
 else
 check.Visible = false;
 if (currentLocation is IHasExteriorDoor)
 goThroughTheDoor.Visible = true;
 else
 goThroughTheDoor.Visible = false;
}

public Form1() {
 InitializeComponent();
 CreateObjects();
 opponent = new Opponent(frontYard);
 ResetGame(false);
}

Here are all the fields in the Form1
class. It uses them to keep track of
the locations, the opponent and the
number of moves the player has made.

The Form1 constructor creates the objects, sets up the opponent, and then resets the game. We added a boolean parameter to ResetGame() so that it only displays its message when you win, not when you first start up the program.

The MoveToANewLocation() method sets the
new location and then redraws the form.

RedrawForm() populates the combo box list, sets the
text (adding the number of moves), and then makes
the buttons visible or invisible depending on whether
or not there’s a door or the room has a hiding place.

We need the hiding place
name, but we’ve only got the CurrentLocation object which doesn’t have a HidingPlaceName property, so we can use as to downcast the reference to an IHidingPlace variable.

exercise solution

 (continued)

Download at WoweBook.Com

you are here 4 303

interfaces and abstract classes

private void CreateObjects() {
 livingRoom = new RoomWithDoor(“Living Room”, “an antique carpet”,
 “inside the closet”, “an oak door with a brass handle”);
 diningRoom = new RoomWithHidingPlace(“Dining Room”, “a crystal chandelier”,
 “in the tall armoire”);
 kitchen = new RoomWithDoor(“Kitchen”, “stainless steel appliances”,
 “in the cabinet”, “a screen door”);
 stairs = new Room(“Stairs”, “a wooden bannister”);
 hallway = new RoomWithHidingPlace(“Upstairs Hallway”, “a picture of a dog”,
 “in the closet”);
 bathroom = new RoomWithHidingPlace(“Bathroom”, “a sink and a toilet”,
 “in the shower”);
 masterBedroom = new RoomWithHidingPlace(“Master Bedroom”, “a large bed”,
 “under the bed”);
 secondBedroom = new RoomWithHidingPlace(“Second Bedroom”, “a small bed”,
 “under the bed”);

 frontYard = new OutsideWithDoor(“Front Yard”, false, “a heavy-looking oak door”);
 backYard = new OutsideWithDoor(“Back Yard”, true, “a screen door”);
 garden = new OutsideWithHidingPlace(“Garden”, false, “inside the shed”);
 driveway = new OutsideWithHidingPlace(“Driveway”, true, “in the garage”);

 diningRoom.Exits = new Location[] { livingRoom, kitchen };
 livingRoom.Exits = new Location[] { diningRoom, stairs };
 kitchen.Exits = new Location[] { diningRoom };
 stairs.Exits = new Location[] { livingRoom, hallway };
 hallway.Exits = new Location[] { stairs, bathroom, masterBedroom, secondBedroom };
 bathroom.Exits = new Location[] { hallway };
 masterBedroom.Exits = new Location[] { hallway };
 secondBedroom.Exits = new Location[] { hallway };
 frontYard.Exits = new Location[] { backYard, garden, driveway };
 backYard.Exits = new Location[] { frontYard, garden, driveway };
 garden.Exits = new Location[] { backYard, frontYard };
 driveway.Exits = new Location[] { backYard, frontYard };

 livingRoom.DoorLocation = frontYard;
 frontYard.DoorLocation = livingRoom;

 kitchen.DoorLocation = backYard;
 backYard.DoorLocation = kitchen;
}

The new CreateObjects() method
creates all the objects to build the
house. It’s a lot like the old one, but it
has a whole lot more places to go.

Wow—you could add an entire wing onto the house just
by adding a couple of lines! That’s why well-encapsulated
classes and objects are really useful.

We’re still not done—flip the page!

Download at WoweBook.Com

304 Chapter 7

private void ResetGame(bool displayMessage) {
 if (displayMessage) {
 MessageBox.Show(“You found me in ” + Moves + “ moves!”);
 IHidingPlace foundLocation = currentLocation as IHidingPlace;
 description.Text = “You found your opponent in “ + Moves
 + “ moves! He was hiding ” + foundLocation.HidingPlaceName + “.”;
 }
 Moves = 0;
 hide.Visible = true;
 goHere.Visible = false;
 check.Visible = false;
 goThroughTheDoor.Visible = false;
 exits.Visible = false;
}

private void check_Click(object sender, EventArgs e) {
 Moves++;
 if (opponent.Check(currentLocation))
 ResetGame(true);
 else
 RedrawForm();
}

private void hide_Click(object sender, EventArgs e) {
 hide.Visible = false;

 for (int i = 1; i <= 10; i++) {
 opponent.Move();
 description.Text = i + “... “;
 Application.DoEvents();
 System.Threading.Thread.Sleep(200);
 }

 description.Text = “Ready or not, here I come!”;
 Application.DoEvents();
 System.Threading.Thread.Sleep(500);

 goHere.Visible = true;
 exits.Visible = true;
 MoveToANewLocation(livingRoom);
}

When you click the check
button, it checks whether or
not the opponent is hiding in
the current room. If he is, it
resets the game. If not, it
redraws the form (to update
the number of moves).

The hide button is the one that starts the
game. The first thing it does is make itself
invisible. Then it counts to 10 and tells the
opponent to move. Finally, it makes the first
button and the combo box visible, and then
starts off the player in the living room.
The MoveToANewLocation() method calls
RedrawForm().

The ResetGame() method resets the game. It displays the final message, then makes all the buttons except the “Hide!” one invisible.

We want to display the name of the hiding place, but CurrentLocation is a Location reference, so it doesn’t give us access to the HidingPlaceName field. Luckily, we can use the as keyword to downcast it to an IHidingPlace reference that points to the same object.

oops, i did it again

 (continued)

Here’s the rest of the code for the form. The goHere and
goThroughTheDoor button event handlers are identical to
the ones in the first part of this exercise, so flip back a few
pages to see them.

Remember DoEvents() from FlashyThing in Chapter 2? Without it, the textbox doesn’t refresh itself and the program looks frozen.

Download at WoweBook.Com

you are here 4 305

interfaces and abstract classes

Objectcross
1

2

3 4 5

6 7

8

9

10

11 12

13

14

15 16

17

18

Across
3. What an abstract method doesn't have
4. C# doesn't allow _____________ inheritance.
6. When you subclass to a method that expects its
base class, you're using this OOP principle.
8. The OOP principle where you hide private data and only
expose those methods and fields that other classes need
access to.
10. One of the four principles of OOP that you implement using
the colon operator
14. Every method in an interface is automatically ___________.
15. Your class that implements an interface that __________
from another interface, then you need to implement all of its
members too.
17. An access modifier that's not valid for anything inside an
interface.
18. Object __________ Programming means creating programs
that combine your data and code together into classes and
objects.

Down
1. When you move common methods from specific classes to
more a general class that they all inherit from, you're using this
OOP principle.
2. If a class that implements an interface doesn't implement all
of its methods, getters and setters, then the project won't
___________.
5. Everything in an interface is automatically
7. An abstract class can include both abstract and
____________ methods.
9. You can't ____________ an abstract class.
11. A class that implements this must include all of the methods,
getters and setters that it defines.
12. What you do with an interface
13. The is keyword returns true if an ____________ implements
an interface.
16. An interface can't technically include a __________, but it
can define getters and setters that look just like one from the
outside.

pass a

1

2

3 4 5

6 7

8

9

10

11 12

13

14

15 16

17

18

Across
3. What an abstract method doesn't have
4. C# doesn't allow _____________ inheritance.
6. When you subclass to a method that expects its
base class, you're using this OOP principle.
8. The OOP principle where you hide private data and only
expose those methods and fields that other classes need
access to.
10. One of the four principles of OOP that you implement using
the colon operator
14. Every method in an interface is automatically ___________.
15. Your class that implements an interface that __________
from another interface, then you need to implement all of its
members too.
17. An access modifier that's not valid for anything inside an
interface.
18. Object __________ Programming means creating programs
that combine your data and code together into classes and
objects.

Down
1. When you move common methods from specific classes to
more a general class that they all inherit from, you're using this
OOP principle.
2. If a class that implements an interface doesn't implement all
of its methods, getters and setters, then the project won't
___________.
5. Everything in an interface is automatically
7. An abstract class can include both abstract and
____________ methods.
9. You can't ____________ an abstract class.
11. A class that implements this must include all of the methods,
getters and setters that it defines.
12. What you do with an interface
13. The is keyword returns true if an ____________ implements
an interface.
16. An interface can't technically include a __________, but it
can define getters and setters that look just like one from the
outside.

pass a

is

Download at WoweBook.Com

306 Chapter 7

public interface Nose {
 int Ear() ;
 string Face { get; }
}

public abstract class Picasso : Nose {
 public virtual int Ear()
 {
 return 7;
 }
 public Picasso(string face)
 {
 this.face = face;
 }
 public virtual string Face {
 get { return face ; }
 }
 string face;
}

public class Clowns : Picasso {
 public Clowns() : base(“Clowns”) { }
}

exercise solutions

Here’s where the Acts class calls the constructor in Picasso, which it inherits from. It passes “Acts” into the constructor, which gets stored in the face property.

Properties can
appear anywhere in
the class! It’s easier
to read your code if
they’re at the top,
but it’s perfectly
valid to have the
face property at
the bottom of the
Picasso class.

Face is a get accessor that returns the value of the
face property. Both of them are defined in Picasso and inherited into the subclasses.

Pool Puzzle Solution from page 287
Your job is to take code snippets from the pool and place them
into the blank lines in the code and output. You may use the
same snippet more than once, and you won’t need to use all the
snippets. Your goal is to make a set of classes that will compile
and run and produce the output listed.

public class Acts : Picasso {
 public Acts() : base(“Acts”) { }
 public override int Ear() {
 return 5;
 }
}

public class Of76 : Clowns {
 public override string Face {
 get { return “Of76”; } }
 public static void Main(string[] args) {
 string result = “”;
 Nose[] i = new Nose[3];
 i[0] = new Acts();
 i[1] = new Clowns()
 i[2] = new Of76();
 for (int x = 0; x < 3; x++) {
 result += (i[x].Ear() + “ ”
 + i[x].Face) + “\n”;
 }
 MessageBox.Show(result);
 }
}

Download at WoweBook.Com

you are here 4 307

interfaces and abstract classes

A
1

C
2

B

B
3

O D Y S M
4

U L T I P
5

L E

M T U

P
6

O L Y M O R P H I S M B C
7

I A L O

L E
8

N C A P S U L A T I O N

E I
9

T C C

I
10

N H E R I T A N C E R

S O E

T N I
11

I
12

T

A O
13

N M E

N A
14

B S T R A C T P

T J E L

I
15

N H E R I T S R E F
16

A C F M I

T T P
17

R I V A T E E

E C N L

O
18

R I E N T E D

Across
3. What an abstract method doesn't have [BODY]
4. C# doesn't allow _____________ inheritance. [MULTIPLE]
6. When you use a pass subclass to a method that expects its
base class, you're using this OOP principle. [POLYMORPHISM]
8. The OOP principle where you hide private data and only
expose those methods and fields that other classes need
access to. [ENCAPSULATION]
10. One of the four principles of OOP that you implement using
the colon operator [INHERITANCE]
14. Every method in an interface is automatically ___________.
[ABSTRACT]
15. Your class that implements an interface that __________
from another interface, then you need to implement all of its
members too. [INHERITS]
17. An access modifier that's not valid for anything inside an
interface. [PRIVATE]
18. Object __________ Programming means creating programs
that combine your data and code together into classes and
objects. [ORIENTED]

Down
1. When you move common methods from specific classes to
more a general class that they all inherit from, you're using this
OOP principle. [ABSTRACTION]
2. If a class that implements an interface doesn't implement all
of its methods, getters and setters, then the project won't
___________. [COMPILE]
5. Everything in an interface is automatically [PUBLIC]
7. An abstract class can include both abstract and
____________ methods. [CONCRETE]
9. You can't ____________ an abstract class. [INSTANTIATE]
11. A class that implements this must include all of the methods,
getters and setters that it defines. [INTERFACE]
12. What you do with an interface [IMPLEMENT]
13. The is keyword returns true if an ____________ implements
an interface. [OBJECT]
16. An interface can't technically include a __________, but it
can define getters and setters that look just like one from the
outside. [FIELD]

Objectcross solution

Download at WoweBook.Com

Download at WoweBook.Com

this is a new chapter 309

enums and collections8

Storing lots of data

When it rains, it pours.
In the real world, you don’t get to handle your data in tiny little bits and

pieces. No, your data’s going to come at you in loads, piles, and bunches.

You’ll need some pretty powerful tools to organize all of it, and that’s where

collections come in. They let you store, sort, and manage all the data that

your programs need to pore through. That way you can think about writing

programs to work with your data, and let the collections worry about keeping

track of it for you.

When it rains, it pours.
In the real world, you don’t get to handle your data in tiny little bits and

pieces. No, your data’s going to come at you in loads, piles, and bunches.

You’ll need some pretty powerful tools to organize all of it, and that’s where

collections come in. They let you store, sort, and manage all the data that

your programs need to pore through. That way you can think about writing

programs to work with your data, and let the collections worry about keeping

track of it for you.

Finally, a way to organize
my boyfriends!

Download at WoweBook.Com

310 Chapter 8

Strings don’t always work for
storing categories of data
Suppose you have several worker bees, all represented by
Worker classes. How would you write a constructor that took
a job as a parameter? If you use a string for the job name, you
might end up with code that looks like this:

Worker buzz = new Worker(“Attorney General”);
Worker clover = new Worker(“Dog Walker”);
Worker gladys = new Worker(“Newscaster”);

You could probably add code to the Worker constructor to check each
string and make sure it’s a valid bee job. Although, if you add new jobs
that bees can do, you’ve got to change this code and recompile the
Worker class. But that’s a pretty short-sighted solution. What if you have
other classes that need to check for the types of worker bees they can be?
Now you’ve got to duplicate code, and that’s a bad path to go down.

What we need is a way to say, “Hey, there are only certain values that are
allowed here.” We need to enumerate the values that are okay to use.

Our code would allow these values to be passed
in a constructor even though the program only
supports Sting Patrol, Nectar Collector and
other jobs that a bee does.

This code compiles, no problem. But these jobs don’t make any sense for a bee. The Worker class really shouldn’t allow these types as valid data.

Our bee management software kept track
of each worker’s job using a string like
“Sting Patrol” or “Nectar Collector”.

nurse sharks and carpenter ants

Download at WoweBook.Com

you are here 4 311

enums and collections

Enums let you enumerate a set
of valid values
An enum is a data type that only allows certain values for that piece
of data. So we could define an enum called Jobs, and define the
allowed jobs:

public enum Job {
 NectarCollector,
 StingPatrol,
 HiveMaintenance,
 BabyBeeTutoring,
 EggCare,
 HoneyManufacturing,
}

private void button1_Click(object sender EventArgs e)
{
 Worker buzz = new Worker(Jobs.AttorneyGeneral);
}

This is the nam
e of the enu

m.

‘Jobs’ does not contain a definition for
‘AttorneyGeneral’X

Each of these is a valid job. Any can be used as a Jobs value.

Separate each value
with a comma, and end
the whole thing with a
curly brace.

Now, you can reference these with types like this:

Worker nanny = new Worker(Job.EggCare);

This is the
name of the
enum.

Finally, the value you want from the enum.

Any other values aren’t allowed. You can’t just make up a new
value for the enum. If you do, the program won’t compile.

We’ve changed the Worker constructor

to accept Worker.Jobs as its

parameter type.

Here’s the error you get
from the compiler.

The last enumerator
doesn’t have to end
with a comma, but
using one makes it
easier to rearrange
them using cut and
paste.

The stuff inside the brackets
is called the enumerator list,
and each one of them is an
enumerator. The whole thing
together is called an enumeration.

But most people just
call them enums.

Download at WoweBook.Com

312 Chapter 8

You can cast the enum as a number and do calculations with it, or you can use the
ToString() method to treat the name as a string. If you don’t assign any number
to a name, the items in the list will be given index numbers by default. The first item
will be assigned a 0 value, the second a 1, etc.

But what happens if you want to use really big numbers for one of the enumerators?
The default type for the numbers in an enum is int, so you’ll need to specify the
type you need using the : operator, like this:

 public enum TrickScore : long {
 Sit = 7,
 Beg = 2500000000025

 }

class DogCompetition{
 public enum TrickScore {
 Sit = 7,
 Beg = 25,
 RollOver = 50,
 Fetch = 10,
 ComeHere = 5,
 Speak = 30,
 }

...
 // code later in the class
 int value = (int)TrickScore.Fetch * 3;
 MessageBox.Show(value.ToString());
 TrickScore score = (TrickScore)value;
 MessageBox.Show(score.ToString());

Enums let you represent numbers with names
Sometimes it’s easier to work with numbers if you have names for them. You can assign
numbers to the values in an enum and use the names to refer to them. That way, you
don’t have bunch of unexplained numbers floating around in your code. Here’s an enum
to keep track of the scores for tricks at a dog competition. This enum is inside the
DogCompetition class (a lot of the time, your enum won’t be inside any class!) , so if you
want to use it outside the class you’ll need to call it DogCompetition.TrickScores.

These don’t have
to be in any
particular order,
and you can give
multiple names to
the same number. The (int) cast tells the compiler to turn this into the

number it represents. So since TrickScore.Speak has
an index of 20, (int)TrickScore.Speak turns it into
the int value 20.

You can cast an int back to
a TrickScore. Since value is
equal to 30, score gets set
to TrickScore.Speak. So when
you call score.ToString(), it
returns “Speak”.

If you tried to compile this code without specifying long as the type,
you’d get this message:
Cannot implicitly convert type ‘long’

 to ‘int’.

This is the DogCompetition.
TrickScores enum.

Supply a name, then “=”, then the number that name stands in for.

Since Fetch has an index of 10, this statement sets value to 30.

This tells the compiler to treat values in the TrickScores enum as longs, not ints.

names are better than numbers

You can put an enum inside
a class like this, or it can
exist on its own outside of
a class.

You can cast an
int to an enum,
and you can cast
an enum back to
an int.

Download at WoweBook.Com

you are here 4 313

enums and collections

Q: Hold on a second. When I was typing in that code, I
noticed that an IntelliSense window popped up that said
something about “3 of 3” when I used that Random.Next()
constructor. What was that about?

A:	What	you	saw	was	a	method	that	was	overloaded.	When	a	
class	has	a	method	that	you	can	call	more	than	one	way,	it’s	called	
overloading.	When	you’re	using	a	class	with	an	overloaded	method,	
the	IDE	lets	you	know	all	of	the	options	that	you	have.	In	this	case,	
the	Random	class	has	three	possible	Next()	methods.	As	soon	

as	you	type	“random.Next(”	into	the	code	window,	the	IDE	pops	
up	its	IntelliSense	box	that	shows	the	parameters	for	the	different	
overloaded	methods.	The	up	and	down	arrows	next	to	the	“3	of	
3”	let	you	scroll	between	them.	That’s	really	useful	when	you’re	
dealing	with	a	method	that	has	dozens	of	overloaded	definitions.	So	
when	you’re	doing	it,	make	sure	you	choose	the	right	overloaded	
Next()	method!	But	don’t	worry	too	much	now—we’ll	talk	a	lot	about	
overloading	later	on	in	the	chapter.

v
Use	what	you’ve	learned	about	enums	to	build	a	class	that	holds	a	playing	card.

Create a new project and add a Card class
You’ll need two public fields: Suit (which will either be Spades, Clubs, Diamonds,
or Hearts) and Value (Ace, Two, Three ... Ten, Jack, Queen, King). And you’ll
need a read-only property, Name (“Ace of Spades”, “Five of Diamonds”).

11

Use two enums to define the suits and values.
Make sure that (int)Card.Suits.Spades is equal to 0, followed by
Clubs (equal to 1), Diamonds (2), and Hearts (3). Make the values equal to
their face values: (int)Card.Values.Ace should equal 1, Two should be
2, Three should be 3, etc. Jack should equal 11, Queen should be 12, and
King should be 13.

22

Add a property for the name of the card
Name should be a read-only property. The get accessor should return a string that describes the card.
This code will run in a form that calls the Name property from the card class and displays it:

 Card card = new Card(Card.Suits.Spades, Card.Values.Ace);
 string cardName = card.Name;

The value of cardName should be “Ace of Spades”.

33

Card
Suit
Value
Name

Add a form button that pops up the name of a random card
You can get your program to create a card with a random suit and value by casting a random
number between 0 and 3 as a Cards.Suits and another random number between 1 and 13
as a Cards.Values. To do this, you can take advantage of a feature of the built-in Random
class that gives it three different ways to call its Next() method:

 Random random = new Random();
 int numberBetween0and3 = random.Next(4);
 int numberBetween1and13 = random.Next(1, 14);
 int anyRandomInteger = random.Next();

44

To make this work, your Card
class will need a constructor
that takes two parameters.

This tells Random to return a value at least 1 but under 14.

When you’ve got more than one way to call a method, it’s called overloading. More on that later...

Download at WoweBook.Com

314 Chapter 8

public class Card {
 public enum Suits {
 Spades,
 Clubs,
 Diamonds,
 Hearts
 }
 public enum Values {
 Ace = 1,
 Two = 2,
 Three = 3,
 Four = 4,
 Five = 5,
 Six = 6,
 Seven = 7,
 Eight = 8,
 Nine = 9,
 Ten = 10,
 Jack = 11,
 Queen = 12,
 King = 13
 }
 public Suits Suit;
 public Values Value;

 public Card(Suits suit, Values value) {
 this.Suit = suit;
 this.Value = value;
 }
 public string Name {
 get { return Value.ToString() + “ of “ + Suit.ToString(); }
 }
}

private void button1_Click(object sender, EventArgs e) {
 Random random = new Random();
 Card card = new Card((Card.Suits)random.Next(4), (Card.Values)random.Next(1, 14));
 MessageBox.Show(card.Name);
}

When you don’t specify values, the first item in the list is equal to zero, the second is 1, the third is 2, etc.

Here’s where we set the value of
Card.Values.Ace to 1.

When you set up your Suit and Value fields, you can just use Suits instead of Card.Suits, since you’re inside of the Card class.

The get accessor for the Name property
can take advantage of the way an enum’s
ToString() method returns its name
converted to a string.

Here’s where we use the overloaded Random.Next() method to generate a random number that we cast to the enum.

Here’s the code for the button that pops
up the name of a random card.

A	deck	of	cards	is	a	great	example	of	where	limiting	values	is	important.	Nobody	
wants	to	turn	over	their	cards	and	be	faced	with	a	Joker	of	Clubs,	or	a	13	of	
Hearts.	Here’s	how	we	wrote	the	Card	class.

arrays... who needs ’em?

Download at WoweBook.Com

you are here 4 315

enums and collections

We could use an array to create a deck of cards...
What if you want to create a class to represent a deck of cards? It would need a
way to keep track of every card in the deck, and it’d need to know what order they
were in. A Card array would do the trick—the top card in the deck would be at
index 0, the next card at index 1, etc. Here’s a starting point—a Deck that starts
out with a full deck of 52 cards.

How would you add a Shuffle() method to the Deck class that rearranges
the cards in random order? What about a method to deal the first card
off the top of the deck? How would you add a card to the deck?

public class Deck {
 private Card[] cards = {
 new Card(Card.Suits.Spades, Card.Values.Ace),
 new Card(Card.Suits.Spades, Card.Values.Two),
 new Card(Card.Suits.Spades, Card.Values.Three),
 // ...
 new Card(Card.Suits.Diamonds, Card.Values.Queen),
 new Card(Card.Suits.Diamonds, Card.Values.King),
 };

 public void PrintCards() {
 for (int i = 0; i < cards.Length; i++)
 Console.WriteLine(cards[i].Name());
 }
}

This array declaration would continue all the way through the deck. It’s just abbreviated here to save space.

... but what if you wanted to do more?
Think of everything you might need to do with a deck of cards, though. If
you’re playing a card game, you routinely need to change the order of the
cards, and add and remove cards from the deck. You just can’t do that with
an array very easily.

Download at WoweBook.Com

316 Chapter 8

Arrays are hard to work with
An array is fine for storing a fixed list of values or references. But once you need
to move array elements around, or add more elements than the array can hold,
things start to get a little sticky.

Every array has a length, and you need to know the length to work with it. You could use
null references to keep some array elements empty:

11

But now things get complicated. It’s easy enough to add a Peek() method that just returns a
reference to the top card—so you can peek at the top of the deck. But what if you want to add
a card? If topCard is less than the array’s Length, you can just put your card in the array at that
index and add 1 to topCard. But if it the array’s full, you’ll need to create a new, bigger array
and copy the existing cards to it. Removing a card is easy enough—but after you subtract 1 from
toCard, you’ll need to make sure to set the removed card’s array index back to null. And what if
you need to remove a card from the middle of the list? If you remove card #4, you’ll need to
move card 5 back to replace it, and then move 6 back, then 7 back...wow, what a mess!

33

Card objectCard object

Card object

You’d need to keep track of how many cards are being held. So you’d need an int field,
which we could call topCard, which would hold the index of the last card in the array. So
our 3-card array would havea Length of 7, but we’d set topCard equal to 3.

22

This array has a Length of 7,
but it’s only storing 3 cards.

Indexes 3, 4, 5, and 6 are equal to null, so they’re not holding any cards.

We’ll add a topCard field to keep track of how many cards are in the array. Any index above topCard has a null Card reference.

There’s actually an Array.Resize()
method built into the .NET
Framework that does exactly that.

fine collectibles

Download at WoweBook.Com

you are here 4 317

enums and collections

Lists make it easy to store collections of... anything
The .NET Framework has a bunch of collection classes that handle all of those
nasty issues that come up with you add and remove array elements. The most
common sort of collection is a List. Once you creat a List object, it’s easy to add
an item, remove one from any location in the list, peek at an item, and even move
an item from one place in the list to another. Here’s how a list works:

Card object

First you create new instance of List
Every array has a type—you don’t just have an array, you have an int array, a Card array,
etc. Lists are the same way. You need to specify the type of object or value that the list
will hold by putting it in angle brackets <> when you use the new keyword to create it.

List<Card> cards = new List<Card>();

11

Now you can add to your List
Once you’ve got a List object, you can add as many items to it as you want (as long as
they match whatever type you specified when you created your new List).

cards.Add(new Card(Card.Suits.Diamonds, Card.Values.King);

cards.Add(new Card(Card.Suits.Clubs, Card.Values.Three);

cards.Add(new Card(Card.Suits.Hearts, Card.Values.Ace);

22

List<Card> ob
je

ct

You specified <Card> when you
created the list, so now this
list only holds references to
Card objects.

Card object

List<Card> ob
je

ct

Card object

King of
Diamonds

Three of
Clubs

Ace of
Hearts

You can add as many
cards as you want to
the List - just call its
Add() method. It’ll make
sure it’s got enough
“slots” for the items. If
it starts to run out, it’ll
automatically resize itself.

A list keeps its elements
in order, just like an
array. King of Diamonds
is first, 3 of Clubs
is second, and Ace of
Hearts is third.

Download at WoweBook.Com

318 Chapter 8

Lists are more flexible than arrays
The List class is built into the .NET Framework, and it lets you do a lot of
things with objects that you can’t do with a plain old array. Check out some
of the things you can do with a List.

You can make one.
 List<Egg> myCarton = new List<Egg>();

11

Add something to it.
 Egg x = new Egg();
 myCarton.Add(x);

22

Add something else to it.
 Egg y = new Egg();

 myCarton.Add(y);

33

Find out how many things are in it.
 int theSize = myCarton.Count;

44

Figure out where that thing is.
 int idx = myCarton.IndexOf(y);

66

Find out how much the list will hold.
 int limit = myCarton.Capacity;

77

Take something out if it.
 myCarton.Remove(y);

88

Find out if it has something in particular in it.
 bool Isin = myCarton.Contains(x);

55

A new List object is

created on the h
eap. But

there’s nothing i
n it yet.

Now the List expands to hold
the Egg object....

...and expands again to hold the second Egg object..

Now you can search for any Egg inside the list. This would definitely come back true.

When we removed y, we left only x in
the List, so it shrank!

The index for x would be 0 and the
index for y would be 1.

This will tell you the number of
objects the list can hold before it
has to resize itself.

x

x

poof!

wow, what an improvement!

x
y

Download at WoweBook.Com

you are here 4 319

enums and collections

List<String> myList =
 new List <String>();

String [] myList = new String[2];

String a = “Yay!”; String a = “Yay!”;
myList.Add(a);

String b = “Bummer”; String b = “Bummer”;
myList.Add(b);

int theSize = myList.Count;

object o = myList[1];

bool isIn = myList.Contains(b);

List regular array

Fill in the rest of the table below by looking at the List code on
the left and putting in what you think the code might be if it were
using a regular array instead. We don’t expect you to get all of
them exactly right, so just make your best guess.

Hint: You’ll need than more than
one line of code here.

We filled in a couple for you...
Assume these statements are all
executed in order, one after another.

Download at WoweBook.Com

320 Chapter 8

List regular array

Lists are objects that use methods just like every
other class you’ve used so far. You can see the list
of methods available from within the IDE just
by typing a . next to the List name and you pass
parameters to them just the same as you would for
a class you created yourself.

With arrays you’re a lot more limited. You need
to set the size of the array when you create it, and
any logic that’ll need to be performed on it will
need to be written on your own.

Your job was to fill in the rest of the table below by looking at the List
code on the left and putting in what you think the code might be if it
were using a regular array instead.

one size fits all

List<String> myList =
 new List <String>();

String[] myList = new String[2];

String a = “Yay!” String a = “Yay!”;
myList.Add(a); myList[0] = a;

String b = “Bummer”; String b = “Bummer”;
myList.Add(b); myList[1] = b;

int theSize = myList.Count; int theSize = myList.Length;

object o = myList[1]; object o = myList[1];

bool isIn = myList.Contains(b); bool isIn = false;
 for (int i = 0; i < myList.
 Length; i++) {
 if (b == myList[i]) {
 isIn = true;
 }
 }

The .NET Framework does have an
Array class which makes some of these
things a little easier to do... but we’re
concentrating on List objects because
they’re a lot easier to use.

Download at WoweBook.Com

you are here 4 321

enums and collections

List<Shoe> shoeCloset = new List<Shoe>();

shoeCloset.Add(new Shoe()

 { Style = Style.Sneakers, Color = “Black” });

shoeCloset.Add(new Shoe()

 { Style = Style.Clogs, Color = “Brown” });

shoeCloset.Add(new Shoe()

 { Style = Style.Wingtips, Color = “Black” });

shoeCloset.Add(new Shoe()

 { Style = Style.Loafers, Color = “White” });

shoeCloset.Add(new Shoe()

 { Style = Style.Loafers, Color = “Red” });

shoeCloset.Add(new Shoe()

 { Style = Style.Sneakers, Color = “Green” });

int numberOfShoes = shoeCloset.Count;

foreach (Shoe shoe in shoeCloset) {

 shoe.Style = Style.Flipflops;

 shoe.Color = “Orange”;

}

shoeCloset.RemoveAt(4);

Shoe thirdShoe = shoeCloset[3];

Shoe fifthShoe = shoeCloset[5];

shoeCloset.Clear();

shoeCloset.Add(thirdShoe);

if (shoeCloset.Contains(fifthShoe))

 Console.WriteLine(“That’s surprising.”);

Lists shrink and grow dynamically

public class Shoe {

 public Style Style;

 public string Color;

}

public enum Style {

 Sneakers,

 Loafers,

 Sandals,

 Flipflops,

 Wingtips,

 Clogs,

}

We’re declaring a List of Shoe objects called ShoeCloset.

This returns the
total number of
Shoe objects in
the List.

foreach is a special kind of
loop for Lists. It will execute
a statement for each object
in the List. This loop creates
an identifier called shoe. As
the loop goes through the
items, it sets shoe equal to
the first item in the list, then
the second, then the third,
until the loop is done.

The Remove() method will
remove the object by it’s
reference; RemoveAt() does
it by index number.

The Clear() method
removes all of the
objects in a List.

The great thing about a List is that you don’t need to know how long it’ll
be when you create it. A List automatically grows and shrinks to fit its
contents. Here’s an example of a few of the methods that make working
with Lists a lot easier than arrays:

This foreach loop goes
through each of the
shoes in the closet.

Here’s the Shoe class
we’re using...

foreach loops work on arrays, too! In
fact, they work on any collection.

You can use a new statement inside
the List.Add() method.

We saved references
to two shoes before
we cleared the list. We
added one back, but
the other’s still missing.

This line will never run, because Contains() will return false. We
only added thirdShoe into the cleared list, not fifthShoe.

Remember, the
Style enum isn’t
inside the Shoe
class, so it’s just
“Style.Sneakers”,
not “Shoe.Style.
Sneakers”.

Download at WoweBook.Com

322 Chapter 8

List objects can store any type
You’ve already seen that a List can store strings or Shoes. You
could also make Lists of integers, or any other object you
can create. That makes a List a generic collection. When
you create a new List object, you tie it to a specific type: you
can have a list of ints, or strings, or Shoe objects. That makes
working with Lists easy—once you’ve created your list, you
always know the type of data that’s inside it.

List<T> name = new List<T>();

The .NET Framework comes with some generic
interfaces that let the collections you’re building work
with any and all types. List implements those interfaces
and that’s why you could create a List of integers and
work with it using pretty much the same way that you
would work with a List of Shoe objects.

Check it out for yourself. Type the word, List,
into the IDE and then right-click on it and select “Go
To Definition”. That will take you to the declaration
for the List class. It implements a few interfaces:

This doesn’t actually mean that you add the letter T. It’s
notation that you’ll see whenever a class or interface works
with all types. The <T> part means you can put a type in
there, like List<Shoe>, which limits its members to that type.

List	is	a	class	in	the	.NET	Framework.

A	List	resizes dynamically	to	whatever	size	
is	needed.	It’s	got	a	certain	capacity—once	
you	add	enough	data	to	the	list,	it’ll	grow	to	
accommodate	it.

To	put	something	into	an	List,	use	Add(). To	
remove	something	from	a	List,	use	Remove().

You	can	remove	objects	using	their	index	
number	using	RemoveAt().

You	declare	the	type	of	the	List	using	a	type
argument,	which	is	a	type	name	in	angle	
brackets.	Example:	List<Frog>	means	the	List	
will	be	able	to	hold	only	objects	of	type	Frog.

To	find	out	where	something	is	(and	if	it	is)	in	
a	List,	use	IndexOf().

To	get	the	number	of	elements	in	a	List,	use	
the	Count	property.

You	can	use	the	Contains()	method	to	find	
out	if	a	particular	object	is	in	a	List.

foreach	is	a	special	kind	of	loop	that	will	
iterate	through	all	of	the	elements	in	a	list	and	
execute	code	on	it.	The	syntax	for	a	foreach	
loop	is	foreach (string s in StringList). You	
don’t	have	to	tell	the	foreach	loop	to	increment	
by	one;	it	will	go	through	the	entire	list	all	on	
its	own.	

This is where Add(), Clear(),
CopyTo(), and Remove()
come from. It’s the basis
for all generic collections.

This interface lets you us
e

foreach among other things.

This is where RemoveAt(), IndexOf(), and Insert() come from.

Lists can be either very flexible (allow
ing any

type) or very restrictive. So they do
 what arrays

do, and then quite a few things more.

membership has its privileges

public class List<T> : IList<T>,
ICollection<T>, IEnumerable<T>, IList,
ICollection, IEnumerable

.

Download at WoweBook.Com

you are here 4 323

enums and collections

Code Magnets
Can you reconstruct the code snippets to make
a working Windows Form that will pop up the
message box below when you click a button?

private void button1_Click(object sender,

EventArgs e){

string result = “”;

}

a.RemoveAt(2);

List<string> a = new List<string>(
);

 public void printL (List<string> a){

a.Add(zilch);

a.Add(first);

a.Add(second);

a.Add(third);

if (a.contains(“two
”)) {

 a.Add(twopointtw
o);

}

if (a.Contains(“three”)){

 a.Add(“four”);
 }

 foreach (string element in a) {
 result += “\n” + element; }

MessageBox.Show(result);

}

}

if (a.IndexOf(“four”) != 4) { a.Add(fourth); }

printL(a);

string zilch = “zero”;

string first = “one”;

string second = “two”;

string third = “three”;

string fourth = “4.2”;

string twopointtwo = “2.2”;

Download at WoweBook.Com

324 Chapter 8

exercise solution

Code Magnets Solution
private void button1_Click(object sender,

EventArgs e){

string result = “”;

}

a.RemoveAt(2);

List<string> a = new List<string>(
);

 public void printL (List<string> a){

a.Add(zilch);

a.Add(first);

a.Add(second);

a.Add(third);

if (a.contains(“two
”)) {

 a.Add(twopointtw
o);

}

if (a.Contains(“three”)){

 a.Add(“four”);
 }

 foreach (string element in a) {
 result += “\n” + element; }

MessageBox.Show(result);

}

}

if (a.IndexOf(“four”) != 4) {
 a.Add(fourth);
 }

printL(a);

string zilch = “zero”;

string first = “one”;

string second = “two”;

string third = “three”;

string fourth = “4.2”;

string twopointtwo = “2.2”;

Can you figure out why “2.2” never gets added to the list, even though it’s
declared here?

RemoveAt() removes
the element at
index #2—which is
the third element in
the list.

The foreach loop goes
through all of the
elements in the list
and prints them.

The printL() method uses a
foreach loop to go through a
list of strings, add each of
them to one big string, and
then show it in a message box.

Download at WoweBook.Com

you are here 4 325

enums and collections

Q: So why would I ever use an enum
instead of a List? Don’t they solve the
same problem?

A:	Enums	are	a	little	different	than	Lists.	
You	can	think	of	enums	as	a	handy	way	to	
store	lists of constants	so	you	can	refer	
to	them	by	name.	They’re	great	for	keeping	
your	code	readable	and	making	sure	that	
you	are	always	using	the	right	variable	
names	to	access	values	that	you	use	really	
frequently.			
A	List	can	store	just	about	anything.	Since	
it’s	a	list	of	objects,	each	element	in	a	list	
can	have	its	own	methods	and	properties.	
Enums,	on	the	other	hand,	have	to	be	
assigned	one	of	the	value types	in	C#	(like	
the	ones	on	the	first	page	of	Chapter	4).	So,	
you	can’t	store	reference	variables	in	them.		
Enums	can’t	dynamically	change	their	size	
either.	They	can’t	implement	interfaces	or	
have	methods,	and	you’ll	have	to	cast	them	
to	another	type	to	store	a	value	from	an	
enum	in	another	variable.	Add	all	of	that	up	
and	you’ve	got	some	pretty	big	differences	
between	the	two	ways	of	storing	data.	But	
both	are	really	useful	in	their	own	right.		

Q: OK, it sounds like Lists are pretty
powerful. So why would I ever want to
use an array?

A:	Arrays	take	up	less	memory	and	
take	less	CPU	time	for	your	programs.	
If	you’re	doing	something	that’s	really	
performance-intensive—like	the	same	
operation	thousands	and	thousands	of		

		
times	–then	you	might	find	that	a	List	
will	cause	your	program	to	slow	down	
significantly.	Luckily,	you	can	easily	convert	
any	list	to	an	array	using	the	ToArray()	
method...	and	you	can	convert	an	array	to	a	
list	using	one	of	the	overloaded	constructors	
for	the	List	object.

Q: I don’t get the name “generic”. Why
is it called a generic collection? Why isn’t
an array one?

A:	A	generic	collection	is	a	collection	
object	(or	a	built-in	object	that	lets	you	store	
and	manage	a	bunch	of	other	objects)	that’s	
been	set	up	to	store	only	one	type.

Q: Okay, that explains the “collection”
part. But what makes it “generic”?

A:	Supermarkets	used	to	carry	generic	
items	that	were	packaged	in	big	white	
packages	with	black	type	that	just	said	the	
name	of	what	was	inside	(“Potato	Chips”,	

“Cola”,	“Soap”,	etc.).	The	generic	brand	was	
all	about	what’s	inside	the	bag,	and	not	
about	how	it’s	displayed.	
	
The	same	thing	happens	with	generic	data	
types.	Your	List<>	will	work	exactly	the	same	
with	whatever	happens	to	be	inside	it.	A	List	
of	Shoe	objects,	Card	objects,	ints,	longs,	or	
even	other	Lists	will	still	act	at	the	container	
level.	So	you	can	always	add,	remove,	insert,	
etc.,	no	matter	what’s	inside	the	list	itself.

Q: Can I have a list that doesn’t have
a type?

A:	No.	Every	list—in	fact,	every	generic	
collection	(and	you’ll	learn	about	the	other	
generic	collections	in	just	a	minute)—must	
have	a	type	connected	to	it.	C#	does	have	
non-generic	lists	called	ArrayLists	that	can	
store	any	kind	of	object.	If	you	want	to	use	
an	ArrayList,	you	need	to	include	a	“using
System.Collections;”	line	in	
your	code.			
Generic	collections	are	actually	a	recent	
addition	to	C#—they	didn’t	exist	in	the	early	
versions	of	the	language.	But	they’re	so	
useful	that	people	rarely	use	non-generic	
collections	any	more...	which	is	why	we	
won’t	be	talking	much	about	them.

When you create
a new List object,
you always supply
a type—that tells
C# what type
of data that it’ll
store. A list can
store a value type
(like int, bool, or
string) or a class.

Okay, honestly, we’re talking
about a really, really tiny
performance boost. Like if
you have to do the same thing
millions of times a second, use
an array and not a list.

The term “generic” refers to the
fact that even though a specific
instance of List can only store
one specific type, the List class in
general works with any type.

That’s what the <T> stuff is all about. It’s the way that you
tie a specific instance of a List to one type. But the List class
as a whole is generic enough to work with ANY type. That’s why
generic collections are different from anything you’ve seen so far.

Download at WoweBook.Com

326 Chapter 8

initial here

Collection initializers work just like object initializers

List<Shoe> shoeCloset = new List<Shoe>();
shoeCloset.Add(new Shoe() { Style = Style.Sneakers, Color = “Black” });
shoeCloset.Add(new Shoe() { Style = Style.Clogs, Color = “Brown” });
shoeCloset.Add(new Shoe() { Style = Style.Wingtips, Color = “Black” });
shoeCloset.Add(new Shoe() { Style = Style.Loafers, Color = “White” });
shoeCloset.Add(new Shoe() { Style = Style.Loafers, Color = “Red” });
shoeCloset.Add(new Shoe() { Style = Style.Sneakers, Color = “Green” });

List<Shoe> shoeCloset = new List<Shoe>() {
 new Shoe() { Style = Style.Sneakers, Color = “Black” },
 new Shoe() { Style = Style.Clogs, Color = “Brown” },
 new Shoe() { Style = Style.Wingtips, Color = “Black” },
 new Shoe() { Style = Style.Loafers, Color = “White” },
 new Shoe() { Style = Style.Loafers, Color = “Red” },
 new Shoe() { Style = Style.Sneakers, Color = “Green” },
};

C# gives you a nice bit of shorthand to cut down on typing when you need to
create a list and immediately add a bunch of items to it. When you create a
new List object, you can use a collection initializer to give it a starting list of
items. It’ll add them as soon as the list is created.

The same code rewritten using a collection initializer

You saw this code a few
pages ago—it creates a new
List<Shoe> and fills it with
new Shoe objects.

The statement to create
the list is followed by
curly brackets that
contain separate new
statement, separated by
commas.

You’re not limited to
using new statements
in the initializer—you
can include variables,
too.

A collection initializer makes your code more
compact by letting you combine creating a list
with adding an initial set of items.

You can create a collection
initializer by taking each item
that was being added using
Add() and adding them to the
statement that creates the list.

Collection Initializers are a
C# 3.0 feature. If you’re still
using Visual Studio 2005, you
should download Visual Studio
2008 Express for free from
Microsoft, otherwise this code
won’t work.

Download at WoweBook.Com

you are here 4 327

enums and collections

Duck
Size
Kind

Quack()
Swim()
Eat()
Walk()

List<Duck> ducks = new List<Duck>() {

 new Duck() { Kind = KindOfDuck.Mallard, Size = 17 },

 new Duck() { Kind = KindOfDuck.Muscovy, Size = 18 },

 new Duck() { Kind = KindOfDuck.Decoy, Size = 14 },

 new Duck() { Kind = KindOfDuck.Muscovy, Size = 11 },

 new Duck() { Kind = KindOfDuck.Mallard, Size = 14 },

 new Duck() { Kind = KindOfDuck.Decoy, Size = 13 },

};

Let’s create a list of Ducks
Here’s a duck class that keeps track of your extensive duck
collection. (You do collect ducks, don’t you?)

Each duck has a size—this
one is 17 inches long.

You’ve got some
Muscovy ducks.

Some of the ducks
are mallards.

And you’ve got a few
wood decoys.

public enum KindOfDuck {

 Mallard,

 Muscovy,

 Decoy

}

public class Duck {

 public int Size;

 public KindOfDuck Kind;

}

Here’s the initializer
We’ve got six ducks, so we’ll create a List<Duck> that has
a collection initializer with six statements. Each statement
in the initializer creates a new duck, using an object
initializer to set each Duck object’s Size and Kind field.

We’ll use an enum
called KindOfDuck to
keep track of what
sort of ducks are in
your collection.

The class has two public
fields. It’s also got some
methods, which we’re not
showing here.

The KindOfDuck enum isn’t in a
class, which is very common for an
enum. Most enums you’ll run across
won’t be inside classes.

Download at WoweBook.Com

328 Chapter 8

Lists are easy, but SORTING can be tricky
It’s not hard to think about ways to sort numbers or letters. But what do you
sort two objects on, especially if they have multiple fields? In some cases you
might want to order objects by the value in a name field, while in other cases
it might make sense to order objects based on height or date of birth. There
are lots of ways you can order things, and Lists support any of them.

You could sort a list of ducks by size...

...or by type.

Sorted smallest to biggest...

Sorted by kind of duck...

getting your ducks in a row

Lists know how to sort themselves
Every list comes with a Sort() method that rearranges all of the items in
the list to put them in order. Lists already know how to sort most built-in
types and classes, and it’s easy to teach it how to sort your own classes.

Duck object

Duck object

List<Duck> ob
je

ct

Duck object

17” duck

11” duck

14” duck

Sort()

List<Duck> ob
je

ct

Duck object

Duck object

11” duck

Duck object

14” duck

17” duck

After the list of ducks is
sorted, it’s got the same
items in it—but they’re in
a diferent order.

Download at WoweBook.Com

you are here 4 329

enums and collections

Two ways to sort your ducks
The List.Sort() method already knows how to sort any type or class that implements
the IComparable interface. That interface has just one member—a method
called CompareTo(). Sort() uses an object’s CompareTo() method to compare it with
other objects, and uses its return value (an int) to determine which comes first.

But sometimes you need to sort a list of objects that don’t implement
IComparable, and .NET has another interface to help with that. You can pass
Sort() an instance of a class that implements IComparer. That interface also
has one method. The List’s Sort() method uses the comparer object’s Compare()
method to compare pairs of objects, in order to figure out which one comes first in
the sorted list.

An object’s CompareTo() method compares it
with another object
One way to let our List object sort is to modify the Duck class to
implement IComparable. To do that, we’d add a CompareTo()
method that takes a Duck reference as a parameter. If the duck
to compare should come after the current duck in the sorted list,
CompareTo() returns a positive number.

Here’s a Duck class that sorts itself based on duck size:

public class Duck : IComparable<Duck> {

 public int Size;

 public KindOfDuck Kind;

 public int CompareTo(Duck duckToCompare) {

 if (this.Size > duckToCompare.Size)

 return 1;

 else if (this.Size < duckToCompare.Size)

 return -1;

 else

 return 0;

 }

}

You can make
any class
work with the
List’s built‑in
Sort() method
by having it
implement
IComparable
and adding a
CompareTo()
method.

When you implement IComparable, you
specify the type being compared when
you have the class implement the
interface.

Most CompareTo() methods
look a lot like this. This
method first compares the
Size field against the other
duck’s Size field. If this
duck is bigger, it returns 1.
If it’s smaller, it returns -1.
And if they’re the same size,
it returns zero.

If you want to sort your list from smallest
to biggest, have CompareTo() return a
positive number if it’s comparing to a
smaller duck, and a negative number if it’s
comparing to a bigger one.

Download at WoweBook.Com

330 Chapter 8

Your List will
sort differently
depending on how
you implement
IComparer.

public class DuckComparer_bySize : IComparer<Duck>

{
 public int Compare(Duck x, Duck y)

 {
 if (x.Size < y.Size)

 return -1;

 if (x.Size > y.Size)

 return 1;

 return 0;

 }
}

This class implements IComparer, and specifies the type of object it can sort: Duck objects.

Lists have a special interface built into the .NET Framework that lets
you build a separate class to help the List sort out its members. By
implementing the IComparer interface, you are can tell your List
exactly how you want it to sort your objects. You do that by implementing
the Compare() method in the IComparer interface. It takes two
object parameters, x and y, and returns an int. If x is less than y, it
should return a negative value. If they’re equal, it should return zero.
And if x is greater than y, it should return a positive value.

Here’s an example of how you’d declare a comparer class to compare
duck objects by size:

Use IComparer to tell your List how to sort

The Compare() method returns an

int, and has two parameters: both

of the type you’re s
orting.

These will always match: the same type in each.

You can do whatever types of comparisons you want in the method.
A -1 means object x should
go before object y. x is “less
than” y.

Positive 1 means object x should go after object y. x is “greater” than y.0 means that these two
objects should be treat

ed

as the same (using this
comparison calculation).

sort it out amongst yourselves

Download at WoweBook.Com

you are here 4 331

enums and collections

Create an instance of your comparer object
When you want to sort using IComparer, you need to create a new
instance of the class that implements it. That object exists for one
reason—to help List.Sort() figure out how to sort the array. But like any
other (non-static) class, you need to instantiate it before you use it.

Multiple IComparer implementations, multiple ways to
sort your objects
You can create multiple IComparer classes with different sorting logic
depending on what you need to do. Then you can call the comparer you
want when you need to sort in that particular way. Here’s another duck
comparer implementation:

class DuckComparer_byKind : IComparer<Duck> {
 public int Compare(Duck x, Duck y) {
 if (x.Kind < y.Kind)
 return -1;
 if (x.Kind > y.Kind)
 return 1;
 else
 return 0;
 }
}

DuckComparer_byKind dcKind = new DuckComparer_byKind();
ducks.Sort(dcKind);

We compared the ducks’ Kind
properties, so the ducks are sorted
based on the index value of the
KindOfDuck enum.

This comparer sorts by duck type. Remember, when you compare the enum Kind, you’re comparing their index values.

Notice how “greater than” and “less than” have a different meaning here. We used < and > to compare enum index values, which lets us put the ducks in order.

Here’s an example of how enums

and Lists work together. Enums

stand in for numbers, and are used

in sorting of lists
.

List<Duck> ducks = new List<Duck>() { ... };

DuckComparer_bySize dc = new DuckComparer_bySize();

ducks.Sort(dc);

We left out the code you already
saw a few pages ago to initialize
the list.

You’ll pass Sort() a reference to the
new DuckComparer_bySize object as
its parameter. Sorted smallest to biggest...

Sorted by kind of duck...

So Mallard comes before Muscovy, which comes before Decoy.

Download at WoweBook.Com

332 Chapter 8

pick a card any card

IComparer can do complex comparisons
One advantage to creating a separate class for sorting your ducks is
that you can build more complex logic into that class—and you can
add members that help determine how the list gets sorted.

public class DuckComparer : IComparer<Duck> {
 public enum SortCriteria {
 SizeThenKind,
 KindThenSize,
 }

 public SortCriteria SortBy = SortCriteria.SizeThenKind;

 public int Compare(Duck x, Duck y) {
 if (SortBy == SortCriteria.SizeThenKind)
 if (x.Size > y.Size)
 return 1;
 else if (x.Size < y.Size)
 return -1;
 else
 if (x.Kind > y.Kind)
 return 1;
 else if (x.Kind < y.Kind)
 return -1;
 else
 return 0;
 else
 if (x.Kind > y.Kind)
 return 1;
 else if (x.Kind < y.Kind)
 return -1;
 else
 if (x.Size > y.Size)
 return 1;
 else if (x.Size < y.Size)
 return -1;
 else
 return 0;
 }
}

DuckComparer dc = new DuckComparer();

dc.SortBy = DuckComparer.SortCriteria.KindThenSize;
ducks.Sort(dc);

dc.SortBy = DuckComparer.SortCriteria.SizeThenKind;
ducks.Sort(dc);

Here’s a more complex class to
compare ducks. Its Compare() method
takes the same parameters, but it
looks at the public SortBy field to
determine how to sort the ducks.This enum tells the object which way to sort the ducks.

This if statement checks the SortBy
field. If it’s set to SizeThenKind,
then it first sorts the ducks by size,
and then within each size it’ll sort
the ducks by their kind.

Instead of just returning 0 if the two
ducks are the same size, the comparer
checks their kind, and only returns 0
if the two ducks are both the same
size and the same kind.

If SortBy isn’t set to SizeThenKind,
then the comparer first sorts by the
kind of duck. If the two ducks are the
same kind, then it compares their size.

Here’s how we’d use this comparer object.

First we’d instantiate it as usual. Then
we can set the object’s SortBy field
before calling ducks.Sort(). Now you can
change the way the list sorts its ducks
just by changing one field in the obj

ect.

Download at WoweBook.Com

you are here 4 333

enums and collections

vv Create	five	random	cards	and	then	sort	them.

Create code to make a jumbled set of cards
Add a button to a form that creates five random Card objects. After you create each object, use the
built-in Console.WriteLine() method to write its name to the output. You can view everything
written to the output by selecting “Output” from the View menu while the program’s running.

11

Create a class that implements IComparer<List> to sort the cards
Here’s a good chance to use that IDE shortcut to implement an interface:

 public class CardComparer_byValue : IComparer<Card>

Then click on IComparer and hover over the I. You’ll see a box appear underneath it. When you
click on the box, the IDE pops up a window:

If you click on “Implement interface IComparer<Card>”, the IDE automatically fills in all of the
methods and properties that you need to implement. In this case, it creates an empty Compare()
method to compare two cards, x and y. Write the method so that it returns 1 if x is bigger than y, -1
if it’s smaller, and 0 if they’re the same card. In this case, make sure that any king comes after any
jack, which comes after any four, which comes after any ace.

22

Make sure the output looks right
Here’s what your output window should look like after you click the button.

33

When you use the
built-in Console.
WriteLine() method,
it adds a line to this
output window.

Your IComparer
object needs to sort
the cards by value,
so the cards with
the lowest values are
first in the list.

Download at WoweBook.Com

334 Chapter 8

Create	five	random	cards	and	then	sort	them.

public class CardComparer_byValue : IComparer<Card> {
 public int Compare(Card x, Card y) {
 if (x.Value < y.Value) {
 return -1;
 }
 if (x.Value > y.Value) {
 return 1;
 }
 if (x.Suit < y.Suit) {
 return -1;
 }
 if (x.Suit > y.Suit) {
 return 1;
 }
 return 0;
 }
}

private void button1_Click(object sender, EventArgs e)
{
 Console.WriteLine(“Five random cards:”);
 List<Card> cards = new List<Card>();
 for (int i = 0; i < 5; i++)
 {
 cards.Add(new Card((Card.Suits)random.Next(4),
 (Card.Values)random.Next(1, 14)));
 Console.WriteLine(cards[i].Name);
 }

 Console.WriteLine(“Those same cards, sorted:”);
 cards.Sort(new CardComparer_byValue());
 foreach (Card card in cards)
 {
 Console.WriteLine(card.Name);
 }
}

Here’s the “guts” of the card sorting, which uses the built-in List.Sort() method. Sort() takes an IComparer object, which has one method: Compare(). This implementation takes two cards and first compares their values, then their suits.

If none of the other four return statements were hit, the cards must be the same—so return zero.

If x has a bigger value, return 1. If x’s value is smaller, return -1. Remember, both return statements end the method immediately. These statements only get
executed if x and y have the
same value—that means the
first two return statements
weren’t executed.

Here’s a generic List
of Card objects to
store the cards. Once
they’re in the list, it’s
easy to sort them
using an IComparer.

look it up

Download at WoweBook.Com

you are here 4 335

enums and collections

Use a dictionary to store keys and values
A list is like a big long page full of names. But what if you want, for each name, an
address? Or for every car in the garage list, you want details about that car? You need a
dictionary. A dictionary lets you take a special value—the key—and associate that key
with a bunch of data—the value. And one more thing: a specific key can only appear
once in any dictionary.

dic•tion•ar•y
A book that lists the words of a language in
alphabetical order and gives their meaning.

This is the key. It’s how you look up a definition in (you guessed it) a dictionary.
This is the value. It’s the data
associated with a particular key.

private void button1_Click(object sender, EventArgs e)
{
 Dictionary<string, string> wordDefinition =
 new Dictionary<string, string>();

 wordDefinition.Add (“Dictionary”, “A book that lists the words of a ”
 + “language in alphabetical order and gives their meaning”);
 wordDefinition.Add (“Key”, “A thing that provides a means of gaining access to ”
 + “our understanding something.”);
 wordDefinition.Add (“Value”, “A magnitude, quantity, or number.”);

 if (wordDefinition.ContainsKey(“Key”)){
 MessageBox.Show(wordDefinition[“Key”]);
 }

}
Here’s how you get the value for

a key.

It looks kind of like an
 array index-get

the value for the key a
t this index.

This dictionary has string values for keys, and strings as the value. It’s like a real dictionary: term, and definition.

ContainsKey() tells you if a key
is in

the dictionary. Handy, huh?

The Add()
method is how
you add keys
and values to
the dictionary.

Dictionary <Tkey, TValue> kv = new Dictionary <TKey, TValue>();

These are like List<T>. The <T> means
a type goes in there. So you can declare
one type for the key, and another type
for the value.

These represent types. The first type in the angle brackets is always the key, and the second is always the data.

Here’s how you declare a Dictionary in C#:

And here’s a Dictionary in action:

Add() takes a
key, and then
the value.

Download at WoweBook.Com

336 Chapter 8

The Dictionary Functionality Rundown
Dictionaries are a lot like Lists. Both types are flexible in letting you
work with lots of data types, and also come with lots of built-in
functionality. Here are the basic Dictionary methods:

map anything to anything

± Add an item.
You can add an item to a dictionary by passing a key and a value to its the Add() method.

 Dictionary<string, string> myDictionary = new Dictionary<string, string>();

 myDictionary.Add(“some key”, “some value”);

± Look up a value using its key.
The most important thing you’ll do with a dictionary is look up values—which makes
sense, because you stored those values in a dictionary so you could look them up using
their unique keys.

 string lookupValue = myDictionary[“some key”];

± Remove an item.
Just like a List, you can remove and item from a dictionary using the Remove() method.
All you need to pass to the Remove method is the Key value to have both the key and the
value removed.

 myDictionary.Remove(“some key”);

± Get a list of keys.
You can get a list of all of the keys in a Dictionary using a KeyCollection and loop
through it using a foreach loop. You’ll usually use a Keycollection like this:

 foreach (string key in myDictionary.Keys) { ... };

± Get a list of values.
You can get a list of all of the values in a Dictionary using a ValueCollection. Most of
the time, you use a ValueCollection with a foreach loop too:

 foreach (string value in myDictionary.Values) { ... };

Keys is a property of your dictionary object. This particular
dictionary has string keys, so Keys is a collection of strings.

Keys are unique in a Dictionary; any key appears exactly once. Values can appear any number of times—two keys can have the same value. That way, when you look up or remove a key, the Dictionary knows what to remove.

Since this dictionary has string values, the foreach identifier will be a string.

Download at WoweBook.Com

you are here 4 337

enums and collections

Your key and value can be different types, too
Dictionaries are really versatile and can hold just about anything, from strings
to numbers and even objects. Here’s an example of a dictionary that’s storing
an integer as a key and a duck object as a value. The Duck object has a
Size field and Types enum that are set inside its constructor.

Dictionary<int, Duck> duckDictionary = new Dictionary<int, Duck>();

duckDictionary.Add(5155, new Duck() { Kind = KindOfDuck.Mallard, Size = 15 });

duckDictionary.Add(6256, new Duck() { Kind = KindOfDuck.Mallard, Size = 14 });

duckDictionary.Add(2799, new Duck() { Kind = KindOfDuck.Mallard, Size = 13 });

int howMany = duckDictionary.Count;

Console.WriteLine(“There are {0} ducks.”, howMany);

foreach (KeyValuePair<int, Duck> idDuck in duckDictionary)

 Console.WriteLine(“Key/value pair: {0}: {1}, {2}”,

 idDuck.Key, idDuck.Value.Size, idDuck.Value.Kind.ToString());

foreach (Duck duck in duckDictionary.Values)

 Console.WriteLine(“Duck size: {0}”, duck.Size);

foreach (int key in duckDictionary.Keys)

 Console.WriteLine(“ID Number: {0}”, key);

Here’s where the dictionary is
declared. It’ll store numbers and
ducks. We’ll add each of the ducks
to the dictionary, giving it a unique
ID number as the key.

The Count property tells
how many key-value pairs are
in the Dictionary.

This loop assigns the
current key/value pair
to idDuck, one at a time,
through the whole loop.

This foreach loop goes through all of the
values in the dictionary.

And this foreach loop pulls each of
the keys out of the dictionary.

If you need to pull the keys and
values out of a dictionary, you can
use a KeyValuePair<>.

Every KeyValuePair has a key and a value. Since the value is a Duck, you can use its fields.

Here’s the output
that this code
writes to the console.

Download at WoweBook.Com

338 Chapter 8

Build a form that lets you move cards between two decks

You’ve built a card class already. Now it’s time to build a class to hold any number of cards, which
we’ll call Deck. A real-life deck has 52 cards, but the Deck class can hold any number of cards—
or no cards at all.

 Then you’ll build a form that shows you the contents of two Deck objects. When you first start the
program, deck #1 has up to 10 random cards, and deck #2 is a complete deck of 52 cards, both
sorted by suit and then value—and you can reset either deck to its initial state using two Reset
buttons. The form also has buttons (labeled “<<” and “>>”) to move cards between the decks.

11

These buttons are named moveToDeck2 (top) and moveToDeck1
(bottom). They move cards from one deck to the other.

Each of the reset1 and reset2 buttons first calls the ResetDeck() method and then the RedrawDeck() method.

These buttons are
named shuffle1 and
shuffle2. They call
the appropriate Deck.
Shuffle() method, and
then redraw the deck.

Use two ListBox controls to show the two decks. When the moveToDeck1 button is clicked, it moves the selected card from deck #2 to deck #1.

You can use a button’s
Name property to give it a
name to make your code
easier to read. Then when
you double-click on the
button, its event handler
is given a matching name.

In addition to the event handlers for the six buttons, you’ll need to add two methods for the form. First add a
ResetDeck() method, which resets a deck to its initial state. It takes an int as a parameter: if it’s passed 1, it resets
the first Deck object by reinitializing it to an empty deck and a random number of up to 10 random cards; if it’s
passed 2, it resets the second Deck object so that it contains a full 52-card deck. Then add this method:

private void RedrawDeck(int DeckNumber) {
 if (DeckNumber == 1) {
 listBox1.Items.Clear();
 foreach (string cardName in deck1.GetCardNames())
 listBox1.Items.Add(cardName);
 label1.Text = “Deck #1 (“ + deck1.Count + “ cards)”;
 } else {
 listBox2.Items.Clear();
 foreach (string cardName in deck2.GetCardNames())
 listBox2.Items.Add(cardName);
 label2.Text = “Deck #2 (“ + deck2.Count + “ cards)”;
 }
}

The RedrawDeck() method updates the two listbox controls with whatever happens to be in the two Deck objects.
Take a look at
how we used the
foreach loop to
add each of the
cards in the
deck to the
listbox.

all hands on deck

Download at WoweBook.Com

you are here 4 339

enums and collections

public class Deck {
 private List<Card> cards;
 private Random random = new Random();

 public Deck() {
 cards = new List<Card>();
 for (int suit = 0; suit <= 3; suit++)
 for (int value = 1; value <= 13; value++)
 cards.Add(new Card((Card.Suits)suit, (Card.Values)value));
 }

 public Deck(Card[] initialCards) {
 cards = new List<Card>(initialCards);
 }

 public int Count { get { return cards.Count; } }

 public void Add(Card cardToAdd) {
 cards.Add(cardToAdd);
 }

 public Card Deal(int index) {
 Card CardToDeal = cards[index];
 cards.RemoveAt(index);
 return CardToDeal;
 }

 public void Shuffle() {
 // this method shuffles the cards by rearranging them in a random order
 }

 public string[] GetCardNames() {
 // this method returns a string array that contains each card’s name
 }

 public void Sort() {
 cards.Sort(new CardComparer_bySuit());
 }
}

Hint: The ListBox
control’s SelectedIndex
property will be the
same as the index of
the card in the list..
You can pass it directly
to the Deal() method.
If no card is selected,
it’ll be less than zero.
In that case, the
moveToDeck button
should do nothing.

Another hint: The form makes it really easy to test your Shuffle() method. Keep clicking the “Reset Deck #1” button until you get a three-card deck. That’ll make it easy to see if your shuffling code works.

Deck
Count

Add()
Deal()
GetCardNames()
Shuffle()
Sort()

Build the Deck class

Here’s the skeleton for the Deck class. We’ve filled in several of the methods for you. You’ll need to finish it
by writing the Shuffle() and GetCardNames() methods, and you’ll have to get the Sort() method to work. We
also added two useful overloaded constructors: one that creates a complete deck of 52 cards, and the
other that takes an array of Card objects and loads them into the deck.

22 When you have the declarations for a class without
the implementation, it’s called a “skeleton”.

If you don’t pass parameters
into the constructor, it creates
a complete deck of 52 cards.

This overloaded constructor takes one
parameter—an array of cards, which
it loads as the initial deck.

The Deck stores its cards in a List—but it keeps
it private to make sure it’s well-encapsulated.

The Deal method deals one card out of the deck—it removes the Card object from the deck and returns a reference to it. You can deal from the top by passing it 0, or deal from the middle of the deck by passing it the index of the card to deal.

You’ll need to write the Shuffle()
method, the GetCardNames()
method, and add a class that
implements IComparer to make the
Sort() method work. And you’ll
need to add the Card class you
already wrote. If you use “Add
Existing Item” to add it, don’t
forget to change its namespace.

Download at WoweBook.Com

340 Chapter 8

public class Deck {
 private List<Card> cards;
 private Random random = new Random();
 public Deck() {
 cards = new List<Card>();
 for (int suit = 0; suit <= 3; suit++)
 for (int value = 1; value <= 13; value++)
 cards.Add(new Card((Card.Suits)suit, (Card.Values)value));
 }
 public Deck(Card[] initialCards) {
 cards = new List<Card>(initialCards);
 }
 public int Count { get { return cards.Count; } }
 public void Add(Card cardToAdd) {
 cards.Add(cardToAdd);
 }
 public Card Deal(int index) {
 Card CardToDeal = cards[index];
 cards.RemoveAt(index);
 return CardToDeal;
 }
 public void Shuffle() {
 List<Card> NewCards = new List<Card>();
 while (cards.Count > 0) {
 int CardToMove = random.Next(cards.Count);
 NewCards.Add(cards[CardToMove]);
 cards.RemoveAt(CardToMove);
 }
 cards = NewCards;
 }
 public string[] GetCardNames() {
 string[] CardNames = new string[cards.Count];
 for (int i = 0; i < cards.Count; i++)
 CardNames[i] = cards[i].Name;
 return CardNames;
 }
 public void Sort() {
 cards.Sort(new CardComparer_bySuit());
 }
}

Build	a	class	to	store	a	deck	of	cards,	along	with	a	form	that	uses	it.

Here’s the constructor that creates a complete deck of 52 cards. It uses a nested for loop. The outside one loops through the four suits. That means the inside loop that goes through the 13 values runs four separate times, once per suit.

Here’s the other constructor—this class
has two overloaded constructors, each
with different parameters.

The Add and Deal methods are pretty straightforward—they use the methods for the Cards list. The Deal method removes a card from the list, and the Add method adds a card to the list.

Your GetCardNames() method needs to
create an array that’s big enough to

hold all the card names. This one uses a
for loop, but it could also use foreac

h.

The Shuffle() method creates a new instance of List<Cards> called NewCards. Then it pulls random cards out of the Cards field and sticks them in NewCards until Cards is empty. Once it’s done, it resets the Cards field to point to the new instance. The old instance won’t have any more references pointing to it, so it’ll get collected by the garbage collector.

exercise solution

Download at WoweBook.Com

you are here 4 341

enums and collections

class CardComparer_bySuit : IComparer<Card>
{
 public int Compare(Card x, Card y)
 {
 if (x.Suit > y.Suit)
 return 1;
 if (x.Suit < y.Suit)
 return -1;
 if (x.Value > y.Value)
 return 1;
 if (x.Value < y.Value)
 return -1;
 return 0;
 }
}

 Deck deck1;
 Deck deck2;
 Random random = new Random();

 public Form1() {
 InitializeComponent();
 ResetDeck(1);
 ResetDeck(2);
 RedrawDeck(1);
 RedrawDeck(2);
 }

 private void ResetDeck(int deckNumber) {
 if (deckNumber == 1) {
 int numberOfCards = random.Next(1, 11);
 deck1 = new Deck(new Card[] { });
 for (int i = 0; i < numberOfCards; i++)
 deck1.Add(new Card((Card.Suits)random.Next(4),
 (Card.Values)random.Next(1, 14)));
 deck1.Sort();
 } else
 deck2 = new Deck();
 }

To reset deck #1, this method first uses random.Next() to pick how many cards will go into the deck, and then creates a new empty deck. It uses a for loop to add that many random cards. It finishes off by sorting the deck. Resetting deck #2 is a easy—just create a new instance of Deck().

The form’s constructor
needs to reset the two
decks, and then it draws
them.

Sorting by suit is a lot like
sorting by value. The only
difference is that in this
case the suits are compared
first, and then the values
are compared only if the
suits match.

We’re not done yet—flip the page!

Instead of using if/else
if, we used a series of if
statements. This works
because each if statement
only executes if the previous
one didn’t—otherwise the
previous one would have
returned.

You’ve already got the
RedrawDeck() method
from the instructions.

Download at WoweBook.Com

342 Chapter 8

 private void reset1_Click(object sender, EventArgs e) {
 ResetDeck(1);
 RedrawDeck(1);
 }

 private void reset2_Click(object sender, EventArgs e) {
 ResetDeck(2);
 RedrawDeck(2);
 }

 private void shuffle1_Click(object sender, EventArgs e) {
 deck1.Shuffle();
 RedrawDeck(1);
 }

 private void shuffle2_Click(object sender, EventArgs e) {
 deck2.Shuffle();
 RedrawDeck(2);
 }

 private void moveToDeck1_Click(object sender, EventArgs e) {
 if (listBox2.SelectedIndex >= 0)
 if (deck2.Count > 0) {
 deck1.Add(deck2.Deal(listBox2.SelectedIndex));
 }
 RedrawDeck(1);
 RedrawDeck(2);
 }

 private void moveToDeck2_Click(object sender, EventArgs e) {
 if (listBox1.SelectedIndex >= 0)
 if (deck1.Count > 0)
 deck2.Add(deck1.Deal(listBox1.SelectedIndex));
 RedrawDeck(1);
 RedrawDeck(2);
 }
}

Here’s the rest of the code for the form.

These buttons are pretty simple—first reset or shuffle the deck, then redraw it.

Naming your controls makes it a lot easier to read
your code. If these were called button1_Click,
button2_Click, etc., you wouldn’t know which
button’s code you were looking at!

You can use the ListBox
control’s SelectedIndex property
to figure out which card the
user selected and then move it
from one deck to the other. (If
it’s less than zero, no card was
selected, so the button does
nothing.) Once the card’s moved,
both decks need to be redrawn.

information overload

 (continued)

Download at WoweBook.Com

you are here 4 343

enums and collections

You can build your own overloaded methods
You’ve been using overloaded methods and even an overloaded
constructor that were part of the built-in .NET Framework classes and
objects, so you can already see how useful they are. Wouldn’t it be cool
if you could build overloaded methods into your own classes? Well, you
can—and it’s easy! All you need to do is write two or more methods that
have the same name but take different parameters. Do this!

Create a new project and add the Card class to it.
You can do this easily by right-clicking on the project in the Solution Explorer and selecting “Existing
Item” from the Add menu. The IDE will make a copy of the class and add it to the project. The file
will still have the namespace from the old project, so go to the top of the Card.cs file and
change the namespace line to match the name of the new project you created.

11

Add some new overloaded methods to the card class.
Create two static DoesCardMatch() methods. The first one should check a card’s suit. The
second should check its value. Both return true only if the card matches.

 public static bool DoesCardMatch(Card CardToCheck, Card.Suits Suit) {
 if (CardToCheck.Suit == Suit) {
 return true;
 } else {
 return false;
 }
 }
 public static bool DoesCardMatch(Card CardToCheck, Card.Values Value) {
 if (CardToCheck.Value == Value) {
 return true;
 } else {
 return false;
 }
 }

22

Overloaded methods don’t have to be static, but it’s good to get a little practice writing static
methods.

Add a button to the form to use the new methods.
Add this code to the button:

 Card cardToCheck = new Card(Card.Suits.Clubs, Card.Values.Three);
 bool doesItMatch = Card.DoesCardMatch(cardToCheck, Card.Suits.Hearts);

As soon as you type “DoesCardMatch(” the IDE will show you that you really did build an
overloaded method:

Take a minute and play around with the two methods so you can get used to overloading.

33

If you don’t do this, you’ll only be able

to access the Card class by specifying its
namespace (like oldnamespace.Card).

You’ve seen overloading already. Flip
back to the solution to Kathleen’s
party planning program in Chapter
6 on pages 236–238—you added an
overloaded CalculateCost() method to
the DinnerParty class.

Download at WoweBook.Com

344 Chapter 8

Build	a	game	of	Go Fish!	that	you	can	play	against	the	computer.

This exercise is a little different...
There’s a good chance that you’re learning C# because you want a job as a professional developer. That’s
why we modeled this exercise after a professional assignment. When you’re working as a programmer on a
team, you don’t usually build a complete program from start to finish. Instead, you’ll build a piece of a bigger
program. So we’re going to give you a puzzle that’s got some of the pieces already filled in. The code for the
form is all on the next page in step #3. You just have to type it in—which may seem like you’ve got a great
head start, but it means that your classes have to work with that code. And that can be a challenge!

Start with the spec
Every professional software project starts with a specification, and this one is no
exception. You’ll be building a game of the classic card game Go Fish! Different
people play the game by slightly different rules, so here’s a recap of the rules you’ll
be using:

The game starts with a deck of 52 cards. Five cards are dealt to each
player. The pile of cards that’s left after everyone’s dealt a hand is called
the stock. Each player takes turns asking for a value (“Do you have any
sevens?”). Any other player holding cards with that value must hand them
over. If nobody has a card with that value, then the player must “go fish”
by taking a card from the stock.

The goal of the game is to make books, where a book is the complete
set of all four cards that have the same value. The player with the most
books at the end of the game is the winner. As soon as a player collects
a book, he places it face-up on the table so all the other players can see
what books everyone else has.

When a player places a book on the table, that may cause him to run out
of cards. If it does, then he has to draw five more cards from the stock.
If there are fewer than five cards left in the stock, he takes all of them.
The game is over as soon as the stock is out of cards. The winner is then
chosen based on whoever has the most books.

For this computer version of Go Fish, there are two computer players and
one human player. Every round starts with the human player selecting
one of the cards in his hand, which is displayed at all times. He does this
by choosing one of the cards and indicating that he will ask for a card.
Then the two computer players will ask for their cards. The results of
each round will be displayed. This will repeat until there’s a winner.

The game will take care of all of the trading of cards and pulling out of
books automatically. Once there’s a winner, the game is over. The game
displays the name of the winner (or winners, in case of a tie). No other
action can be taken—the player will have to restart the program in order
to start a new game.

≥

≥

≥

≥

≥

11

If you don’t
know what
you’re building
before you start,
then how would
you know when
you’re done?
That’s why most
professional
software
projects
start with a
specification
that tells you
what you’re
going to build.

go fish!

Download at WoweBook.Com

you are here 4 345

enums and collections

Set the ReadOnly property of the two TextBox controls to True—that will make them read-only text boxes.

Set this button’s Name property to
buttonAsk, and set its Enabled property to False. That will disable it, which
means it can’t be pressed. The form will enable it as soon as the game starts.

Set this button’s Name property to buttonStart. It’s disabled in this screenshot, but it starts out enabled. It’ll get disabled once the game is started.

This TextBox control should have its
Name property set to textName. In this
screenshot, it’s disabled, but it should be
enabled when the program starts.

These are
TextBox
controls named
textProgress
and textBooks.

The player’s
current hand is
displayed in a
ListBox control
called listHand.
You can set its
name using the
Name property.

Build the form
Build the form for the Go Fish! game. It should have a ListBox control for the player’s
hand, two TextBox controls for the progress of the game, and a button to let the player
ask for a card. To play the game, the user will select one of the cards from the hand and
click the button to ask the computer players if you have that card.

22

We’re not done yet—flip the page!

Download at WoweBook.Com

346 Chapter 8

 (continued)

public partial class Form1 : Form {
 public Form1() {
 InitializeComponent();
 }

 private Game game;

 private void buttonStart_Click(object sender, EventArgs e) {
 if (String.IsNullOrEmpty(textName.Text)){
 MessageBox.Show(“Please enter your name”, “Can’t start the game yet”);
 return;
 }
 game = new Game(textName.Text, new string[] { “Joe”, “Bob” }, textProgress);
 buttonStart.Enabled = false;
 textName.Enabled = false;
 buttonAsk.Enabled = true;
 UpdateForm();
 }

 private void UpdateForm() {
 listHand.Items.Clear();
 foreach (String cardName in game.GetPlayerCardNames())
 listHand.Items.Add(cardName);
 textBooks.Text = game.DescribeBooks();
 textProgress.Text += game.DescribePlayerHands();
 textProgress.SelectionStart = textProgress.Text.Length;
 textProgress.ScrollToCaret();
 }

 private void buttonAsk_Click(object sender, EventArgs e) {
 textProgress.Text = “”;
 if (listHand.SelectedIndex < 0) {
 MessageBox.Show(“Please select a card”);
 return;
 }
 if (game.PlayOneRound(listHand.SelectedIndex)) {
 textProgress.Text += “The winner is... “ + game.GetWinnerName();
 textBooks.Text = game.DescribeBooks();
 buttonAsk.Enabled = false;
 } else
 UpdateForm();
 }
}

Here’s the code for the form
Enter it exactly like you see here. The rest of the code that you write
yourself will have to work with it.

33

This is the only class that the form
interacts with. It runs the whole game.

When you start a new game, it creates a new instance of the Game class, enables the “Ask” button, disables the “Start Game” button, and then redraws the form.
This method
clears and
repopulates
the ListBox
that holds
the player’s
hand, and then
updates the
text boxes.

Using SelectionStart and ScrollToCaret() like this scrolls the textbox to the end, so if there’s too much text to display at once it scrolls down to the bottom.

The player selects one of the cards and clicks the “Ask” button to see if any of the other players have a card that matches its value. The Game class plays a round using the PlayOneRound() method.

The Enabled
property enables
or disables a
control on the
form.

here’s the form code

The SelectionStart line moves the flashing textbox cursor to the end, and once it’s moved, the ScrollToCaret() method scrolls the text box down to the cursor.

Download at WoweBook.Com

you are here 4 347

enums and collections

You’ll need this code, too
You’ll need the code you wrote before for the Card class, the Deck class and the
CardComparer_byValue class. But you’ll need to add a few more methods to the
Deck class... and you’ll need to understand them in order to use them.

44

public Card Peek(int cardNumber) {
 return cards[cardNumber];
}

public Card Deal() {
 return Deal(0);
}

public bool ContainsValue(Card.Values value) {
 foreach (Card card in cards)
 if (card.Value == value)
 return true;
 return false;
}

public Deck PullOutValues(Card.Values value) {
 Deck deckToReturn = new Deck(new Card[] { });
 for (int i = cards.Count - 1; i >= 0; i--)
 if (cards[i].Value == value)
 deckToReturn.Add(Deal(i));
 return deckToReturn;
}

public bool HasBook(Card.Values value) {
 int NumberOfCards = 0;
 foreach (Card card in cards)
 if (card.Value == value)
 NumberOfCards++;
 if (NumberOfCards == 4)
 return true;
 else
 return false;
}

public void SortByValue() {
 cards.Sort(new CardComparer_byValue());
}

The Peek() method lets you take a peek at one of the cards in the deck without dealing it.

Someone overloaded Deal() to make it a little easier
to read. If you don’t it pass any parameters, it deals
a card off the top of the deck.

The ContainsValue() method searches through
the entire deck for cards with a certain value,
and returns true if it finds any. Can you
guess how you’ll use this in the Go Fish game?

You’ll use the PullOutValues() method when you build the code to get a book of cards from the deck. It looks for any cards that match a value, pulls them out of the deck, and returns a new deck with those cards in it.

The HasBook() method checks a
deck to see if it contains a book
of four cards of whatever value
was passed as the parameter. It
returns true if there’s a book in
the deck, false otherwise.

The SortByValue() method sorts the deck using the Comparer_byValue class.

Still not done—flip the page!

Download at WoweBook.Com

348 Chapter 8

 (continued)

Now comes the HARD part: Build the Player class
There’s an instance of the Player class for each of the three players in the
game. They get created by the buttonStart button’s event handler.

55

public class Player
{
 private string name;
 public string Name { get { return name; } }
 private Random random;
 private Deck cards;
 private TextBox textBoxOnForm;
 public Player(String name, Random random, TextBox textBoxOnForm) {
 // The constructor for the Player class initializes four private fields, and then
 // adds a line to the TextBox control on the form that says, “Joe has just
 // joined the game” - but use the name in the private field, and don’t forget to
 // add line break (“\r\n”) at the end of every line you add to the TextBox.
 }
 public List<Card.Values> PullOutBooks() { } // see the facing page for the code
 public Card.Values GetRandomValue() {
 // This method gets a random value—but it has to be a value that’s in the deck!
 }
 public Deck DoYouHaveAny(Card.Values value) {
 // This is where an opponent asks if I have any cards of a certain value
 // use Deck.PullOutValues() to pull out the values. Add a line to the TextBox
 // that says, “Joe has 3 sixes” - use the new Card.Plural() static method
 }
 public void AskForACard(List<Player> players, int myIndex, Deck stock) {
 // Here’s an overloaded version of AskForACard() - choose a random value
 // from the deck using GetRandomValue() and ask for it using AskForACard()
 }
 public void AskForACard(List<Player> players, int myIndex, Deck stock, Card.Values value) {
 // Ask the other players for a value. First add a line to the TextBox: “Joe asks
 // if anyone has a Queen”. Then go through the list of players that was passed in
 // as a parameter and ask each player if he has any of the value (using his
 // DoYouHaveAny() method). He’ll pass you a deck of cards - add them to my deck.
 // Keep track of how many cards were added. If there weren’t any, you’ll need
 // to deal yourself a card from the stock (which was also passed as a parameter),
 // and you’ll have to add a line to the TextBox: “Joe had to draw from the stock”
 }
 // Here’s a property and a few short methods that were already written for you
 public int CardCount { get { return cards.Count; } }
 public void TakeCard(Card card) { cards.Add(card); }
 public string[] GetCardNames() { return cards.GetCardNames(); }
 public Card Peek(int cardNumber) { return cards.Peek(cardNumber); }
 public void SortHand() { cards.SortByValue(); }
}

Look closely at each of the comments—they tell you what the methods are supposed to do. Your job is to fill in the methods.

go get ’em tiger!

Download at WoweBook.Com

you are here 4 349

enums and collections

public List<Card.Values> PullOutBooks() {
 List<Card.Values> Books = new List<Card.Values>();
 for (int i = 1; i <= 13; i++) {
 Card.Values value = (Card.Values)i;
 int howMany = 0;
 for (int card = 0; card < cards.Count; card++)
 if (cards.Peek(card).Value == value)
 howMany++;
 if (howMany == 4) {
 Books.Add(value);
 for (int card = cards.Count - 1; card >= 0; card--)
 cards.Deal(card);
 }
 }
 return Books;
}

public partial class Card {
 public static string Plural(Card.Values value) {
 if (value == Values.Six)
 return “Sixes”;
 else
 return value.ToString() + “s”;
 }
}

You’ll need to add this method to the Card class
It’s a static method to take a value and return its plural—that way a ten will return

“Tens” but a six will return “Sixes” (with “es” on the end). Since it’s static, you call it
with the class name—Card.Plural()—and not from an instance.

66

Nearly there—keep flipping!

That Peek() method we added to the Deck class will come
in handy. It lets the program look at one of the cards in
the deck by giving its index number, but unlike Deal() it
doesn’t remove the card.

You’ll have to build TWO overloaded versions of the AskForACard() method. The first one is used by the opponents when they ask for cards—it’ll look through their hands and find a card to ask for. The second one is used when the player asks for the card. Both of them ask EVERY other player (both computer and human) for any cards that match the value.

We used a partial class to add this
static method to Card to make it
easy for you to see what’s going
on. But you don’t need to use a
partial class—if you want, you
can just add it straight into the
existing Card class.

Download at WoweBook.Com

350 Chapter 8

 (continued)
The rest of the job: Build the Game class
The form keeps one instance of Game. It manages the game play. Look
closely at how it’s used in the form.

77

public class Game {
 private List<Player> players;
 private Dictionary<Card.Values, Player> books;
 private Deck stock;
 private TextBox textBoxOnForm;
 public Game(string playerName, string[] opponentNames, TextBox textBoxOnForm) {
 Random random = new Random();
 this.textBoxOnForm = textBoxOnForm;
 players = new List<Player>();
 players.Add(new Player(playerName, random, textBoxOnForm));
 foreach (string player in opponentNames)
 players.Add(new Player(player, random, textBoxOnForm));
 books = new Dictionary<Card.Values, Player>();
 stock = new Deck();
 Deal();
 players[0].SortHand();
 }
 private void Deal() {
 // This is where the game starts - this method’s only called at the beginning
 // of the game. Shuffle the stock, deal five cards to each player, then use a
 // foreach loop to call each player’s PullOutBooks() method.
 }
 public bool PlayOneRound(int selectedPlayerCard) {
 // Play one round of the game. The parameter is the card the player selected
 // from his hand - get its value. Then go through all of the players and call
 // each one’s AskForACard() methods, starting with the human player (who’s at
 // at index zero in the Players list - make sure he asks for the selected
 // card’s value). Then call PullOutBooks() - if it returns true, then the
 // player ran out of cards and needs to draw a new hand. After all the players
 // have gone, sort the human player’s hand (so it looks nice in the form).
 // Then check the stock to see if it’s out of cards. If it is, reset the
 // TextBox on the form to say, “The stock is out of cards. Game over!” and return
 // true. Otherwise, the game isn’t over yet, so return false.
 }
 public bool PullOutBooks(Player player) {
 // Pull out a player’s books. Return true if the player ran out of cards, otherwise
 // return false. Each book is added to the Books dictionary. A player runs out of
 // cards when he’s used all of his cards to make books—and he wins the game.
 }
 public string DescribeBooks() {
 // Return a long string that describes everyone’s books by looking at the Books
 // dictionary: “Joe has a book of sixes. (line break) Ed has a book of Aces.”
 }

book ’em danno

Download at WoweBook.Com

you are here 4 351

enums and collections

public string GetWinnerName() {
 // This method is called at the end of the game. It uses its own dictionary
 // (Dictionary<string, int> winners) to keep track of how many books each player
 // ended up with in the books dictionary. First it uses a foreach loop
 // on books.Keys -- foreach (Card.Values value in books.Keys) -- to populate
 // its winners dictionary with the number of books each player ended up with.
 // Then it loops through that dictionary to find the largest number of books
 // any winner has. And finally it makes one last pass through winners to come
 // up with a list of winners in a string (“Joe and Ed”). If there’s one winner,
 // it returns a string like this: “Ed with 3 books”. Otherwise it returns a
 // string like this: “A tie between Joe and Bob with 2 books.”
}

// Here are a couple of short methods that were already written for you:

public string[] GetPlayerCardNames() {
 return players[0].GetCardNames();
}

public string DescribePlayerHands() {
 string description = “”;
 for (int i = 0; i < players.Count; i++) {
 description += players[i].Name + “ has “ + players[i].CardCount;
 if (players[i].CardCount == 1)
 description += “ card.\r\n”;
 else
 description += “ cards.\r\n”;
 }
 description += “The stock has ” + stock.Count + “ cards left.”;
 return description;
}

Here’s a hint for writing the GetWinnerName() method: You’ll need to create a new Dictionary<string, int> called winners at the top of the method. The winners dictionary will let you use each player’s name to look up the number of books he made during the game. First you’ll use a foreach loop to go through the books that the players made and build the dictionary. Then you’ll use another foreach loop to find the highest number of books associated with any player. But there might be a tie—more than one player might have the most books! So you’ll need one more foreach loop to look for all the players in winners that have the number of books that you found in the second loop and build a string that says who won.

Download at WoweBook.Com

352 Chapter 8

public class Game {
 private void Deal() {
 stock.Shuffle();
 for (int i = 0; i < 5; i++)
 foreach (Player player in players)
 player.TakeCard(stock.Deal());
 foreach (Player player in players)
 PullOutBooks(player);
 }

 public bool PlayOneRound(int selectedPlayerCard) {
 Card.Values cardToAskFor = players[0].Peek(selectedPlayerCard).Value;
 for (int i = 0; i < players.Count; i++) {
 if (i == 0)
 players[0].AskForACard(players, 0, stock, cardToAskFor);
 else
 players[i].AskForACard(players, i, stock);
 if (PullOutBooks(players[i])) {
 textBoxOnForm.Text += players[i].Name + “ drew a new hand\r\n”;
 int card = 1;
 while (card <= 5 && stock.Count > 0) {
 players[i].TakeCard(stock.Deal());
 card++;
 }
 }
 players[0].SortHand();
 if (stock.Count == 0) {
 textBoxOnForm.Text = “The stock is out of cards. Game over!\r\n”;
 return true;
 }
 }
 return false;
 }

 public bool PullOutBooks(Player player)
 {
 List<Card.Values> BooksPulled = player.PullOutBooks();
 foreach (Card.Values value in BooksPulled)
 books.Add(value, player);
 if (player.CardCount == 0)
 return true;
 return false;
 }

Here	are	the	filled-in	methods	in	the	Game	class.

exercise solution

The Deal() method gets called when the
game first starts—it shuffles the deck and
then deals five cards to each player. Then
it pulls out any books that the players
happened to have been dealt.

As soon as the player clicks the “Ask
for a card” button, the game calls
AskForACard() with that card. Then
it calls AskForACard() for each
opponent.

After the player or opponent asks for a card, the game pulls out any books that he made. If a player’s out of books, he draws a new hand by dealing up to 5 cards from the stock.

After the round is played, the game sorts the player’s hand, to make sure it’s displayed in order on the form. Then it checks to see if the game’s over. If it is, PlayOneRound() returns true.

PullOutBooks() looks through a player’s cards to see
if he’s got four cards with the same value. If he
does, they get added to his books dictionary. And if
he’s got no cards left afterwards, it returns true.

Download at WoweBook.Com

you are here 4 353

enums and collections

 public string DescribeBooks() {
 string whoHasWhichBooks = “”;
 foreach (Card.Values value in books.Keys)
 whoHasWhichBooks += books[value].Name + “ has a book of ”
 + Card.Plural(value) + “\r\n”;
 return whoHasWhichBooks;
 }

 public string GetWinnerName() {
 Dictionary<string, int> winners = new Dictionary<string, int>();
 foreach (Card.Values value in books.Keys) {
 string name = books[value].Name;
 if (winners.ContainsKey(name))
 winners[name]++;
 else
 winners.Add(name, 1);
 }
 int mostBooks = 0;
 foreach (string name in winners.Keys)
 if (winners[name] > mostBooks)
 mostBooks = winners[name];
 bool tie = false;
 string winnerList = “”;
 foreach (string name in winners.Keys)
 if (winners[name] == mostBooks)
 {
 if (!String.IsNullOrEmpty(winnerList))
 {
 winnerList += “ and ”;
 tie = true;
 }
 winnerList += name;
 }
 winnerList += “ with ” + mostBooks + “ books”;
 if (tie)
 return “A tie between ” + winnerList;
 else
 return winnerList;
 }
}

We’re not done yet—flip the page!

The form needs to display a list of books, so it uses DescribeTheBooks() to turn the player’s books dictionary into words.

Once the last card’s been picked up, the
game needs to figure out who won. That’s
what the GetWinnerName() does. And
it’ll use a dictionary called winners to
do it. Each player’s name is a key in the
dictionary; its value is the number of books
that player got during the game.

Next the game looks through the dictionary
to figure the number of books that the
player with the most books has. It puts
that value in a variable called mostBooks.

Now that we know which player
has the most books, the method
can come up with a string that
lists the winner (or winners).

Download at WoweBook.Com

354 Chapter 8

 (continued)

public Player(String name, Random random, TextBox textBoxOnForm) {
 this.name = name;
 this.random = random;
 this.textBoxOnForm = textBoxOnForm;
 this.cards = new Deck(new Card[] {});
 textBoxOnForm.Text += name + “ has just joined the game\r\n”;
}

public Card.Values GetRandomValue() {
 Card randomCard = cards.Peek(random.Next(cards.Count));
 return randomCard.Value;
}

public Deck DoYouHaveAny(Card.Values value) {
 Deck cardsIHave = cards.PullOutValues(value);
 textBoxOnForm.Text += Name + “ has ” + cardsIHave.Count + “ ”
 + Card.Plural(value) + “\r\n”;
 return cardsIHave;
}

public void AskForACard(List<Player> players, int myIndex, Deck stock) {
 Card.Values randomValue = GetRandomValue();
 AskForACard(players, myIndex, stock, randomValue);
}

public void AskForACard(List<Player> players, int myIndex,
 Deck stock, Card.Values value) {
 textBoxOnForm.Text += Name + “ asks if anyone has a ” + value + “\r\n”;
 int totalCardsGiven = 0;
 for (int i = 0; i < players.Count; i++) {
 if (i != myIndex) {
 Player player = players[i];
 Deck CardsGiven = player.DoYouHaveAny(value);
 totalCardsGiven += CardsGiven.Count;
 while (CardsGiven.Count > 0)
 cards.Add(CardsGiven.Deal());
 }
 }
 if (totalCardsGiven == 0) {
 textBoxOnForm.Text += Name + “ must draw from the stock.\r\n”;
 cards.Add(stock.Deal());
 }
}

Here	are	the	filled-in	methods	in	the	Player	class.

exercise solution

Here’s the constructor for the Player class.
It sets its private fields and the adds a line
to the progress text box saying who joined.

The GetRandomValue() method uses Peek() to
look at a random card in the player’s hand.

DoYouHaveAny() uses
the PullOutValues()
method to pull out and
return all cards that
match the parameter.

There are two overloaded
AskForACard() methods. This one
is used by the opponents—it gets
a random card from the hand and
calls the other AskorACard().

This AskForACard() method
looks through every player
(except for the one asking),
calls its DoYouHaveAny()
method, and adds any cards
handed over to the hand.

If no cards were handed over, the
player has to draw from the stock
using its Deal() method.

Download at WoweBook.Com

you are here 4 355

enums and collections

And yet MORE collection types...
List and Dictionary objects are two of the built-in generic collections that are
part of the .NET framework. Lists and dictionaries are very flexible—you can access any
of the data in them in any order. But sometimes you need to restrict how your program
works with the data because the thing that you’re representing inside your program works
like that in the real world. For situations like that, you’ll use a Queue or a Stack. Those
are the other two generic collections that are similar to lists, but they’re especially good at
making sure that your data is processed in a certain order.

Generic collections are an important part of
the .NET framework
They’re really useful—so much that the IDE automatically adds
this statement to the top of every class you add to your project:

 using System.Collections.Generic;

Almost every large project that you’ll work on will include some
sort of generic collection, because your programs need to store
data. And when you’re dealing with groups of similar things in
the real world, they almost always naturally fall into a category
that corresponds pretty well to one of these kinds collections.

Use a Queue when the first
object you store will be the first
one you’ll use, like:

Cars moving down a one-way street

People standing in line

Customers on hold for a customer
service support line

Anything else that’s handled on a
first-come, first-served basis

≥

≥

≥

≥

Use a Stack when you always want
to use the object you stored most
recently, like:

Furniture loaded into the back of a
moving truck

A stack of books where you want to
read the most recently added one first

A pyramid of cheerleaders, where the
ones on top have to dismount first...
imagine the mess if the one on the
bottom walked away first!

≥

≥

≥

The stack is first-in last-out—the
first object that goes into the stack
is the last one that comes out of it.

A queue is first-in first-out, which means that the first object that you put into the queue is the first one you pull out of it to use.

A queue is like a list
that lets you put
objects on the end of
the list and use the
ones on the front. A
stack only lets you
access the last object
you put into it.You can, however, use foreach to

enumerate through a stack or queue,
because they implement IEnumerable!

There are other types o
f

collections, too—but these

are the ones that you’
re

most likely to come in
contact with.

Download at WoweBook.Com

356 Chapter 8

A queue is FIFO — First In, First Out
A queue is a lot like a list, except that you can’t just add or remove items at any
index. To add an object to a queue, you enqueue it. That adds the object to the
end of the queue. You can dequeue the first object from the front of the queue.
When you do that, the object is removed from the queue, and the rest of the objects
in the queue move up a position.

Queue<string> myQueue = new Queue<string>();
myQueue.Enqueue(“first in line”);
myQueue.Enqueue(“second in line”);
myQueue.Enqueue(“third in line”);
myQueue.Enqueue(“last in line”);
string takeALook = myQueue.Peek();
string getFirst = myQueue.Dequeue();
string getNext = myQueue.Dequeue();
int howMany = myQueue.Count;
myQueue.Clear();
MessageBox.Show(“Peek() returned: “ + takeALook + “\n”
 + “The first Dequeue() returned: “ + getFirst + “\n”
 + “The second Dequeue() returned: “ + getNext + “\n”
 + “Count before Clear() was “ + howMany + “\n”
 + “Count after Clear() is now “ + myQueue.Count);

1

2

3

5

4

1
2

3

5

4

The Clear()
method
removes all
objects from
the queue.

Create a
new queue
of strings.

Peek() lets
you take
a “look” at
the first
item in the
queue without
removing it.

Here’s where we add four
items to the queue. When we
pull them out of the queue,
they’ll come out in the same
order they went in.

The first Dequeue() pulls the first item out of the queue. Then the second one shifts up into the first place—the next call to Dequeue() pulls that one out next.

The queue’s Count property returns the number of items in the queue.

Objects in a
queue need to
wait their turn.
The first one in
the queue is the
first one to come
out of it.

don’t you hate waiting in line?

Download at WoweBook.Com

you are here 4 357

enums and collections

A stack is LIFO — Last In, First Out
A stack is really similar to a queue—with one big difference. You push each item
onto a stack, and when you want to take an item from the stack you pop one of
it. When you pop an item off of a stack, you end up with the most recent item that
you pushed onto it. It’s just like a stack of plates, magazines or anything else—you
can drop something onto the top of the stack, but you need to take it off before you
can get to whatever’s underneath it.

Stack<string> myStack = new Stack<string>();
myStack.Push(“first in line”);
myStack.Push(“second in line”);
myStack.Push(“third in line”);
myStack.Push(“last in line”);
string takeALook = myStack.Peek();
string getFirst = myStack.Pop();
string getNext = myStack.Pop();
int howMany = myStack.Count;
myStack.Clear();
MessageBox.Show(“Peek() returned: “ + takeALook + “\n”
 + “The first Pop() returned: “ + getFirst + “\n”
 + “The second Pop() returned: “ + getNext + “\n”
 + “Count before Clear() was “ + howMany + “\n”
 + “Count after Clear() is now “ + myStack.Count);

4

5

3

2
1

4

5

3

2

1

Creating a stack is just
like creating any other
generic collection.When you push

an item onto a
stack, it pushes
the other items
back one notch
and sits on top.

When you pop an item
off the stack, you get
the most recent item
that was added.

The last object you put
on a stack is the first
object that you pull
off of it.

Download at WoweBook.Com

358 Chapter 8

Wait a minute, something’s bugging me. You
haven’t shown me anything I can do with a stack

or a queue that I can’t do with a list—they just
save me a couple of lines of code. But I can’t get at
the items in the middle of a stack or a queue. I can

do that with a list pretty easily! So why would I
give that up just for a little convenience?

Don’t worry—you don’t give up anything when
you use a queue or a stack.
It’s really easy to convert a Queue object to a List object. And it’s
just as easy to convert a List to a Queue, a Queue to a Stack... in
fact, you can create a List, Queue or Stack from any other object
that implements the IEnumerable interface. All you have to do
is use the overloaded constructor that lets you pass the collection
you want to copy from as a parameter. That means you have the
flexibility and convenience of representing your data with the
collection that best matches the way you need to be used.

Stack<string> myStack = new Stack<string>();
myStack.Push(“first in line”);
myStack.Push(“second in line”);
myStack.Push(“third in line”);
myStack.Push(“last in line”);

Queue<string> myQueue = new Queue<string>(myStack);
List<string> myList = new List<string>(myQueue);
Stack<string> anotherStack = new Stack<string>(myList);
MessageBox.Show(“myQueue has “ + myQueue.Count + “ items\n”
 + “myList has “ + myList.Count + “ items\n”
 + “anotherStack has “ + anotherStack.Count + “ items\n”);

Let’s set up a stack with four items—in this case, a stack of strings.

It’s easy to convert that stack
to a queue, then copy the queue
to a list, and then copy the list
to another stack.

All four items were
copied into the new
collections.

...and you can always use
a foreach loop to access
all of the members in a
stack or a queue!

flapjacks and lumberjacks

Download at WoweBook.Com

you are here 4 359

enums and collections

private void addFlapjacks_Click(...) {
 Flapjack food;
 if (crispy.Checked == true)
 food = Flapjack.crispy;
 else if (soggy.Checked == true)
 food = Flapjack.soggy;
 else if (browned.Checked == true)
 food = Flapjack.browned;
 else
 food = Flapjack.banana;

 Lumberjack currentLumberjack = breakfastLine.Peek();
 currentLumberjack.TakeFlapjacks(food,
 (int)howMany.Value);
 RedrawList();
}

public enum Flapjack {
 crispy,
 soggy,
 browned,
 banana
}

public class Lumberjack {
 private string name;
 public string Name { get { return name; } }
 private Stack<Flapjack> meal;
 public Lumberjack(string name) {
 this.name = name;
 meal = new Stack<Flapjack>();
 }
 public int FlapjackCount { get { // return the count } }
 public void TakeFlapjacks(Flapjack Food, int HowMany) {
 // Add some number of flapjacks to the Meal stack
 }
 public void EatFlapjacks() {
 // Write this output to the console
 } }

Write	a	program	to	help	a	cafeteria	full	of	lumberjacks	eat	some	flapjacks.	Start	with	the	Lumberjack	
class,	filling	in	the	missing	code.	Then	design	the	form,	and	add	the	button	event	handlers	to	it.

Here’s the Lumberjack class. Fill in the get accessor for FlapjackCount
and the TakeFlapjacks and EatFlapjacks methods.

11

Build this form. It lets you enter the names of lumberjacks into a text box so they get in the breakfast
line. You can give the lumberjack at the front of the line a plate of flapjacks, and then tell him to move
on to eat them using the “Next lumberjack” button. We’ve given you the click event handler for the “Add
flapjacks” button. Use a queue called breakfastLine to keep track of the lumberjacks.

22

You’ll need to add a RedrawList() method
to update the listbox with the contents
of the queue. All three buttons will call it.
Here’s a hint: it uses a foreach loop.

When the user clicks “Add Lumberjack”, add the name in the name text box to the BreakfastLine queue.
When you drag these RadioButton controls into the
groupbox, the form automatically links them and
only allows the user to check one of them at a time.
Look at the addFlapjacks_Click method to figure
out what they should be named.

Peek() returns a reference
to the first lumberjack in
the queue.

This button should dequeue
the next lumberjack, call his
EatFlapjacks method, and then
redraw the listbox.

Note the special
“else if” syntax.

This listbox
is called
line.

The NumericUpDown control is called
howMany, and the label is called nextInLine.

Download at WoweBook.Com

360 Chapter 8

private Queue<Lumberjack> breakfastLine = new Queue<Lumberjack>();
 private void addLumberjack_Click(object sender, EventArgs e) {
 breakfastLine.Enqueue(new Lumberjack(name.Text));
 name.Text = “”;
 RedrawList();
}
 private void RedrawList() {
 int number = 1;
 line.Items.Clear();
 foreach (Lumberjack lumberjack in breakfastLine) {
 line.Items.Add(number + “. ” + lumberjack.Name);
 number++;
 }
 if (breakfastLine.Count == 0) {
 groupBox1.Enabled = false;
 nextInLine.Text = “”;
 } else {
 groupBox1.Enabled = true;
 Lumberjack currentLumberjack = breakfastLine.Peek();
 nextInLine.Text = currentLumberjack.Name + “ has ”
 + currentLumberjack.FlapjackCount + “ flapjacks”;
 } }
 private void nextLumberjack_Click(object sender, EventArgs e) {
 Lumberjack nextLumberjack = breakfastLine.Dequeue();
 nextLumberjack.EatFlapjacks();
 nextInLine.Text = “”;
 RedrawList();
}

public class Lumberjack {
 private string name;
 public string Name { get { return name; } }
 private Stack<Flapjack> meal;

 public Lumberjack(string name) {
 this.name = name;
 meal = new Stack<Flapjack>();
 }

 public int FlapjackCount { get { return meal.Count; } }

 public void TakeFlapjacks(Flapjack food, int howMany) {
 for (int i = 0; i < howMany; i++) {
 meal.Push(food);
 } }

 public void EatFlapjacks() {
 Console.WriteLine(name + “’s eating flapjacks”);
 while (meal.Count > 0) {
 Console.WriteLine(name + “ ate a ”
 + meal.Pop().ToString() + “ flapjack”);
 } } }

The RedrawList() method uses a foreach loop to pull the lumberjacks out of their queue and add each of them to the listbox.

We called the listbox “line”, the label between the two buttons “nextInLine”.

This if statement updates the
label with information about the
first lumberjack in the queue.

The TakeFlapjacks
method updates the
Meal stack.

The EatFlapjacks method uses a while loop to print out the lumberjack’s meal.

exercise solution

Download at WoweBook.Com

you are here 4 361

enums and collections

Collectioncross
1 2

3 4 5

6 7

8 9

10 11 12

13

14

15

16

17 18 19

20

21

Across

3. An instance of a ______________ collection only
works with one specific type.
6. A special kind of loop that only works on collections
9. The name of the method you use to send a string to
the output
10. How you remove something from a stack
11. An object that's like an array but more flexible
13. Two methods in a class with the same name but
different parameters are...
15. A method to figure out if a certain object is in a
collection
19. An easy way to keep track of categories
20. All generic collections implement this interface
21. How you remove something from a queue

Down

1. The generic collection that lets you map keys to
values
2. This collection is first-in, first-out
4. The built-in class that lets your program write text
to the output
5. A method to find out how many things are in a
collection
7. The only method in the IComparable interface
8. Most professional projects start with this
12. An object that implements this interface helps
your list sort its contents
14. How you add something to a queue
16. This collection is first-in, last-out
17. How you add something to a stack
18. This method returns the next object to come off of
a stack or queue

Across
3.	An	instance	of	a	______________	collection	only	works	with	
one specific type.
6.	A	special	kind	of	loop	that	only	works	on	collections	
9.	The	name	of	the	method	you	use	to	send	a	string	to	the	
output	
10.	How	you	remove	something	from	a	stack	
11. An object that’s like an array but more flexible
13.	Two	methods	in	a	class	with	the	same	name	but	different	
parameters	are...	
15. A method to figure out if a certain object is in a collection
19.	An	easy	way	to	keep	track	of	categories	
20.	All	generic	collections	implement	this	interface	
21.	How	you	remove	something	from	a	queue	

Down	
1.	The	generic	collection	that	lets	you	map	keys	to	values	
2. This collection is first-in, first-out
4.	The	built-in	class	that	lets	your	program	write	text	to	the	
output	
5. A method to find out how many things are in a collection
7.	The	only	method	in	the	IComparable	interface	
8.	Most	professional	projects	start	with	this	
12.	An	object	that	implements	this	interface	helps	your	list	sort	
its	contents	
14.	How	you	add	something	to	a	queue	
16. This collection is first-in, last-out
17.	How	you	add	something	to	a	stack	
18.	This	method	returns	the	next	object	to	come	off	of	a	stack	or	
queue

Download at WoweBook.Com

362 Chapter 8

Collectioncross solution

crossword solution

D
1

Q
2

G
3

E N E R I C C
4

C
5

U

C O F
6

O R E A C
7

H

S
8

W
9

R I T E L I N E U U O

P I S N E M

E P
10

O P O L
11

I
12

S T P

C N L C A

I A O
13

V E R L O A D E D R

F R M E

I Y E
14

P T

C C
15

O N T A I N S O

A S
16

Q R

T P
17

P
18

T U E
19

N U M

I
20

E N U M E R A B L E R

O S E C U

N H K K D
21

E Q U E U E

Across

3. An instance of a ______________ collection only
works with one specific type. [generic]
6. A special kind of loop that only works on collections
[foreach]
9. The name of the method you use to send a string to
the output [writeline]
10. How you remove something from a stack [pop]
11. An object that's like an array but more flexible
[list]
13. Two methods in a class with the same name but
different parameters are... [overloaded]
15. A method to figure out if a certain object is in a
collection [contains]
19. An easy way to keep track of categories [enum]
20. All generic collections implement this interface
[ienumerable]
21. How you remove something from a queue [dequeue]

Down

1. The generic collection that lets you map keys to
values [dictionary]
2. This collection is first-in, first-out [queue]
4. The built-in class that lets your program write text
to the output [console]
5. A method to find out how many things are in a
collection [count]
7. The only method in the IComparable interface
[CompareTo]
8. Most professional projects start with this
[specification]
12. An object that implements this interface helps
your list sort its contents [icomparer]
14. How you add something to a queue [enqueue]
16. This collection is first-in, last-out [stack]
17. How you add something to a stack [push]
18. This method returns the next object to come off of
a stack or queue [peek]

Download at WoweBook.Com

C# Lab 363

Name: Date:

This lab gives you a spec that describes a program
for you to build, using the knowledge you’ve gained
over the last few chapters.
This project is bigger than the ones you’ve seen so
far. So read the whole thing before you get started,
and give yourself a little time. And don’t worry if
you get stuck—there’s nothing new in here, so you
can move on in the book and come back to the lab
later.
We’ve filled in a few design details for you, and
we’ve made sure you’ve got all the pieces you
need... and nothing else.
It’s up to you to finish the job. You can download
an executable for this lab from the website... but
we won’t give you the code for the answer.

C# Lab
The Quest

Download at WoweBook.Com

364 Head First Lab #1

The Quest

The spec: build an adventure game
Your job is to build an adventure game where a mighty adventurer
is on a quest to defeat level after level of deadly enemies. You’ll
build a turn-based system, which means the player makes
one move and then the enemies make one move. The player can
move or attack, and then each enemy gets a chance to move and
attack. The game keeps going until the player either defeats all the
enemies on all seven levels or dies.

The player moves
using the four
Move buttons.

The game window gives an overhead
view of the dungeon where the
player fights his enemies.

These four buttons are
used to attack enemies
and drink potions.

The game shows you the number of
hit points for the player and enemies.
When the player attacks an enemy,
the enemy’s hit points go down. Once
the hit points get down to zero, the
enemy or player dies.

The player and
enemies move around
in the dungeon.

Here’s the player’s inventory. It shows
what items the player’s picked up, and
draws a box around the item that
they’re currently using. The player
clicks on an item to equip it, and uses
the Attack button to use the item.

The player can pick
up weapons and
potions along the way.

The enemies get a bit
of an advantage—they
move every turn, and
after they move they’ll
attack the player if he’s
in range.

Download at WoweBook.Com

you are here 4 365

The Quest

The player picks up weapons...
There are weapons and potions scattered around the
dungeon that the player can pick up and use to defeat his
enemies. All he has to do is move onto a weapon and it
disappears from the floor and appears in his inventory.

A black box around a weapon means it’s currently
equipped. Different weapons work differently—they have

different ranges, some only attack in one direction while

others have a wider range, and they cause different
levels of damage to the enemies they hit.

...and attacks enemies with them
Every level in the game has a weapon that the player can
pick up and use to defeat his enemies. Once the weapon’s
picked up, it should disappear from the game floor.

The attack causes the
bat’s hit points to
drop, from 6 to 2 in
this case.

Higher levels bring more enemies
There are three different kinds of enemies: a bat, a ghost, and
a ghoul. The first level only has a bat. The seventh level is the
last one, and it has all three enemies.

A ghoul moves quickly
towards the player, and
causes heavy damage
when it attacks.

The bat flies
around somewhat
randomly. When it’s near the player,
it causes a small
amount of damage.

The ghost moves slowly towards the
player. As soon as it’s close to the
player, it attacks and causes a medium
amount of damage.

The bat is to the right of
the player, so he hits the
Right attack button.

Download at WoweBook.Com

366 Head First Lab #1

The Quest

The design: building the form
The form gives the game its unique look. Use the form’s
BackgroundImage property to display the image of the dungeon
and the inventory, and a series of PictureBox controls to show
the player, weapons and enemies in the dungeon. You’ll use a
TableLayoutPanel control to display the hit points for the player,
bat, ghost and ghoul as well as the buttons for moving and attacking.

Each of these icons is a PictureBox.

The dungeon itself is a static image,
displayed using the BackgroundImage
property of the form.

Hit points, movement buttons, and

attack buttons are all displaye
d in a

TableLayoutPanel.

Download the background image and the graphics for the
weapons, enemies, and player from the Head First Labs
website: www.headfirstlabs.com/books/hfcsharp

Make sure the
BackgroundImageLayout
property is set to None.

Download at WoweBook.Com

you are here 4 367

The Quest

Add nine PictureBox controls to the
dungeon. Use the Size property to
make each one 30x30. It doesn’t
matter where you place them—the
form will move them around. Use the
little black arrow that shows up when
you click on the PictureBox to set
each to one of the images from the
Head First Labs web site.

You’ll need five more
50x50 PictureBoxes
for the inventory.

2 columns, 4 rows...
8 cells for your hit
point statistics.

When the player equips one of the weapons, the form should set the BorderStyle of that weapon icon to FixedSingle and the rest of the icons’ BorderStyle to None.

Everything in the dungeon is a PictureBox
Players, weapons, and enemies should all be represented by icons. Add
nine PictureBox controls, and set their Visible properties to False. Then,
your game can move around the controls, and toggle their Visible
properties as needed.

After you’ve added the nine PictureBox controls, right-click on the player’s icon and select “Bring to Front”, then send the three weapon icons to back. That ensures player icons stay “above” any items that are picked up.
The inventory contains PictureBox controls, too
You can represent the inventory of the player as five 50x50 PictureBox
controls. Set the BackColor property of each to Color.Transparent
(if you use the Properties window to set the property, just type it into the
BackColor row). Since the picture files have a transparent background,
you’ll see the scroll and dungeon behind them:

Build your stats window
The hit points are in a TableLayoutPanel, just like the attack and
movement buttons. For the hit points, create two columns in the
panel, and drag the column divider to the left a bit. Add four
rows, each 25% height, and add in Label controls to each of the
eight cells:

Each cell has a Label in it, and you can update those values during the game.

Controls overlap each other in the IDE, so the form needs to know which ones are in front, and which are in back. That’s what the “Bring to Front” and “Send to Back” form designer commands do.

You can set a PictureBox’s BackColor
property to Color.Transparent to let the
form’s background picture or color show
through any transparent pixels in the
picture.

Download at WoweBook.Com

368 Head First Lab #1

The Quest

The architecture: using the objects

 Game objec
t Form object

 List<Enemy >

Weapon objec
t

 Player obje
ct

You’ll need several types of objects in your game: a Player
object, several sub-types of an Enemy object, and several sub-
types of a Weapon object. And you’ll also need one object to keep
up with everything that’s going on: the Game object.

The Game object handles turns
When one of your form’s Move buttons is clicked, the form
will call the Game object’s Move() method. That method
will let the player take a turn, and then let all the enemies
move. So it’s up to Game to handle the turn-based movement
portion of the game.

For example, here’s how the move buttons work:

 Form object Player obje
ct

 Player obje
ct

Move
Button
Clicked

Near
Player

After the player moves, Game tells each of the
enemies to Move().

4. if (NearPlayer())
 game.HitPlayer();

When the user clicks
one of the four move
buttons, the form calls
Game’s Move() method.

Game’s Move() method
first calls the Player
object’s Move() method to
tell the player to move.

 If any of the enemies
end up near the player
after they’ve moved,
they attack the player.

We left the parameters out of this diagram.
Each Move() method takes a direction, and
some of them take a Random object too.

The form never interacts
directly with the players,
weapons, or enemies.

Game takes the input from the form and deals with the objects in the game.
The Game object
keeps up with
players, weapons,
and a list of
enemies.

1. game.Move()

 2. player.Move()

 Game objec
t

 Game objec
t

3. enemy.Move()

 Enemy objec
t

This is just the general overview. We’ll give you a lot more details on how the player and enemies move, how the enemy figures out if it’s near the player, etc.

There’s only one weapon per level,
so the game just needs a Weapon
reference, not a List. The Player,
however, has a List<Weapon> to
hold the inventory.

Download at WoweBook.Com

you are here 4 369

The Quest

The form delegates activity to the Game object
Movement, attacking, and inventory all begin in the form. So clicking a
movement or attack button, or an item in inventory, triggers code in your
form. But it’s the Game object that controls the objects in the game. So
the form has to pass on anything that happens to the Game object, and
then the Game object takes it from there:

 Game objec
t Form object

 1.

 Mov
e(Direction.Right, random);

2. UpdateCharacters();

The Form object calls the
game’s Move(), and then calls
its own UpdateCharacters()
method to update the screen.

Use a Direction enum for
the four button directions.

This UpdateCharacters() method is part of the
form. It reads the location of the player, enemies, and any weapons currently in the dungeon and
moves the PictureBoxes to match them.

 Game objec
t Form object 2. UpdateCharacters();

How moving works

How attacking works

How the inventory scroll works

 Game objec
t Form object inventoryBow.BorderStyle =

 BorderStyle.FixedSingle;

inventorySword.BorderStyle =
 BorderStyle.None;

if (g

ame.Che
ckPlayerInventory(“Bow”)) {

 game.Equip(“Bow”);

The inventory scroll displays all of
the icons for the items that the
player’s picked up.

Move
Button
Clicked

Attack
Button
Clicked

Inventory
Icon

Clicked

Attacking is like
movement... the
form calls Attack()
on Game, and Game
handles dealing with
the attack.

The UpdateCharacters() method
also checks the player’s inventory
and makes sure the correct icons are
displayed on the inventory scroll.

The BorderStyle property
highlights the active item in
the player’s inventory.

Game handles updating locations, so when UpdateCharacters() is called, things are moved to their new locations.

 1.

Attack
(Direction.Right, random);

Game.Move() calls the enemies’ Move() methods, which all
take a random reference.

When the player hits an
enemy, it causes a random
amount of damage (up to
a maximum damage limit).

All the other weapons’
borders should be
turned off.

Download at WoweBook.Com

370 Head First Lab #1

The Quest

using System.Drawing;

public class Game {
 public List<Enemy> Enemies;
 public Weapon WeaponInRoom;

 private Player player;
 public Point PlayerLocation { get { return player.Location; } }
 public int PlayerHitPoints { get { return player.HitPoints; } }
 public List<string> PlayerWeapons { get { return player.Weapons; } }

 private int level = 0;
 public int Level { get { return level; } }

 private Rectangle boundaries;
 public Rectangle Boundaries { get { return boundaries; } }

 public Game(Rectangle boundaries) {
 this.boundaries = boundaries;
 player = new Player(this,
 new Point(boundaries.Left + 10, boundaries.Top + 70));
 }
 public void Move(Direction direction, Random random) {
 player.Move(direction);
 foreach (Enemy enemy in Enemies)
 enemy.Move(random);
 }
 public void Equip(string weaponName) {
 player.Equip(weaponName);
 }
 public bool CheckPlayerInventory(string weaponName) {
 return player.Weapons.Contains(weaponName);
 }
 public void HitPlayer(int maxDamage, Random random) {
 player.Hit(maxDamage, random);
 }

You’ll need Rectangle and Point from
System.Drawing, so be sure to add this
to the top of your class.

These are okay as public properties if Enemy and Weapon are
well-encapsulated... in other words, just make sure the form
can’t do anything inappropriate with them.

The game keeps a private Player object. The
form will only interact with this through
methods on Game, rather than directly.

The Rectangle object has a Top, Bottom,
Left, and Right field, and works perfectly
for the overall game area.

Building the Game class
We’ve gotten you started with the Game class in the code below.
There’s a lot for you to do—so read through this code carefully, get
it into the IDE, and get ready to go to work:

Movement is simple: move the player in the direction the form gives us, and move each enemy in a random direction.

These are all
great examples of
encapsulation... Game
doesn’t know how
Player handles these
actions, it just
passes on the needed
information and lets
Player do the rest.

Game starts out with a bounding box for the dungeon, and creates a new Player object in the dungeon.

Download at WoweBook.Com

you are here 4 371

The Quest

 public void IncreasePlayerHealth(int health, Random random) {
 player.IncreaseHealth(health, random);
 }

 public void Attack(Direction direction, Random random) {
 player.Attack(direction, random);
 foreach (Enemy enemy in Enemies)
 enemy.Move(random);
 }

 private Point GetRandomLocation(Random random) {
 return new Point(boundaries.Left +
 random.Next(boundaries.Right / 10 - boundaries.Left / 10) * 10,
 boundaries.Top +
 random.Next(boundaries.Bottom / 10 - boundaries.Top / 10) * 10);
 }

 public void NewLevel(Random random) {
 level++;
 switch (level) {
 case 1:
 Enemies = new List<Enemy>();
 Enemies.Add(new Bat(this, GetRandomLocation(random)));
 WeaponInRoom = new Sword(this, GetRandomLocation(random));
 break;
 }
 }
}

GetRandomLocation() will come in handy in
the NewLevel() method, which will use it to
determine where to place enemies and weapons.

We only added the case for
the level 1. It’s your job to
add cases for the other levels.

Attack() is almost exactly like Move(). The player attacks, and the enemies all get a turn to move.

This is just a math trick to get a
random location within the rectangle
that represents the dungeon area.

Finish the rest of the levels
It’s your job to finish the NewLevel() method. Here’s the
breakdown for each level:

Level Enemies Weapons
 2 Ghost Blue potion
 3 Ghoul Bow
 4 Bat, Ghost Bow, if not picked up on 3; otherwise, blue potion
 5 Bat, Ghoul Red potion
 6 Ghost, Ghoul Mace
 7 Bat, Ghost, Ghoul Mace, if not picked up on 6; otherwise, red potion
 8 N/A N/A - end the game with Application.Exit()

So if the blue potion is still
in the player’s inventory from

Level 2, nothing appears on
this level.

This only appears if the red potion from Level 5 has already been used up.

We’ve only got room in the inventory for one

blue potion and one red potio
n. So if the

player already has a red potio
n, then the

game shouldn’t add a red potion
to the level

(and the same goes for the blue potion).

Download at WoweBook.Com

372 Head First Lab #1

The Quest

Finding common behavior: movement

Mover
(abstract)

Nearby(locationToCheck: Point,
 distance: int): bool
Move(direction: Direction,
 boundaries: Rectangle): Point

Location: Point

You already know that duplicate code is bad, and duplicate code
usually shows up when two or more objects share the same behavior.
That’s the case in the dungeon game, too... both enemies and players
move.

Let’s create a Mover class, to abstract that common behavior into a
single place. Player and Enemy will inherit from Mover. And even
though weapons don’t move around, they inherit from Mover too,
because they need some of its properties and methods. Mover has
a Move() method for moving around, and a read-only Location
property that the form can use to position a subclass of Mover.

Nearby() takes a point,
and figures out if it’s
within a certain distance
away from the object.

Move takes a direction as well
as the dungeon’s boundaries,

and

calculates where the end point of

that movement would be.

Mover is abstract, so
can’t be instantiated.
You’ll only instantiate
Player and Enemy, which
inherit from it.

Player

Attack(direction: Direction, random: Random)
Hit(maxDamage: int, random: Random)
Equip(weaponName: String)
Move(direction: Direction)

Weapons: List<Weapon>
HitPoints: int

Player and Enemy both inherit from Mover

You can call Nearby() and Move() on both Enemy and Player now.Add a Direction enum

The Mover class, as well as several other classes, need
a Direction enum. Create this enum, and give it four
enumerated values: Up, Down, Left, and Right.

 Enemy
 (abstract)

Move(random: Random)
Hit(maxDamage: int,
 random: Random)

HitPoints: int

The Player class overrides
the Move() method. Enemies don’t

have an Attack()
method because
their attacking is
built into Move().

Weapon
(abstract)

PickUpWeapon()
DamageEnemy()

PickedUp
Location

We added return values and parameters to this class diagram to make it easier for you to see what’s going on.

Download at WoweBook.Com

you are here 4 373

The Quest

public abstract class Mover {
 private const int MoveInterval = 10;
 protected Point location;
 public Point Location { get { return location; } }
 protected Game game;

 public Mover(Game game, Point location) {
 this.game = game;
 this.location = location;
 }

 public bool Nearby(Point locationToCheck, int distance) {
 if (Math.Abs(location.X - locationToCheck.X) < distance &&
 (Math.Abs(location.Y - locationToCheck.Y) < distance)) {
 return true;
 } else {
 return false;
 }
 }
 public Point Move(Direction direction, Rectangle boundaries) {
 Point newLocation = location;
 switch (direction) {
 case Direction.Up:
 if (newLocation.Y - MoveInterval >= boundaries.Top)
 newLocation.Y -= MoveInterval;
 break;
 case Direction.Down:
 if (newLocation.Y + MoveInterval <= boundaries.Bottom)
 newLocation.Y += MoveInterval;
 break;
 case Direction.Left:
 if (newLocation.X - MoveInterval >= boundaries.Left)
 newLocation.X -= MoveInterval;
 break;
 case Direction.Right:
 if (newLocation.X + MoveInterval <= boundaries.Right)
 newLocation.X += MoveInterval;
 break;
 default: break;
 }
 return newLocation;
 }
}

The Nearby method checks a Point against this object’s current location. If they’re within distance of each other, then it returns true, otherwise it returns false.

The Mover class source code
Here’s the code for Mover:

Since protected properties are only available to subclasses, the form object can’t set the location... only read it through the public get method we define.

Instances of Mover take in the Game

object and a current location.

The Move() method tries to move one step in a direction. If it can, it returns the new Point. If it hits a boundary, it returns the original Point.

If the end location is
outside the boundaries,
the new location
stays the same as the
starting point.

Finally, this new location is
returned (which might still be the
same as the starting location!).

Download at WoweBook.Com

374 Head First Lab #1

The Quest

public class Player : Mover {
 private Weapon equippedWeapon;
 private int hitPoints;
 public int HitPoints { get { return hitPoints; } }

 private List<Weapon> inventory = new List<Weapon>();
 public List<string> Weapons {
 get {
 List<string> names = new List<string>();
 foreach (Weapon weapon in inventory)
 names.Add(weapon.Name);
 return names;
 }
 }

 public Player(Game game, Point location);
 : base(game, location) {
 hitPoints = 10;
 }

 public void Hit(int maxDamage, Random random) {
 hitPoints -= random.Next(1, maxDamage);
 }

 public void IncreaseHealth(int health, Random random) {
 hitPoints += random.Next(1, health);
 }

 public void Equip(string weaponName) {
 foreach (Weapon weapon in inventory) {
 if (weapon.Name == weaponName)
 equippedWeapon = weapon;
 }
 }
}

The Player class keeps track of the player
Here’s a start on the Player class. Start with this code in
the IDE, and then get ready to add to it.

The player’s constructor sets
its hitPoints to 10 and then
calls the base class constructor. When an enemy hits the player,

it causes a random amount of
damage. And when a potion
increases the player’s health, it
increases it by a random amount.

The Equip() method tells the player
to equip one of his weapons. The Game
object calls this method when one of the
inventory icons is clicked.

A Player object can only have on
e Weapon

object equipped at a time.

All of the properties of Player are hidden from direct access.

Player inherits
from Mover, so
this passes in
the Game and
location to that
base class.

A Player can hold
multiple weapons in
inventory, but can only
equip one at a time.

Even though potions help the player
rather than hurt the enemy, they’re
still considered weapons by the game.
That way the inventory can be a
List<Weapon>, and the game can
point to one with its WeaponInRoom
reference.

The Player and Enemy objects need to
stay inside the dungeon, which means
they need to know the boundaries of the
playing area. Use the Contains() method
of the boundaries Rectangle to make sure
they don’t move out of bounds.

Download at WoweBook.Com

you are here 4 375

The Quest

Potions will implement an IPotion interface (more on that
in a minute), so you can use the “is” word to see if a
Weapon is an implementation of IPotion.

Write the Move() method for the Player
Game calls the Player’s Move() method to tell a player to move in
a certain direction. Move() takes in the direction to move (using the
Direction enum you should have already added). Here’s the start
of that method:

This happens when one of
the movement buttons on
the form is clicked.

public void Move(Direction direction) {
 base.location = Move(direction, game.Boundaries);
 if (!game.WeaponInRoom.PickedUp) {
 // see if the weapon is nearby, and possibly pick it up
 }
}

You’ve got to fill in the rest of this method. Check and see if the
weapon is near the player (within a single unit of distance). If
so, pick up the weapon and add it to the player’s inventory.

If the weapon is the only weapon the player has, go ahead and
equip it immediately. That way, the player can use it right away,
on the next turn.

The Weapon and form will handle making the weapon’s Picturebox invisible when the player picks it up... that’s not the job of the Player class.

Add an Attack() method, too
Next up is the Attack() method. This is called when one of the
form’s attack buttons is clicked, and carries with it a direction (again,
from the Direction enum). Here’s the method signature:

public void Attack(Direction direction, Random random) {
 // Your code goes here
}

If the player doesn’t have an equipped weapon, this method
won’t do anything. If the player does have an equipped weapon,
this should call the weapon’s Attack() method.

But potions are a special case. If a potion is used, remove it
from the player’s inventory, since it’s not available anymore.

Move is in the Mover base class.

The weapons all have an Attack()
method that takes a Direction
enum and a Random object. The
player’s Attack() will figure out
which weapon is equipped and call
its Attack().

If the weapon is a
potion, then Attack()
removes it from the
inventory after the
player drinks it.

When the player picks up a weapon, it needs to disappear from the dungeon and appear in the inventory.

Download at WoweBook.Com

376 Head First Lab #1

The Quest

Bats, ghosts, and ghouls inherit from the Enemy class

public abstract class Enemy : Mover {
 private const int NearPlayerDistance = 25;
 private int hitPoints;
 public int HitPoints { get { return hitPoints; } }
 public bool Dead { get {
 if (hitPoints <= 0) return true;
 else return false;
 }
 }
 public Enemy(Game game, Point location, int hitPoints)
 : base(game, location) { this.hitPoints = hitPoints; }

 public abstract void Move(Random random);

 public void Hit(int maxDamage, Random random) {
 hitPoints -= random.Next(1, maxDamage);
 }

 protected bool NearPlayer() {
 return (Nearby(game.PlayerLocation,
 NearPlayerDistance));
 }
 protected Direction FindPlayerDirection(Point playerLocation) {
 Direction directionToMove;
 if (playerLocation.X > location.X + 10)
 directionToMove = Direction.Right;
 else if (playerLocation.X < location.X - 10)
 directionToMove = Direction.Left;
 else if (playerLocation.Y < location.Y - 10)
 directionToMove = Direction.Up;
 else
 directionToMove = Direction.Down;
 return directionToMove;
 }
}

We’ll give you another useful abstract class: Enemy. Each
different sort of enemy has its own class that inherits from the
Enemy class. The different kinds of enemies move in different
ways, so the Enemy abstract class leaves the Move method
as an abstract method—the three enemy classes will need to
implement it differently, depending on how they move.

If you feed FindPlayerDirection() the player’s location, it’ll use the base class’s location field to figure out where the player is in relation to the enemy and return a Direction enum that tells you which direction the enemy needs to move in order to move towards the player.

The Enemy class inherited the Nearby() method from mover, which it can use to figure out whether it’s near the player.

When the player attacks
an enemy, it calls the
enemy’s Hit() method, which
subtracts a random number
from the hit points.

 Enemy
 (abstract)

Move(random: Random)
Hit(maxDamage: int,
 random: Random)

HitPoints: int

Each
subclass
of Enemy
implements
this.

The form can use this read-only
property to see if the enemy should
be visible in the game dungeon.

Download at WoweBook.Com

you are here 4 377

The Quest

public class Bat : Enemy {
 public Bat(Game game, Point location)
 : base(game, location, 6)
 { }

 public override void Move(Random random) {
 // Your code will go here
 }
}

Ghost

Move()

Ghoul

Move()

Bat

Move()

Write the different Enemy subclasses
The three Enemy subclasses are pretty straightforward. Each enemy has a
different number of starting hit points, moves differently, and does a different
amount of damage when it attacks. You’ll need to have each one pass a different
startingHitPoints parameter to the Enemy base constructor, and you’ll have
to write different Move() methods for each subclass.

Here’s an example of how one of those classes might look:

The bat starts with 6 hit points, so it
passes 6 to the base class constructor.

The bat starts with 6 hit points. It’ll keep moving towards the player
and attacking as long as it has one or more hit points. When it
moves, there’s a 50% chance that it’ll move towards the player, and a
50% chance that it’ll move in a random direction. After the bat moves,
it checks if it’s near the player—if it is, then it attacks the player with
up to 2 hit points of damage.

The ghost is harder to defeat than the bat, but like the bat, it will only
move and attack if its hit points are greater than zero. It starts with
8 hit points. When it moves, there’s a 1 in 3 chance that it’ll move
towards the player, and a 2 in 3 chance that it’ll stand still. If it’s near
the player, it attacks the player with up to 3 hit points of damage.

The ghoul is the toughest enemy. It starts with 10 hit points, and only
moves and attacks if its hit points are greater than zero. When it moves,
there’s a 2 in 3 chance that it’ll move towards the player, and a 1 in 3
chance that it’ll stand still. If it’s near the player, it attacks the player
with up to 4 hit points of damage.

Once an enemy has no more hit points,
the form won’t display it any more. But
it’ll still be in the game’s Enemies list
until the player finishes the level.

You probably won’t need any constructor for
these; the base class handles everything.

Each of these subclasses the
Enemy base class, which in turn
subclasses Mover.

We’ll have to make
sure the form
sees if an enemy
should be visible
at every turn.

The bat flies around
somewhat randomly, so
it uses Random to fly
in a random direction
half the time.

The ghost
and ghoul use
Random to make
them move more
slowly than the
player.

Download at WoweBook.Com

378 Head First Lab #1

The Quest

public abstract class Weapon : Mover {

 protected Game game;
 private bool pickedUp;
 public bool PickedUp { get { return pickedUp; } }
 private Point location;
 public Point Location { get { return location; } }

 public Weapon(Game game, Point location) {
 this.game = game;
 this.location = location;
 pickedUp = false;
 }

 public void PickUpWeapon() { pickedUp = true; }

 public abstract string Name { get; }

 public abstract void Attack(Direction direction, Random random);

 protected bool DamageEnemy(Direction direction, int radius,
 int damage, Random random) {
 Point target = game.PlayerLocation;
 for (int distance = 0; distance < radius; distance++) {
 foreach (Enemy enemy in game.Enemies) {
 if (Nearby(enemy.Location, target, radius)) {
 enemy.Hit(damage, random);
 return true;
 }
 }
 target = Move(direction, target, game.Boundaries);
 }
 return false;
 }
}

We need a base Weapon class, just like we had a base Enemy class.
And each weapon has a location, as well as a property indicating
whether or not it’s been picked up. Here’s the base Weapon class:

Weapon inherits from Mover,
each weapon inherits from Weapon

Weapon
(abstract)

PickUpWeapon()
DamageEnemy()

PickedUp
Location

Each weapon class needs to
implement a Name property and an
Attack() method that determines
how that weapon attacks.

The constructor sets the game and location fields, and sets pickedUp to false (because it hasn’t been picked up yet).

A pickedUp weapon shouldn’t
be displayed anymore... the
form can use this get
accessor to figure that out.

Each
weapon’s
Name
property
returns
its name
(“Sword”,
“Mace”,
“Bow”).

Each weapon has a
different range and
pattern of attack, so
the weapons implement
the Attack() method
differently.

Every weapon has a location in the game dungeon.

The DamageEnemy() method is called by Attack(). It attempts to find an enemy in a certain direction and radius. If it does, it calls the enemy’s Hit() method and returns true. If no enemy’s found, it returns false.

Weapon inherits
from Mover
because it uses
its Nearby() and
Move() methods in
DamageEnemy().

The Nearby() method in the Mover class only takes two
parameters, a Point and an int, and it compares the Point to
the Mover field location. You’ll need to add an overloaded
Nearby() that’s almost identical, except that it takes three
parameters, two Points and a distance, which compares the
first Point to the second Point (instead of location).

Download at WoweBook.Com

you are here 4 379

The Quest

Bow

Attack()

Name

Mace

Attack()

Name

Sword

Attack()

Name

Different weapons attack in different ways
Each subclass of Weapon has its own name and attack logistic. Your job is to
implement these classes. Here’s the basic skeleton for a Weapon subclass:

The sword is the first weapon the player picks up. It’s got a wide angle
of attack: if he attacks up, then it first tries to attack an enemy that’s in
that direction—if there’s no enemy there, it looks in the direction that’s
clockwise from the original attack and attacks any enemy here, and if
it still fails to hit then it attempts to attack an enemy counterclockwise
from the original direction of attack. It’s got a radius of 10, and causes
3 points of damage.

The bow has a very narrow angle of attack, but it’s got a very long
range—it’s got an attack radius of 30, but only causes 1 point of
damage. Unlike the sword, which attacks in three directions (because
the player swings it in a wide arc), when the player shoots the bow in a
direction, it only shoots in that one direction.

The mace is the most powerful weapon in the dungeon. It doesn’t
matter which direction the player attacks with it—since he swings it in
a full circle, it’ll attack any enemy with a radius of 20 and cause up to 6
points of damage.

Think carefully
about this... what
is to the right
of the direction
left? What is to
the left of up?

public class Sword : Weapon {

 public Sword(Game game, Point location)
 : base(game, location) { }

 public override string Name { get { return “Sword”; } }

 public override void Attack(Direction direction, Random random) {
 // Your code goes here
 }
}

Each subclass represents one of the
three weapons: a sword, bow, or mace.

Each subclass relies on the base class to do the initialization work.
You’re basically hardcoding in
the name of each weapon.

The Game object will pass on the direction to attack in.

The different weapons will call DamageEnemy() in various ways. The
Mace attacks in all directions, so if the player’s attacking to the
right, it’ll call DamageEnemy(Direction.Right, 20, 6, random). If
that didn’t hit an enemy, it’ll attack Up. If there’s no enemy there,
it’ll try Left, then Down—that makes it swing in a full circle.

The player can use the
weapons over and over—they
never get dropped or used up.

Download at WoweBook.Com

380 Head First Lab #1

The Quest

IPotion
(interface)

Used

Weapon
(abstract)

PickUpWeapon()
DamageEnemy()

PickedUp
Location

Potions implement the IPotion interface
There are two potions, a blue potion and a red potion, which increase the
player’s health. They act just like weapons—the player picks them up in
the dungeon, equips them by clicking on the inventory, and uses them
by clicking one of the attack buttons. So it makes sense for them to
inherit from the abstract Weapon class.

But potions act a little differently, too, so you’ll need to add an IPotion
interface so they can have extra behavior: increasing the player’s health.
The IPotion interface is really simple. Potions only need to add one read-
only property called Used that returns false if the player hasn’t used the
potion, and true if he has. The form will use it to determine whether or
not to display the potion in the inventory.

RedPotion

Attack()

Name

BluePotion

Attack()

Name

The BluePotion class’s Name property should return the string
“Blue Potion”. Its Attack() method will be called when the player
uses the blue potion—it should increase the player’s health by up to
5 hit points by calling the IncreasePlayerHealth() method.
After the player uses the potion, the potion’s Used() method
should return true.

The potions inherit from the Weapon class because
they’re used just like weapons—the player clicks on
the potion in the inventory scroll to equip it, and
then clicks any of the Attack buttons to use it.

The RedPotion class is very similar to BluePotion, except that
its Name property returns the string “Red Potion”, and its Attack()
method increases the player’s health by up to 10 hit points.

public interface IPotion {
 bool Used { get; }
}

RedPotion

Attack()

Name

BluePotion

Attack()

Name

IPotion makes potions
usable only once. It’s
also possible to find
out if a Weapon is a
potion with “if (weapon
is IPotion) because of
this interface.”

You should be able to
write these classes using this class diagram and the information below.

If the player picks up a
 blue potion

on level 2, uses it, and then picks

up another one on level
4, the game

will end up creating two different

BluePotion instances.

Download at WoweBook.Com

you are here 4 381

The Quest

private Game game;
private Random random = new Random();
private void Form1_Load(object sender,
 EventArgs e) {
 game = new Game(new Rectangle(78, 57, 420, 155));
 game.NewLevel(random);
 UpdateCharacters();
}

The form brings it all together
There’s one instance of the Game object, and it lives as a private field of
your form. It’s created in the form’s Load event, and the various event
handlers in the form use the fields and methods on the Game object to
keep the game play going.

Everything begins with the form’s Load event handler, which passes the
Game a Rectangle that defines the boundaries of the dungeon play
area. Here’s some form code to get you going:

The form has a separate event handler for each of these PictureBox’s Click events. When the
player clicks on the sword, it first checks to make sure the sword is in the player’s inventory using
the Game object’s CheckPlayerInventory() method. If the player’s holding the sword, the
form calls game.Equip() to equip it. It then sets each PictureBox’s BorderStyle property
to draw a box around the sword, and make sure none of the other icons have a box around them.

Using a Rectangle
You’ll find a lot of Rectangles any time you work with forms. You can create one by passing it X, Y, Width, and Height values, or two Points (for opposite corners). Once you’ve got a rectangle instance, you can also access its Left, Right, Top, and Bottom, as well as its X, Y, Width, and Height values.

These are the boundaries of the
dungeon in the background image
you’ll download and add to the form.

There’s an event handler for each of the four movement buttons.
They’re pretty simple. First the button calls game.Move() with
the appropriate Direction value, and then it calls the form’s
UpdateCharacters() method.

The four attack button event handlers are also really simple.
Each button calls game.Attack(), and then calls the form’s
UpdateCharacters() method. If the player equips a potion,
it’s still used the same way—by calling game.Attack()—but
potions have no direction. So make the Left, Right, and Down
buttons invisible when the player equips a potion, and change the
text on the Up button to say “Drink”.

Remember to
double-click on
each PictureBox
so the IDE adds
a separate event
handler method
for each of them.

Make sure you change the buttons
back when the player equips the
sword, bow, or mace.

Download at WoweBook.Com

382 Head First Lab #1

The Quest

public void UpdateCharacters() {
 Player.Location = game.PlayerLocation;
 playerHitPoints.Text =
 game.PlayerHitPoints.ToString();

 bool showBat = false;
 bool showGhost = false;
 bool showGhoul = false;
 int enemiesShown = 0;
 // more code to go here...

The form’s UpdateCharacters() method
moves the PictureBoxes into position
The last piece of the puzzle is the form’s UpdateCharacters()
method. Once all the objects have moved and acted on each other, the form
updates everything... so weapons that been dropped have their PictureBoxes’
Visible properties set to false, enemies and players are drawn in their new
locations (and dead ones are made invisible), and inventory is updated.

Here’s what you need to do:

Update the player’s position and stats
The first thing you’ll do is update the player’s PictureBox location and the label
that shows his hit points. Then you’ll need a few variables to determine whether
you’ve shown each of the various enemies.

11

Update each enemy’s location and hit points
Each enemy could be in a new location, and have a different set of hit points. You need to
update each enemy after you’ve updated the player’s location:

Once you’ve looped through all the enemies on the level, check the showBat variable. If
the bat was killed, then showBat will still be false, so make its PictureBox invisible and
clear its hit points label. Then do the same for showGhost and showGhoul.

22

The showBat variable will be set to true if
we made the bat’s PictureBox visible. Same
goes for showGhost and showGhoul.

foreach (Enemy enemy in game.Enemies) {
 if (enemy is Bat) {
 bat.Location = enemy.Location;
 batHitPoints.Text = enemy.HitPoints.ToString();
 if (enemy.HitPoints > 0) {
 showBat = true;
 enemiesShown++;
 }
 }
 // etc...

You’ll need two more if statements like this in your foreach loop—one for the ghost and one for the ghoul.

This goes right after
the code from above.

This will affect the
visibility of the enemy
PictureBox controls in
just a bit.

Download at WoweBook.Com

you are here 4 383

The Quest

weaponControl.Location = game.WeaponInRoom.Location;
if (game.WeaponInRoom.PickedUp) {
 weaponControl.Visible = false;
} else {
 weaponControl.Visible = true;
}
if (game.PlayerHitPoints <= 0) {
 MessageBox.Show(“You died”);
 Application.Exit();
}
if (enemiesShown < 1) {
 MessageBox.Show(“You have defeated the enemies on this level”);
 game.NewLevel(random);
 UpdateCharacters();
}

Update the weapon PictureBoxes
Declare a weaponControl variable and use a big switch statement to set it equal to
the PictureBox that corresponds to the weapon in the room.

 sword.Visible = false;
 bow.Visible = false;
 redPotion.Visible = false;
 bluePotion.Visible = false;
 mace.Visible = false;
 Control weaponControl = null;
 switch (game.WeaponInRoom.Name) {
 case “Sword”:
 weaponControl = sword; break;

The rest of the cases should set the variable weaponControl to the correct control on
the form. After the switch, set weaponControl.Visible to true to display it.

33

Set the Visible property on each inventory icon PictureBox
Check the Game object’s CheckPlayerInventory() method to figure out whether
or not to display the various inventory icons.

44

Here’s the rest of the method
The rest of the method does three things. First it checks to see if the player’s already
picked up the weapon in the room, so it knows whether or not to display it. Then it
checks to see if the player died. And finally, it checks to see if the player’s defeated all of
the enemies. If he has, then the player advances to the next level.

55

Application.Exit() immediately quits the program.
It’s part of System.Windows.Forms, so you’ll need
the appropriate using statement if you want to
use it outside of a form.

Every level has one weapon. If
it’s been picked up, we need to
make its icon invisible.

If there are no more enemies on the
level, then the player’s defeated them
all and it’s time to go to the next level.

Make sure your controls’ names
match these names. It’s easy to end
up with bugs that are difficult to
track down if they don’t match.

You’ll have more cases for
each weapon type.

Download at WoweBook.Com

384 Head First Lab #1

The Quest

The fun’s just beginning!
Seven levels, three enemies... that’s a pretty decent game. But you
can make it even better. Here are a few ideas to get you started...

Make the enemies smarter
Can you figure out how to change the enemies’ Move() methods so that they’re harder
to defeat? Then see if you can change their constants to properties, and add a way to
change them in the game.

Add more levels
The game doesn’t have to end after seven levels. See if you can add more…can you
figure out how to make the game go on indefinitely? If the player does win, make a cool
ending animation with dancing ghosts and bats! And the game ends pretty abruptly if
the player dies. Can you think of a more user-friendly ending? Maybe you can let the
user restart the game or retry his last level.

Add different kinds of enemies
You don’t need to limit the dangers to ghouls, ghosts, and bats. See if you can add
more enemies to the game.

Add more weapons
The player will definitely need more help defeating any new enemies you’ve added.
Think of new ways that the weapons can attack, or different things that potions can do.
Take advantage of the fact that Weapon is a subclass of Mover—make magic weapons
the player has to chase around!

Add more graphics
You can go to www.headfirstlabs.com/books/hfcsharp/ to find more graphics files
for additional enemies, weapons, and other images to help spark your imagination.

This is your chance to show off! Did you come up with a cool new
version of the game? Join the Head First C# forum and claim your
bragging rights: www.headfirstlabs.com/books/hfcsharp/

Download at WoweBook.Com

this is a new chapter 385

Okay, go ahead with our shopping
list ... chicken wire ... tequila ...
grape jelly ... bandages ... yes,
dear, I am writing this down.

reading and writing files9

Save the byte array, save the world

Sometimes it pays to be a little persistent.
So far, all of your programs have been pretty short-lived. They fire up, run for

a while, and shut down. But that’s not always enough, especially when you’re

dealing with important information. You need to be able to save your work. In

this chapter, we’ll look at how to write data to a file, and then how to read that

information back in from a file. You’ll learn about the .NET stream classes,

and also take a look at the mysteries of hexadecimal and binary.

Sometimes it pays to be a little persistent.
So far, all of your programs have been pretty short-lived. They fire up, run for

a while, and shut down. But that’s not always enough, especially when you’re

dealing with important information. You need to be able to save your work. In

this chapter, we’ll look at how to write data to a file, and then how to read that

information back in from a file. You’ll learn about the .NET stream classes,

and also take a look at the mysteries of hexadecimal and binary.

Download at WoweBook.Com

386 Chapter 9

Stream objec
tMain form

Stream objec
tMain form

C# uses streams to read and write data
A stream is the .NET Framework’s way of getting data in and out
of your program. Any time your C# program reads or writes a file,
connects to another computer over a network, or generally does
anything where it sends or receives bytes from one place to
another, you’re using streams.

bytes read from the file
input = stream.Read();

input contains data read
from the stream

bytes written to the file

stream.Write(output);

output contains data to
write to the stream

Whenever you
want to read
data from a
file or write
data to a file,
you’ll use a
Stream object.Let’s say you have a simple program—a form

with an event handler that needs to read data
from a file. You’ll use a Stream object to do it.

And if your program needs to write data out
to the file, it can use another Stream object.

islands in the stream

You use a
Stream object...

...and the stream works with the file directly.

You use a different stream object, but the process is the same.

Download at WoweBook.Com

you are here 4 387

reading and writing files

Things you can do with a stream:

Write to the stream.
You can write your data to a stream and through a stream’s Write()
method.

11

Read from the stream.
You can use the Read() method to get data from a file, or a network,
or memory, or just about anything else, using a stream.

22

Change your position within the stream.
Most streams support a Seek() method that lets you find a position
within the stream so you can insert data at a specific place.

33

Stream

Close()
Read()
Seek()
Write()

Streams let you
read and write
data. Use the
right kind of
stream for the
data you’re
working with.

FileStreams
let you read from
and write to files.

MemoryStreams
let you read from
and write data to
chunks of memory.

A NetworkStream
object lets you read
and write data to
other computers or
devices on a network.

A GZipStream
lets you compress
data so that it takes
up less space and is
easier to download
and store.

These are just some
of the methods in the
Stream class.

Stream is an abstract class, so you can’t instantiate it on its own.

FileStream

Close()
Read()
Seek()
Write()

MemoryStream

Close()
Read()
Seek()
Write()

NetworkStream

Close()
Read()
Seek()
Write()

GZipStream

Close()
Read()
Seek()
Write()

Different streams read and write different things
Every stream is a subclass of the abstract Stream class, and there are a bunch
of built-in stream classes to do different things. We’ll be concentrating on reading
and writing regular files, but everything you learn in this chapter will just as easily
apply to compressed or encrypted files, or network streams that don’t use files at all.

Each subclass adds methods and properties specific to that class’s functionality.

Download at WoweBook.Com

388 Chapter 9

A FileStream writes bytes to a file
When your program needs to write a few lines of text
to a file, there are a lot of things that have to happen:

The FileStream attaches itself to a file.22

Streams write bytes to files, so you’ll need to convert the string that you
want to write to an array of bytes.

33

Call the stream’s Write() method and pass it the byte array.44

Close the file so other programs can access it.55

Create a new FileStream object and tell it to write to the file.11

Eureka!
69 117 114 101 107 97 33

so much easier

Make sure you add using System.IO;
to any program that uses streams.

A FileStream can only be attached to one file at a time.

Forgetting to close a
 stream is a

big deal. Otherwise, the file will be

locked, and other pro
grams can’t use

that file until you clo
se your stream.

69 117 114 101 107 97 33

This is called encoding, and we’ll
talk more about it later on...

FileStream obje
ct

FileStream obje
ct

FileStream obje
ct

FileStream obje
ct

Download at WoweBook.Com

you are here 4 389

reading and writing files

How to write text to a file in 3 simple steps
C# comes with a convenient class called StreamWriter that does
all of those things in one easy step. All you have to do is create a new
StreamWriter object and give it a filename. It automatically creates a
FileStream and links it to the file. Then you can use the StreamWriter’s
Write() and WriteLine() methods to write everything to the file you
want.

Use the StreamWriter’s constructor to open or create a file
You can pass a filename to the StreamWriter() constructor. When you do, the writer automatically
opens the file. StreamWriter also has an overloaded constructor that also takes a bool: true if you
want to add text to the end of an existing file (or append), or false if you want to delete the existing file
and create a new file with the same name.

StreamWriter writer = new StreamWriter(@”C:\newfiles\toaster oven.txt”, true);

11

Use the Write() and WriteLine() methods to write to the file
These methods work just like the ones in Console : Write() writes text, and WriteLine() writes
text and adds a line break to the end. If you include “{0}”, “{1}”, “{2}”, etc., inside the string you’re
writing, the methods include parameters in the strings being written: “{0}” is replaced with the first
parameter after the string being written, “{1}” is replaced with the second, etc.

writer.WriteLine(“The {0} is set to {1} degrees.”, appliance, temp.ToString());

22

Call the Close() method to release the file
If you leave the stream open and attached to a file, then it’ll keep the file locked open
and no other program will be able to use it. So make sure you always close your files!

writer.Close();

33

The toaster oven ...
... is set to 350 degrees.

Putting @ in front of the
filename tells C# to treat
this as a literal string, without
escape characters, like \t for
tab or \n for newline.

S
treamWriter obj

ec
t FileStream obje

ct

S
treamWriter obj

ec
t FileStream obj

ec
t

StreamWriter
creates and
manages a
FileStream
object for you
automatically.

Download at WoweBook.Com

390 Chapter 9

StreamWriter sw = new StreamWriter(@”c:\secret_plan.txt”);

sw.WriteLine(“How I’ll defeat Captain Amazing”);

sw.WriteLine(“Another genius secret plan by The Swindler”);

sw.Write(“I’ll create an army of clones and “);

sw.WriteLine(“unleash them upon the citizens of Objectville.”);

string location = “the mall”;

for (int number = 0; number <= 6; number++){

 sw.WriteLine(“Clone #{0} attacks {1}”, number, location);

 if (location == “the mall”) { location = “downtown”; }

 else { location = “the mall”; }

}

sw.Close();

This line creates the StreamWriter object and
tells it where the file will be.

The path starts with an @ sign so that the StreamWriter doesn’t interpret the “\” as the start of an escape sequence.

WriteLine()
adds a new line
after writing.
Write() sends
just the text,
with no extra
line feeds at
the end.

Close() frees up any connections to the
file and any resources the StreamWriter is
using. The text doesn’t get written if you
don’t close the stream.

You can use the {}
within the text to
pass in variables to the
string being written.
{0} is replaced by the
first parameter after
the string, {1} by the
second, and so on.

This is what the
code above produces.

Can you figure out what’s going on with the location variable in this code?

The Swindler launches another diabolical plan
The citizens of Objectville have long lived in fear of the Swindler.
Now he’s using a StreamWriter to implement another evil plan.
Let’s take a look at what’s going on:

write it down

Download at WoweBook.Com

you are here 4 391

reading and writing files

StreamWriter Magnets
Suppose you have the code for button1_Click() shown below.
Your job is to use the magnets to build code for the Flobbo
class so that, when the event handler is called, it produces the
output shown at the bottom of the page. Good luck!

private void button1_Click(object sender, EventArgs e) {
 Flobbo f = new Flobbo(“blue yellow”);
 StreamWriter sw = f.Snobbo();
 f.Blobbo(f.Blobbo(f.Blobbo(sw), sw), sw);
}

Output:

public class Flobbo {

private string Zap;

public Flobbo(string Zap) {
 this.Zap = Zap;
}

}

public bool Blobbo(Strea
mWriter sw) {

sw.WriteLine(Zap);
Zap = “green purple”;
return false;

if (Already) {

} else {

}

sw.WriteLine(Zap);

Zap = “red orange”;

return true;

}
}

}

public StreamWriter Snobbo() {

return new

 StreamWriter(“maca
w.txt”);

public bool Blobbo
 (bool Already, StreamWriter sw) {

sw.WriteLine(Zap);

sw.Close();
return false;

Download at WoweBook.Com

392 Chapter 9

StreamWriter Magnets Solution
Your job was to construct the Flobbo class from the magnets
to create the desired output.

public class Flobbo {

private string Zap;

public Flobbo(string Zap) {
 this.Zap = Zap;
}

}

public bool Blobbo(StreamWriter sw) {

public bool Blobbo
 (bool Already, StreamWriter sw) {

sw.WriteLine(Zap);
sw.Close();
return false;

sw.WriteLine(Zap);
Zap = “green purple”;
return false;

if (Already) {

} else {

}

sw.WriteLine(Zap);
Zap = “red orange”;
return true;

}
}

}

public StreamWriter Snobbo() {

return new
 StreamWriter(“macaw.txt”);

private void button1_Click(object sender, EventArgs e) {
 Flobbo f = new Flobbo(“blue yellow”);
 StreamWriter sw = f.Snobbo();
 f.Blobbo(f.Blobbo(f.Blobbo(sw), sw), sw);
}

Output:

The Blobbo() method
is overloaded—it’s got
two declarations with
different parameters.

Make sure you close
files when you’re done
with them.

read it in

Download at WoweBook.Com

you are here 4 393

reading and writing files

Reading and writing takes two objects
Let’s read Swindler’s secret plans with another stream, a StreamReader.
StreamReader works just like a StreamWriter, except instead of writing
a file you give the reader the name of the file to read in its constructor. The
ReadLine() method returns a string that contains the next line from the file.
You can write a loop that reads lines from it until its EndOfStream field is
true—that’s when it runs out of lines to read:

StreamReader reader =

 new StreamReader(@“c:\secret_plan.txt”);

StreamWriter writer =

 new StreamWriter(@“e:\emailToCaptainAmazing.txt”);

writer.WriteLine(“To: CaptainAmazing@objectville.net”);

writer.WriteLine(“From: Commissioner@objectiville.net”);

writer.WriteLine(“Subject: Can you save the day... again?”);

writer.WriteLine();

 writer.WriteLine(“We’ve discovered the Swindler’s plan:”);

while (!reader.EndOfStream) {

 string lineFromThePlan = reader.ReadLine();

 writer.WriteLine(“The plan -> ” + lineFromThePlan);

}

writer.WriteLine();

writer.WriteLine(“Can you help us?”);

writer.Close();

reader.Close();

An empty WriteLine() method
writes a blank line.

This loop reads a line from the reader and writes it out to the writer.

This program uses a StreamReader to read the Swindler’s plan, and a StreamWriter to write a file that will get emailed to Captain Amazing.

Make sure to close every
stream that you open, even if
you’re just reading a file.

Pass the file you want
to read from into the
StreamReader’s constructor.

EndOfStream is the property

that tells you if ther
e’s no

data left unread in th
e file.

Download at WoweBook.Com

394 Chapter 9

Stream

Close()
Read()
Seek()
Write()

CryptoStream

Close()
Read()
Seek()
Write()

Data can go through more than one stream
One big advantage to working with streams in .NET is that you can have your data
go through more than one stream on its way to its final destination. One of the many
types of streams that .NET ships with is the CryptoStream class. This lets you
encrypt your data before you do anything else with it:

I’ll create an army of Clones and

I’ll create an army

*3yd4ÿÖndfr56dì¢L1═

Using a normal FileStream, your data
gets written directly to a file as text.

You write normal text to a CryptoStream.

Now your FileStream writes the encrypted text to the file.

CryptoStream inherits
from the abstract
Stream class, just
like the other stream
classes.

don’t cross the streams

*3yd4ÿÖndfr56dì¢L1═

The CryptoStream is
connected to a FileStream,
and gives that file stream

your text, but encrypted.

You can CHAIN streams. One stream
can write to another stream, which
writes to another stream... often
ending with a network or file stream.

CryptoStream ob
je

ct

FileStream obj
ec

t

FileStream obj
ec

t

Download at WoweBook.Com

you are here 4 395

reading and writing files

Pool Puzzle
Your job is to take code snippets from

the pool and place them into the
blank lines in the program. You
can use the same snippet more
than once, and you won’t need
to use all the snippets. Your goal
is to make the program produce

the output shown to the right.

Note: each snippet
from the pool can
be used more than
once!

Stream
Reader
Writer
StreamReader
StreamWriter
Open
Close

Fargo
Utah
Idaho
Dakota
Pineapple

HowMany
HowMuch
HowBig
HowSmall

int
long
string
enum
class

public
private
this
class
static

 =
 >=
 <=
 !=
 ==
 ++
 --

for
while
foreach

public class Pizza {

 private ____________ _______;
 public Pizza(__________ _______) {
 ______.Writer = Writer;
 }

 public void ______(______.Fargo f) {
 Writer._________(f.ToString());
 Writer.__________();
 }

}

public class Party {

 private ____________ Reader;
 public Party(____________ Reader) {
 __________.Reader = Reader;
 }

 public void HowMuch(__________ q) {
 q._________(Reader._________());
 Reader.__________();
 }

}

public class Pineapple {

 const ______ d = “delivery.txt”;
 public _____ ______
 { North, South, East, West, Flamingo }

 public static void Main() {

 __________ o = new ____________(“order.txt”);
 Pizza pz = new Pizza(new __________(d, true));
 pz.________(Fargo.Flamingo);
 for (_____ w = 3; w >= 0; w--) {
 Pizza i = new Pizza

 (new ___________(d, false));
 i.Idaho((Fargo)w);

 Party p = new Party(new __________(d));
 p.___________(o);
 }

 o.___________(“That’s all folks!”);
 o.__________();
 }

}

ReadLine
WriteLine

Download at WoweBook.Com

396 Chapter 9

public class Pineapple {
 const string d = “delivery.txt”;
 public enum Fargo { North, South, East, West, Flamingo }
 public static void Main() {
 StreamWriter o = new StreamWriter(“order.txt”);
 Pizza pz = new Pizza(new StreamWriter(d, true));
 pz.Idaho(Fargo.Flamingo);
 for (int w = 3; w >= 0; w--) {
 Pizza i = new Pizza(new StreamWriter(d, false));
 i.Idaho((Fargo)w);
 Party p = new Party(new StreamReader(d));
 p.HowMuch(o);
 }
 o.WriteLine(“That’s all folks!”);
 o.Close();
 }
}

public class Pizza {
 private StreamWriter Writer;
 public Pizza(StreamWriter Writer) {
 this.Writer = Writer;
 }
 public void Idaho(Pineapple.Fargo f) {
 Writer.WriteLine(f.ToString());
 Writer.Close();
 }
}

public class Party {
 private StreamReader Reader;
 public Party(StreamReader Reader) {
 this.Reader = Reader;
 }
 public void HowMuch(StreamWriter q) {
 q.WriteLine(Reader.ReadLine());
 Reader.Close();
 }
}

Pool Puzzle Solution

The Pizza class keeps a

StreamWriter as a private

field, and its Idah
o() method

writes Fargo enums to the

file using their To
String()

methods.

Here’s the entry point for
the program. It creates a
StreamWriter that it passes to

the Party class. Then it loops
through the Fargo members,
passing each of them to the
Pizza.Idaho() method to print.

This enum is used with its ToString() method to print a lot of the output.

The Party class has a
StreamReader field, and
its HowMuch() method
reads a line from that
StreamReader and writes
it to a StreamWriter.

a serious dialog

Download at WoweBook.Com

you are here 4 397

reading and writing files

Use built-in objects to pop up standard dialog boxes
When you’re working on a program that reads and writes files, there’s
a good chance that you’ll need to pop up a dialog box at some point to
prompt the user for a filename. That’s why .NET ships with objects to
pop up the standard Windows file dialog boxes.

ShowDialog() pops up a dialog box
Displaying a dialog box is easy. Here’s all you
need to do:

Create an instance of the dialog box object. You can do this in code
using new, or you can drag it onto your form out of the toolbox.

11

Set the dialog box object’s properties. A few useful ones include Title (which
sets the text in the title bar), InitialDirectory (which tells it which
directory to open first), and FileName (for open and save dialog boxes).

22

Call the object’s ShowDialog() method. That pops up the dialog box,
and doesn’t return until the user clicks the OK button or the Cancel
button, or closes the window.

33

The ShowDialog() method returns a DialogResult, which is an enum.
Some of its members are OK (which means the user clicked OK), Cancel, Yes,
and No (for Yes/No dialog boxes).

44

.NET has dialog boxes built in, like this OpenFileDialog for selecting a file to open.

This is the
FolderBrowseDialog
dialog box.

We’ll walk you through these steps in a minute.

Download at WoweBook.Com

398 Chapter 9

Dialog boxes are just another .NET control
You can add Windows standard file dialog boxes to your program just by dragging
them to your form –just drag an OpenFileDialog control out of the toolbox and
drop it on your form. Instead of showing up as a visual control, you’ll see it appear in
the space below your form. That’s because it’s a component, which is a special kind
of non-visual Toolbox control that doesn’t appear directly on the form, but which
you can still use in your form’s code just like you use any other control.

When you drag a component out of the
Toolbox and onto your form, the IDE
displays it in the space underneath the
form editor.

openFileDialog1.InitialDirectory = @“c:\MyFolder\Default\”;

openFileDialog1.Filter = “Text Files (*.txt)|*.txt|”

 + “Comma-Delimited Files (*.csv)|*.csv|All Files (*.*)|*.*”;

openFileDialog1.FileName = “default_file.txt”;

openFileDialog1.CheckFileExists = true;

openFileDialog1.CheckPathExists = false;

DialogResult result = openFileDialog1.ShowDialog();

if (result == DialogResult.OK){

 OpenSomeFile(openFileDialog1.FileName);

}

The InitialDirectory property changes the folder
that’s first displayed when the dialog opens.

These properties tell the dialog box
to display an error message if the
user tries to open up a file or path
that doesn’t exist on the drive.

Display the dialog box using its ShowDialog() method, which returns a DialogResult. That’s an enum that you can use to check whether or not the user hit the OK button. It’ll be set to DialogResult.OK if the user clicked OK, and DialogResult.Cancel if he hit Cancel.

dialog boxes are objects too

The Filter
property lets you change the filters that show up on the bottom of the dialog box, such as what types of files to show.

“Non-visual” just means it doesn’t appear on your form when you drag it out of the toolbox.

Download at WoweBook.Com

you are here 4 399

reading and writing files

Dialog boxes are objects, too
An OpenFileDialog object shows the standard Windows “Open” window,
and the SaveFileDialog shows its “Save” window. You can display
them by creating a new instance, setting the properties on the object, and
calling its ShowDialog() method. The ShowDialog() method returns
a DialogResult enum (because some dialog boxes have more than two
buttons or results, so a simple bool wouldn’t be enough).

The Title property lets
you change this text.

Change the “Save as
type” list using the
Filter property.

The DialogResult
returned by the
ShowDialog() method
lets you figure out
which button the
user clicked.

The ShowDialog() method pops up the dialog box and opens the folder specified in the InitialDirectory property.

When the user chooses a file, its full path is saved in the FileName property.

The SaveFileDialog
object pops up the
standard Windows

“Save as...” dialog box.

saveFileDialog1 = new SaveFileDialog();

saveFileDialog1.InitialDirectory = @“c:\MyFolder\Default\”;

saveFileDialog1.Filter = “Text Files (*.txt)|*.txt|”

 + “Comma-Delimited Files (*.csv)|*.csv|All Files (*.*)|*.*”;

DialogResult result = saveFileDialog1.ShowDialog();

if (result == DialogResult.OK){

 SaveTheFile(saveFileDialog1.FileName);

}

The ShowDialog() and FileName
properties work exactly the same

as on the OpenFileDialog object.

When you drag a save dialog object out
of the toolbox and onto your form, the
IDE just adds a line like this to your
form’s InitializeComponent() method.

Download at WoweBook.Com

400 Chapter 9

Use the built-in File and Directory classes
to work with files and directories
Like StreamWriter, the File class creates streams for you to work with files behind the
scenes. You can use its methods to do most common actions without having to create the
FileStreams first. Directory objects let you work with whole directories full of files,
you can use it to make changes to your file structure easily.

Things you can do with a File:

Find out if it exists
You can check to see if a file exists using the
Exists() method. It’ll return true if it does
and false if it doesn’t.

11

Read from and write to the file
You can use the OpenRead() method to get data
from a file, or the Create() or OpenWrite()
method to write to the file.

22

Append text to the file
The AppendAllText() method lets you append
text to an already created file. It even creates the file
if it’s not there when the method runs.

33

Things you can do with a Directory:

Create a new directory
Create a directory using the CreateDirectory() method. All
you have to do is supply the path; this method does the rest.

11

Get a list of the files in a directory
You can create an array of files in a directory using the
GetFiles() method; just tell the method which directory you
want to know about and it will do the rest.

22

Delete a directory
Deleting a directory is really simple too. Use the Delete() method.

33

Get information about the file
The GetLastAccessTime() and
GetLastWriteTime() methods return
the date and time when the file was last
accessed and modified.

44

FileInfo works just like File
If you’re going to be doing a lot of work with a file, you might want to create an instance of the FileInfo class instead of using the File class’s static methods.
The FileInfo class does just about everything the File class does except you have to instantiate it to use it. You can create a new instance of FileInfo and access its Exists() method, or its OpenRead() method in just the same way.
The only difference is that the File class is faster for a small number of actions and FileInfo is better suited for big jobs.

directory assistance

Download at WoweBook.Com

you are here 4 401

reading and writing files

Q:I still don’t get that {0} and {1} thing that was part of the
StreamWriter.

A:When	you’re	printing	strings	to	a	file,	you’ll	often	find	yourself	in	
the	position	of	having	to	print	the	contents	of	a	bunch	of	variables.	For	
example,	you	might	have	to	write	something	like	this:	
	
writer.WriteLine(“My name is ” + name +
 “and my age is ” + age);	
	
It	gets	really	tedious	and	somewhat	error-prone	to	have	to	keep	using	
+	to	combine	strings.	It’s	easier	to	take	advantage	of	{0}	and	{1}:	
	
writer.WriteLine(
 “My name is {0} and my age is {1}”,
 name, age);	
	
It’s	a	lot	easier	to	read	that	code,	especially	when	many	variables	are	
included	in	the	same	line.

Q:Why did you put a @ in front of the string that contained
the filename?

A:The	Write()	and	WriteLine()	methods	support	
escape	sequences	like	\n	and	\r.	That	makes	it	difficult	to	type	
filenames,	which	have	a	lot	of	backslash	characters	in	them.	If	you	put	
@	in	front	of	a	string,	it	tells	C#	not	to	interpret	escape	sequences.	It	
also	tells	C#	to	include	line	breaks	in	your	string,	so	you	can	hit	Enter	
halfway	through	the	string	and	it’ll	include	that	as	a	linebreak	in	the	
output:	

string twoLine = @"this is a string
that spans two lines.";

Q:And what do \n and \t mean again?

A:Those	are	escape	sequences.	\n	is	a	linefeed	and	\t	is	a	tab.	
\r	is	a	return	character,	or	half	of	a	Windows	return—in	Windows	
text	files,	lines	have	to	end	with	\r\n.	If	you	want	to	use	an	actual	
backslash	in	your	string,	and	not	have	C#	interpret	it	as	the	beginning	
of	an	escape	sequence,	just	do	a	double	backslash:	\\.

Q:What was that in the beginning about converting a string to
a byte array? How would that even work?

A:You’ve	probably	heard	many	times	that	files	on	a	disk	are	
repesented	as	bits	and	bytes.	What	that	means	is	that	when	you	write	
a	file	to	a	disk,	the	operating	system	treats	it	as	one	long	sequence	
of	bytes.	Remember	from	Chapter	4	how	a	byte	variable	can	store	
any	number	between	0	and	255?	Every	file	on	your	hard	drive	is	one	
long	sequence	of	numbers	between	0	and	255.	It’s	up	to	the	programs	
that	read	and	write	those	files	to	interpret	those	bytes	as	meaningful	
data.	When	you	open	a	file	in	Notepad,	it	converts	each	individal	
byte	to	a	character—for	example,	E	is	69	and	a	is	97.	And	when	
you	type	text	into	Notepad	and	save	it,	Notepad	converts	each	of	the	
characters	back	into	a	byte	and	saves	it	to	disk.	And	if	you	want	to	
write	a	string	to	a	stream,	you’ll	need	to	do	the	same.

Q:If I’m just using a StreamWriter to write to a file, why do I
really care if it’s creating a FileStream for me?

A:If	you’re	only	reading	or	writing	lines	to	or	from	a	text	file	in	order,	
then	all	you	need	are	StreamReader	and	StreamWriter.	
But	as	soon	as	you	need	to	do	anything	more	complex	than	that,	
you’ll	need	to	start	working	with	other	streams.	If	you	ever	need	to	
write	data	like	numbers,	arrays,	collections	or	objects	to	a	file,	a	
StreamWriter	just	won’t	do.	But	don’t	worry,	we’ll	go	into	a	lot	
more	detail	about	how	that	will	work	in	just	a	minute.

Q:What if I want to create my own dialog boxes? Can I do
that?

A:Yes,	you	definitely	can.	You	can	add	a	new	form	to	your	
project,	design	it	to	look	exactly	how	you	want.	Then	you	can	
create	a	new	instance	of	it	with	new	(just	like	you	created	
an	OpenFileDialog	object).	Then	you	can	call	its	
ShowDialog()	method,	and	it’ll	work	just	like	any	other	dialog	
box.	We’ll	talk	a	lot	more	about	adding	other	forms	to	your	program	in	
Chapter	13.

Q:Why do I need to worry about closing streams after I’m
done with them?

A:Have	you	ever	had	a	word	processor	tell	you	it	couldn’t	open	a	
file	because	it	was	“busy”?	When	one	program	uses	a	file,	Windows	
locks	it	and	prevents	other	programs	from	using	it.	And	it’ll	do	that	for	
your	program	when	it	opens	a	file.	If	you	don’t	call	the	Close()	
method,	then	it’s	possible	for	your	program	to	keep	a	file	locked	open	
until	it	ends.

Download at WoweBook.Com

402 Chapter 9

.NET has two built-in classes with a bunch of static methods for working
with files and folders. The File class gives methods to work with files,
and the Directory class lets you work with directories. Write down
what you think each of these lines of code does.

Code What the code does

if (!Directory.Exists(@“c:\SYP”)) {
 Directory.CreateDirectory(@“c:\SYP”);
}

if (Directory.Exists(@“c:\SYP\Bonk”)) {
 Directory.Delete(@“c:\SYP\Bonk”);
}

Directory.CreateDirectory(@“c:\SYP\Bonk”);

Directory.SetCreationTime(@“c:\SYP\Bonk”,
 new DateTime(1976, 09, 25));

string[] files = Directory.GetFiles(@“c:\windows\”,
 “*.log”, SearchOption.AllDirectories);

File.WriteAllText(@“c:\SYP\Bonk\weirdo.txt”,
 @”This is the first line
and this is the second line
and this is the last line”);

File.Encrypt(@“c:\SYP\Bonk\weirdo.txt”);

File.Copy(@“c:\SYP\Bonk\weirdo.txt”,
 @“c:\SYP\copy.txt”);

DateTime myTime =
 Directory.GetCreationTime(@“c:\SYP\Bonk”);

File.SetLastWriteTime(@“c:\SYP\copy.txt”, myTime);

File.Delete(@“c:\SYP\Bonk\weirdo.txt”);

do it yourself notepad

See if you can guess what this one
does—you haven’t seen it yet.

Download at WoweBook.Com

you are here 4 403

reading and writing files

Use File Dialogs to open and save files
(all with just a few lines of code)
You can build a program that opens a text file. It’ll let you make
changes to the file, and saves your changes. with very little code,
all using standard .NET controls. Here’s how:.

Do this
Build a simple form.
All you need is a textbox and two buttons. Drop the
OpenFileDialog and SaveFileDialog controls onto the Form
too. Double-click on the buttons to create their event handlers
and add a private string field called name to the form.
Don’t forget to put a using statement up top for System.
IO.

11

Hook the Open button up to the openFileDialog.
The Open button shows an OpenFileDialog and then uses File.ReadAllText()
to read the file into the text box:

private void open_Click(object sender, EventArgs e) {
 if (openFileDialog1.ShowDialog() == DialogResult.OK) {
 name = openFileDialog1.FileName;
 textBox1.Clear();
 textBox1.Text = File.ReadAllText(name);
 }
}

22

Now, hook up the Save button.
The Save button uses the File.WriteAllText() method to save the file:

private void save_Click(object sender, EventArgs e) {
 if (saveFileDialog1.ShowDialog() == DialogResult.OK) {
 name = saveFileDialog1.FileName;
 File.WriteAllText(name, textBox1.Text);
 }
}

33

Play with the other properties of the dialog boxes.
± Use the Title property of the saveFileDialog to change the text in

the title bar.

± Set the initialFolder property to have the dialog OpenFileDialog
start in a specified directory.

± Filter the OpenFileDialog so it will only show text files using the
Filter property.

44

Clicking Open shows the OpenFileDialog control.

The ReadAllText() and
WriteAllText() methods are
part of the File class. That’s
coming up on the next page.
We’ll look at them in more
detail in just a few pages.

This is a multiline text box.

If you don’t add a filter, then
the drop-down lists at the bottom
of the open and save dialog boxes
will be empty. Try using this filter:
“Text Files (*.txt)|*.txt”

Download at WoweBook.Com

404 Chapter 9

Code What the code does

if (!Directory.Exists(@”c:\SYP”)) {
 Directory.CreateDirectory(@”c:\SYP”);
}

Check if the C:\SYP folder exists. If it
doesn’t, create it.

if (Directory.Exists(@”c:\SYP\Bonk”)) {
 Directory.Delete(@”c:\SYP\Bonk”);
}

Check if the C:\SYP\Bonk folder exists. If
it does, delete it.

Directory.CreateDirectory(@”c:\SYP\Bonk”); Create the directory C:\SYP\Bonk.

Directory.SetCreationTime(@”c:\SYP\Bonk”,
 new DateTime(1976, 09, 25));

Set the creation time for the C:\SYP\Bonk
folder to September 25, 1976.

string[] files = Directory.GetFiles(@”c:\windows\”,
 “*.log”, SearchOption.AllDirectories);

Get a list of all files in C:\Windows that
match the *.log pattern, including all
matching files in any subdirectory.

File.WriteAllText(@”c:\SYP\Bonk\weirdo.txt”,
 @”This is the first line
and this is the second line
and this is the last line”);

Create a file called “weirdo.txt” (if it
doesn‘t already exist) in the C:\SYP\Bonk
folder and write three lines of text to it.

File.Encrypt(@”c:\SYP\Bonk\weirdo.txt”); Take advantage of built-in Windows
encryption to encrypt the file “weirdo.txt”
using the logged in account’s credentials..

File.Copy(@”c:\SYP\Bonk\weirdo.txt”,
 @”c:\SYP\copy.txt”);

Copy the C:\SYP\Bonk\weirdo.txt file to
C:\SYP\Copy.txt.

DateTime myTime =
 Directory.GetCreationTime(@”c:\SYP\Bonk”);

Declare the myTime variable and set it equal
to the creation time of the C:\SYP\Bonk
folder.

File.SetLastWriteTime(@”c:\SYP\copy.txt”, myTime); Alter the last write time of the copy.txt
file in C:\SYP\ so it’s equal to whatever
time is stored in the myTime variable.

File.Delete(@”c:\SYP\Bonk\weirdo.txt”); Delete the C:\SYP\Bonk\weirdo.txt file.

.NET has two built-in classes with a bunch of static methods for working
with files and folders. The File class gives methods to work with files,
and the Directory class lets you work with directories. Your job was
to write down what each bit of code did.

This is an alternative to using
a CryptoStream.

dispose in the proper receptacle

Download at WoweBook.Com

you are here 4 405

reading and writing files

IDisposable makes sure your objects are disposed properly
A lot of .NET classes implement a particularly useful interface called
IDisposable. It only has one member: a method called Dispose().
Whenever a class implements IDisposable, it’s telling you that there
are important things that it needs to do in order to shut itself down, usually
because it’s allocated resources that it won’t give back until you tell it to.
The Dispose() method is how you tell the object to release those resources.

You can use the “Go To Definition” feature in the IDE to show you the
official C# definition of IDisposable. Go to your project and type
IDisposable anywhere inside the code. Then right-click on it and select “Go
To Definition” from the menu. It’ll open a new tab with code in it. Expand all
of the code and this is what you’ll see:

namespace System

{

 // Summary:

 // Defines a method to release allocated resources.

 public interface IDisposable

 {

 // Summary:

 // Performs application-defined tasks

 // associated with freeing, releasing, or

 // resetting unmanaged resources.

 void Dispose();

 }

}

You’ll learn
more about

“Go To
Definition”
later on.

A lot of classes allocate important resources, like
memory, files, and other objects. That means they
take them over, and don’t give them back until
you tell them you’re done with those resources.

al-lo-cate, verb.
to distribute resources
or duties for a particular
purpose. The programming
team was irritated at their project
manager because he allocated
all of the conference rooms for a
useless management seminar.

Any class that implements IDisposable will immediately
release any resources that it took over as soon as you
call its Dispose() method. It’s almost always the last
thing you do before you’re done with the object.

Declare an
object in a using
block and that
object’s Dispose()
method is called
automatically.

Go To Definition
There’s a handy feature in the IDE that lets you automatically jump to the definition for any variable, object or method. Just right-click on it and select “Go To Definition”, and the IDE will automatically jump right to the code that defines it.

Download at WoweBook.Com

406 Chapter 9

Avoid file system errors with using statements
We’ve been telling you all chapter that you need to close your streams. That’s
because some of the most common bugs that programmers run across when they
deal with files are caused when streams aren’t closed properly. Luckily, C# gives
you a great tool to make sure that never happens to you: IDisposable and
the Dispose() method. When you wrap your stream code in a using
statement, it automatically closes your streams for you. All you need to do is
declare your stream reference with a using statement, followed by a block
of code (inside curly brackets) that uses that reference. When you do that, the
using statement automatically calls the stream’s Dispose() method as
soon as it finishes running the block of code. Here’s how it works:

A using statement is always
followed by an object declaration...

using (StreamWriter sw = new StreamWriter(”secret_plan.txt”)) {

 sw.WriteLine(“How I’ll defeat Captain Amazing”);

 sw.WriteLine(“Another genius secret plan”);

 sw.WriteLine(“by The Swindler”);

}

...and then a block of code within curly braces.

When the using statement ends, the Dispose() method of the object being used is run. In this case, the object bein
g used is pointed

to by sw—which was declared in the using

statement—so the Dispose() method of the

Stream class is run...which closes the stream.

These statements can use the object created in the using statement above like any normal object.

These “using” statements are different from the ones at the top of your code.

that’s a lot of vet appointments

Use multiple using statements for multiple objects
You can pile using statements on top of each other—you don’t need extra sets of curly
brackets or indents.

using (StreamReader reader = new StreamReader(“secret_plan.txt”))

using (StreamWriter writer = new StreamReader(“email.txt”))

{

 // statements that use reader and writer

}

Any time you
use a stream,
you should
ALWAYS
declare it
inside a using
statement. That
makes sure it’s
always closed!

Every stream has a Dispose()
method that closes the stream. So
if you declare your stream in a using
statement, it will always close itself!

You don’t need to call Close() on the
streams now, because the using statement
will close them automatically.

Download at WoweBook.Com

you are here 4 407

reading and writing files

Trouble at work
Meet Brian. He likes his job as a C# developer, but he loves taking
the occasional day off. But his boss hates when people take
vacation days, so Brian’s got to come up with a good excuse.

Sorry I’ve gotta leave
early, boss. My cat’s
got a vet appointment.

That’s the ninth vet
appointment you’ve had
since March, son. If I find out
you’re lying to me, you’d better
start looking for a new job!

You can help Brian out by building a program
to manage his excuses
Use what you know about reading and writing files to build an
excuse manager that Brian can use to keep track of which excuses
he’s used recently and how well they went over with the boss.

Select a
 fo

lder Save an excuse

Sometimes Brian’s too
lazy to think up an
excuse. Let’s add a
button to load up a
random excuse from his
excuse folder.

The folder contains one text
file for each excuse. When
Brian clicks the Save button,
the current excuse is saved out
to the folder. The Open button
lets him open a saved excuse.

Brian wants to keep
all of his excuses in
one place, so let’s let
him select a folder to
store all of them.

This asterisk appears
when a form has
unsaved data.

Download at WoweBook.Com

408 Chapter 9

Create an Excuse class and store an instance of it in the form
Now add a CurrentExcuse field to the form to hold the current excuse. You’ll need three overloaded
constructors: one for when the form’s first loaded, one for opening up a file, and one for a random excuse.
Add methods OpenFile() to open an excuse (for the constructors to use), and Save() to save the excuse.
Then add this UpdateForm() method to update the controls (it’ll give you some hints about the class):
 private void UpdateForm(bool Changed) {
 if (!Changed) {
 this.description.Text = currentExcuse.Description;
 this.results.Text = currentExcuse.Results;
 this.lastUsed.Value = currentExcuse.LastUsed;
 if (!String.IsNullOrEmpty(currentExcuse.ExcusePath))
 FileDate.Text = File.GetLastWriteTime(currentExcuse.ExcusePath).ToString();
 this.Text = “Excuse Manager”;
 }
 else
 this.Text = “Excuse Manager*”;
 this.formChanged = Changed;
}

22

Build the form
This form has a few special features:

When the form’s first loaded, only the Folder button should be enabled—
disable the other three buttons until the user selects a folder.

When the form opens or saves an excuse, it displays the file date for the excuse
file using a Label control with AutoSize set to False and BorderStyle set to
Fixed3D.

After an excuse is saved, the form pops up an “Excuse Written” messagebox.

The Folder button brings up a folder browser dialog box. If the user selects a
folder, it enables the Save, Open, and Random Excuse buttons.

The form knows when there are unsaved changes. When there are no unsaved
changes, the text on the form’s title bar is “Excuse Manager”. But when the user
has changed any of the three fields, the form adds an asterisk (*) to the title bar.
The asterisk goes away when the data is saved or a new excuse is opened.

The form will need to keep track of the current folder and whether or not the
current excuse has been saved. You can figure out when the excuse hasn’t been
saved by using the Changed event handlers for the three input controls.

≥

≥

≥
≥

≥

≥

11

This parameter indicates whether or not the form has changed. You’ll need a field in your form to keep track of this status.

Make the Folder button open a folder browser
When the user clicks on the Folder button, the form should pop up a “Browse for Folder” dialog
box. The form will need to store the folder in a field so that the other dialog boxes can use it.
When the form first loads, the Save, Open, and Random Excuse buttons are disabled, but if
the user selects a folder then the Folder button enables them.

33

Build	the	excuse	manager	so	Brian	can	manage	his	excuses	at	work.

Double-click on the input controls so the IDE
builds Changed event handlers for you. The
event handlers for the three input controls will
first change the Excuse instance and then call
UpdateForm(true)—then it’s up to you to change
the fields on your form.

When you drag
a textbox to a
form and double-click on it, you
create a Changed event handler for that field.

Excuse
Description:	string
Results:	string
LastUsed:	DateTime
ExcusePath:	string

OpenFile(string)
Save(string)

Remember, the !
means NOT—so
this checks if
the excuse path
is NOT null or
empty.

brian needs excuses

Download at WoweBook.Com

you are here 4 409

reading and writing files

Make Save button save the current excuse to a file
Clicking the Save button should bring up the Save As dialog box.

Each excuse is saved to a separate text file. The first line of the file is the excuse, the second is
the result, and the third is the date last used (use the DateTimePicker’s ToString() method).
The Excuse class should have a Save() method to save an excuse out to a specified file.

When the Save As dialog box is opened, its folder should be set to the folder that the user
selected using the Folder button, and the filename should be set to the excuse plus a “.txt”
extension.

The dialog box should have two filters: Text Files (*.txt) and All Files (*.*).

If the user tries to save the current excuse but has left either the excuse or the result blank, the
form should pop up a warning dialog box:

≥

≥

≥
≥

33

You can display this Exclamation icon by
using the overloaded MessageBox.Show()
method that allows you to specify a
MessageBoxIcon parameter.

Make the Open button open a saved excuse
Clicking the Open button should bring up the Open dialog box.

When the Open dialog box is opened, its folder should be set to the folder that the user
selected using the Folder button.

Add an Open() method to the Excuse class to open an excuse from a given file.

Use Convert.ToDateTime() to load the saved date into the DateTimePicker control.

If the user tries to open a saved excuse but the current excuse hasn’t been saved, it pops up this
dialog box:

≥

≥
≥
≥

44

Show a Yes/No dialog box by using
the overloaded MessageBox.Show()
method that lets you specify the
MessageBoxButtons.YesNo parameter.
If the user clicks “No”, then Show()
returns DialogResult.No.

Finally, make the Random Excuse button load a random excuse
When the user clicks the Random Excuse button, it looks in the excuse folder, chooses one of the
excuses at random, and opens it.

The form will need to save a Random object in a field and pass it to one of the overloaded
constructors of the Excuse object.

If the current excuse hasn’t been saved, the button should pop up the same warning dialog
box as the Open button.

≥

≥

55

Download at WoweBook.Com

410 Chapter 9

private Excuse currentExcuse = new Excuse();
private string selectedFolder = “”;
private bool formChanged = false;
Random random = new Random();

private void folder_Click(object sender, EventArgs e) {
 folderBrowserDialog1.SelectedPath = selectedFolder;
 DialogResult result = folderBrowserDialog1.ShowDialog();
 if (result == DialogResult.OK) {
 selectedFolder = folderBrowserDialog1.SelectedPath;
 save.Enabled = true;
 open.Enabled = true;
 randomExcuse.Enabled = true;
 }
}

private void save_Click(object sender, EventArgs e) {
 if (String.IsNullOrEmpty(description.Text) || String.IsNullOrEmpty(results.Text)) {
 MessageBox.Show(“Please specify an excuse and a result”,
 “Unable to save”, MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 return;
 }
 saveFileDialog1.InitialDirectory = selectedFolder;
 saveFileDialog1.Filter = “Text files (*.txt)|*.txt|All files (*.*)|*.*”;
 saveFileDialog1.FileName = description.Text + “.txt”;
 DialogResult result = saveFileDialog1.ShowDialog();
 if (result == DialogResult.OK) {
 currentExcuse.Save(saveFileDialog1.FileName);
 UpdateForm(false);
 MessageBox.Show(“Excuse written”);
 }
}

private void open_Click(object sender, EventArgs e) {
 if (CheckChanged()) {
 openFileDialog1.InitialDirectory = selectedFolder;
 openFileDialog1.Filter = “Text files (*.txt)|*.txt|All files (*.*)|*.*”;
 openFileDialog1.FileName = description.Text + “.txt”;
 DialogResult result = openFileDialog1.ShowDialog();
 if (result == DialogResult.OK) {
 currentExcuse = new Excuse(openFileDialog1.FileName);
 UpdateForm(false);
 }
 }
}

private void randomExcuse_Click(object sender, EventArgs e) {
 if (CheckChanged()) {
 currentExcuse = new Excuse(random, selectedFolder);
 UpdateForm(false);
 }
}

Build	the	excuse	manager	so	Brian	can	manage	his	excuses	at	work.

The form uses fields to store the current Excuse
object, the selected folder, remember whether or not
the current excuse has changed, and keep a Random
object for the Random Excuse button.

Here’s where the filters are set for the Save As dialog.

Use the DialogResult enum
returned by the Open and Save
dialog boxes to make sure you only
open or save if the user clicked
“OK”, and not “Cancel”.

If the user selected
 a folder,

the form saves the folder na
me

and then enables th
e other three

buttons.

This will cause two rows to show up in the “Files of Type” dropdown at the bottom of the Save dialog box: one for Text Files (*.txt), and one for All Files (*.*).

exercise solution

The two vertical bars mean OR—this is true if
description is empty OR results is empty.

Download at WoweBook.Com

you are here 4 411

reading and writing files

private bool CheckChanged() {
 if (formChanged) {
 DialogResult result = MessageBox.Show(
 “The current excuse has not been saved. Continue?”,
 “Warning”, MessageBoxButtons.YesNo, MessageBoxIcon.Warning);
 if (result == DialogResult.No)
 return false;
 }
 return true;
}

private void description_TextChanged(object sender, EventArgs e) {
 currentExcuse.Description = description.Text;
 UpdateForm(true);
}

private void results_TextChanged(object sender, EventArgs e) {
 currentExcuse.Results = results.Text;
 UpdateForm(true);
}

private void lastUsed_ValueChanged(object sender, EventArgs e) {
 currentExcuse.LastUsed = lastUsed.Value;
 UpdateForm(true);
}

public class Excuse {
 public string Description;
 public string Results;
 public DateTime LastUsed;
 public string ExcusePath;
 public Excuse() {
 ExcusePath = “”;
 }
 public Excuse(string excusePath) {
 OpenFile(excusePath);
 }
 public Excuse(Random random, string folder) {
 string[] fileNames = Directory.GetFiles(folder, “*.txt”);
 OpenFile(fileNames[random.Next(fileNames.Length)]);
 }
 private void OpenFile(string excusePath) {
 this.ExcusePath = excusePath;
 using (StreamReader reader = new StreamReader(excusePath)) {
 Description = reader.ReadLine();
 Results = reader.ReadLine();
 LastUsed = Convert.ToDateTime(reader.ReadLine());
 }
 }
 public void Save(string fileName) {
 using (StreamWriter writer = new StreamWriter(fileName))
 {
 writer.WriteLine(Description);
 writer.WriteLine(Results);
 writer.WriteLine(LastUsed.ToString());
 } } }

MessageBox.Show() also returns a
DialogResult enum that we can check.

We made sure to use a using
statement every time we
opened a stream. That way
our files will always be closed.

The Random Excuse button uses Directory.GetFiles() to read all of the text files in the selected folder into an array, and then chooses a random array index to open.

Here are the three
Changed event handlers
for the three input
fields on the form. If any
of them are triggered,
that means the excuse
has changed, so first
we update the Excuse
instance and then we
call UpdateForm(), add
the asterisk to the
form’s title bar, and set
Changed to true.

Here’s where the using
statement comes in. We
declared the StreamWriter
inside of a using statement,
so its Close() method is
called for us automatically!

Passing true to UpdateForm() tells it
to just mark the form as changed, but
not update the input controls.

Download at WoweBook.Com

412 Chapter 9

Writing files usually involves making
a lot of decisions
You’ll write lots of programs that take a single input, maybe from a
file, and have to decide what to do based on that input. Here’s code
that uses one long if statement—it’s pretty typical. It checks the
part variable and prints different lines to the file based on which
enum it uses. There are lots of choices, so lots of else ifs:

enum BodyPart {

 Head,

 Shoulders,

 Knees,

 Toes

}

private void WritePartInfo(BodyPart part, StreamWriter writer) {

 if (part == BodyPart.Head)

 writer.WriteLine(“the head is hairy”);

 else if (part == BodyPart.Shoulders)

 writer.WriteLine(“the shoulders are broad”);

 else if (part == BodyPart.Knees)

 writer.WriteLine(“the knees are knobby”);

 else if (part == BodyPart.Toes)

 writer.WriteLine(“the toes are teeny”);

 else

 writer.WriteLine(“some unknown part is unknown”);

 }

}

Here’s an enum—we’ll want to compare
a variable against each of the four
members and write a different line to the
StreamWriter depending on which one it
matches. We’ll also write something different
if none of them match.

If we use a series of if/else
statements, then we end
up writing this “if (part
==[option])” over and over.

We’ve got a final else in case we didn’t find a match.

i’m the decider

What sort of things can go wrong when you write code
that has this many if/else statements? Think about typos
and bugs caused by brackets, a single equals sign, etc.

Download at WoweBook.Com

you are here 4 413

reading and writing files

Use a switch statement to
choose the right option
Comparing one variable against a bunch of different values is
a really common pattern that you’ll see over and over again.
It’s especially common when you’re reading and writing
files. It’s so common, in fact, that C# has a special kind of
statement designed specifically for this situation.

A switch statement lets you compare one variable against
many values in a way that’s easy to read and is compact.
Here’s a switch statement that does exactly the same thing as
the series of if/else statements on the opposite page:

enum BodyPart
{
 Head,
 Shoulders,
 Knees,
 Toes,
}

private void WritePartInfo(BodyPart part, StreamWriter writer)
{
 switch (part) {
 case BodyPart.Head:
 writer.WriteLine(“the head is hairy”);
 break;
 case BodyPart.Shoulders:
 writer.WriteLine(“the shoulders are broad”);
 break;
 case BodyPart.Knees:
 writer.WriteLine(“the knees are knobby”);
 break;
 case BodyPart.Toes:
 writer.WriteLine(“the toes are teeny”);
 break;
 default:
 writer.WriteLine(“some unknown part is unknown”);
 break;
 }
}

A switch statement
compares ONE
variable against
MULTIPLE
possible values.

Switch statements can end with a default: block that gets executed if none of the other cases are matched.

You’ll start with the switch
keyword followed by the variable
that’s going to be compared against
a bunch of different possible values.

The body of the switch statement is a series of cases that compare whatever follows the switch keyword against a particular value.

Each of these cases consists
of the case keyword
followed by the value
to compare and a colon.
After that is a series of
statements followed by
“break;”. Those statements
will be executed if the case
matches the comparison value.

Every case ends
with “break;” so
C# knows where
one case ends and
the next begins.

There’s nothing about a switch
statement that’s specifically
related to files. It’s just a useful
C# tool that we can use here.

You can also end a
case with “return”

– the program will
compile as long as
there’s no way for
one case to “fall
through” to the
next one.

Download at WoweBook.Com

414 Chapter 9

Use a switch statement to let your deck of cards
read from a file or write itself out to one
Writing a card out to a file is straightforward—just make a loop that writes the name
of each card out to a file. Here’s a method you can add to the Deck object that does
exactly that:

 public void WriteCards(string Filename) {
 using (StreamWriter writer = new StreamWriter(Filename)) {
 for (int i = 0; i < Cards.Count; i++) {
 writer.WriteLine(Cards[i].Name);
 }
 }

 }

But what about reading the file in? It’s not quite so simple. That’s where the switch
statement can come in handy.

Card.Suits suit;
switch (suitString) (
 case “Spades”:
 suit = Card.Suits.Spades;
 break;
 case “Clubs”:
 suit = Card.Suits.Clubs;
 break;
 case “Hearts”:
 suit = Card.Suits.Hearts;
 break;
 case “Diamonds”:
 suit = Card.Suits.Diamonds;
 break;
 default:
 MessageBox.Show(suitString + “ isn’t a valid suit!”);
}

The switch statement starts with a value to compare against. This switch statement is called from a method that has a suit stored in a string.

Each of these case lines compares
some value against the value in
the switch line. If they match,
it executes all of the following
statements until it hits a break.

The default line comes at the end.
If none of the cases match, the
statements after the default get
executed instead.

The switch
statement lets
you test one
value against a
bunch of cases
and execute
different
statements
depending on
which one it
matches.

asleep at the switch

Download at WoweBook.Com

you are here 4 415

reading and writing files

public Deck(string Filename) {
 cards = new List<Card>();
 StreamReader reader = new StreamReader(Filename);
 while (!reader.EndOfStream) {
 bool invalidCard = false;
 string nextCard = reader.ReadLine();
 string[] cardParts = nextCard.Split(new char[] { ‘ ’ });
 Card.Values value = Card.Values.Ace;
 switch (cardParts[0]) {
 case “Ace”: value = Card.Values.Ace; break;
 case “Two”: value = Card.Values.Two; break;
 case “Three”: value = Card.Values.Three; break;
 case “Four”: value = Card.Values.Four; break;
 case “Five”: value = Card.Values.Five; break;
 case “Six”: value = Card.Values.Six; break;
 case “Seven”: value = Card.Values.Seven; break;
 case “Eight”: value = Card.Values.Eight; break;
 case “Nine”: value = Card.Values.Nine; break;
 case “Ten”: value = Card.Values.Ten; break;
 case “Jack”: value = Card.Values.Jack; break;
 case “Queen”: value = Card.Values.Queen; break;
 case “King”: value = Card.Values.King; break;
 default: invalidCard = true; break;
 }
 Card.Suits suit = Card.Suits.Clubs;
 switch (cardParts[2]) {
 case “Spades”: suit = Card.Suits.Spades; break;
 case “Clubs”: suit = Card.Suits.Clubs; break;
 case “Hearts”: suit = Card.Suits.Hearts; break;
 case “Diamonds”: suit = Card.Suits.Diamonds; break;
 default: invalidCard = true; break;
 }
 if (!invalidCard) {
 cards.Add(new Card(suit, value));
 }
 }
}

You can use a switch statement to build a new constructor for the Deck
class that you wrote in the last chapter. This constructor reads in a file and
checks each line for a card. Any valid card gets added to the deck.

There’s a method that you can find on every string that’ll come in handy:
Split(). It lets you split the string into an array of substrings by passing it
a char[] array of separator characters that it’ll use to split the string up.

This switch statement checks the first word in the line to see if it matches a value. If it does, the right value is assigned to the
value variable.

We do the same thing for
the third word in the line,
except we convert this
one to a suit.

Add an overloaded Deck() constructor that
reads a deck of cards in from a file

This line tells C# to split the nextCard string using a space as a separator
character. That splits the string “Six
of Diamonds” into the array
{“Six”, “of”, “Diamonds”}.

Download at WoweBook.Com

416 Chapter 9

All that code just to read in one simple card?
That’s way too much work! What if my object has a
whole bunch of fields and values? Are you telling me I
need to write a switch statement for each of them?

There’s an easier way to store your objects in
files. It’s called serialization.
Instead of painstakingly writing out each field and value to
a file line by line, you can save your object the easy way by
serializing it out to a stream. Serializing an object is like
flattening it out so you can slip it into a file. And on the
other end, you can deserialize it, which is like taking it out
of the file and inflating it again.

p.s. i’ll find my frog

Download at WoweBook.Com

you are here 4 417

reading and writing files

When you create an instance of an
object, it has a state. Everything
that an object “knows” is what makes
one instance of a class different from
another instance of the same class.

What happens to an object when it’s serialized?

1 Object on the heap 2 Object serialized

001
001

01

Width

010
001

10

Height

00100101

01000110

When C# serializes an object, it saves
the complete state of the object, so
that an identical instance (object) can be
brought back to life on the heap later.

The instance variable values for width and height are saved to the file “file.dat”, along with a little more info that the CLR needs to restore the object later (like the type of the object and each of its fields.)file.dat

This object h
as two byte

fields, width and he
ight.

The values are suck
ed

out and pumped into

the stream.

It seems like something mysterious has to happen to an object in order to copy
it off of the heap and put it into a file, but it’s actually pretty straightforward.

3 And later on...

Later—maybe days later, and in a
different program—you can go back to
the file and deserialize it. That pulls
the original class back out of the file
and restores it exactly as it was, with
all of its fields and values intact.

Object on the heap again

Download at WoweBook.Com

418 Chapter 9

But what exactly IS an object’s state?
What needs to be saved?
We already know that an object stores its state in its fields. So when an
object is serialized, every one of those those fields needs to be saved to the file.

Serialization starts to get interesting when you have more complicated objects. 37
and 70 are bytes—those are value types, so they can just be written out to a file
as-is. But what if an object has an instance variable that’s an object reference? What
about an object that has five instance variables that are object references? What if
those object instance variables themselves have instance variables?

Think about it for a minute. What part of an object is potentially unique? Imagine
what needs to be restored in order to get an object that’s identical to the one that
was saved. Somehow everything on the heap has to be written to the file.

What has to happen for this Car object to be saved so
that it gets restored back to its original state? Let’s say
the car has three passengers and a 3-liter engine and all-
weather radial tires... aren’t those things all part of the Car
object’s state? What should happen to them?

The Car object has
references

to an Engine object, a
n array

of Tire objects, an
d a List<>

of Passenger o
bjects. Those are

part of its st
ate, too—what

happens to th
em?

Each of the passenger
objects has its own
references to other
objects. Do those need
to be saved, too?

The Engine object is
private. Should it be
saved, too?

save the cheerleader

Engine object

Tire [] array o
bj

ec
t

List<Passengers>
 o

bj
ec

t

Car object

Download at WoweBook.Com

you are here 4 419

reading and writing files

DoggyID obje
ct

DoggyID obje
ct

Dog object

List<Dog> object

Kennel object

“Fido”

“Spike”

When an object is serialized, all of the objects
it refers to get serialized too...

...and all of the objects they refer to, and all of the objects those other objects refer to,
and so on and so on. But don’t worry—it may sound complicated, but it all happens
automatically. C# starts with the object you want to serialize and looks through its
fields for other objects. Then it does the same for each of them. Every single object
gets written out to the file, along with all the information C# needs to reconstitute it
all when the object gets deserialized.

When you ask C# to serialize

the Kennel object, it looks fo
r

any field that has a re
ference

to another object.

One of the fields of
the Kennel object is
this List<Dog> that
contains two Dog
objects, so C# will
need to serialize
them, too. Each of the two Dog objects

has references to a DoggyID
object and a Collar object.
They’ll need to get serialized
along with each Dog.

DoggyID and Collar are the end

of the line—they don’t have

references to any other
 objects.

Breed.Mutt
6 years old
18 pounds

11” tall

Breed.Beagle
4 years old
32 pounds

14” tall

Dog object

Collar object
Collar object

Some people call this whole
group of connected objects a “graph.”

Download at WoweBook.Com

420 Chapter 9

Serialization lets you read or write
a whole object all at once
You’re not just limited to reading and writing lines of text to your files. You can
use serialization to let your programs copy entire objects to files and read
them back in... all in just a few lines of code! There’s a tiny amount of prep work
you need to do—add one [Serializable] line to the top of the class to
serialize—but once you do that, everything’s ready to write.

It’s quick to copy
an object out to
a file or read it
in from one. You
can serialize or
deserialize it.

Stream output = File.Create(filenameString);
formatter.Serialize(output, objectToSerialize);
output.Close();

You’ll need a BinaryFormatter object
If you want to serialize an object—any object—the first thing you do is create an
instance of BinaryFormatter. It’s really straightforward to do—and all it takes
is one line of code (and an extra using line at the top of the class file).

Now just create a stream and read or write your objects
Use the Serialize() method from the BinaryFormatter object to write any
object out to a stream.

And once you’ve got an object serialized out to a file, use the BinaryFormatter
object’s Deserialize() method to read it back in. The method returns a
reference, so you need to cast the output so that it matches the type of the reference
variable you’re copying it to.

The Serialize() method takes an
object and writes it out to a
stream. That’s a whole lot easier
than building a method to write it
out yourself!

When you use Deserialize() to read an
object back from a stream, don’t forget
to cast the return value to match the
type of object you’re reading.

The File.Create() method creates a new file. You can open an existing one using File.OpenWrite().

 using System.Runtime.Serialization.Formatters.Binary;
 ...
 BinaryFormatter formatter = new BinaryFormatter();

serialized for your protection

Stream input = File.OpenRead(filenameString);
SomeObj obj = (SomeObj)formatter.Deserialize(input);
input.Close();

If you use a using statement,
Close() will be called automatically.

Download at WoweBook.Com

you are here 4 421

reading and writing files

If you want your class to be serializable, mark it
with the [Serializable] attribute
An attribute is a special tag that you can add to the top of any C# class. It’s how C# stores
metadata about your code, or information about how the code should be used or treated. When you
add [Serializable] to the top of a class just above the class declaration, you’re telling
C# that your class is safe for serialization. And you only use it with classes that include fields that are
either value types (like an int, string, or enum) or other serializable classes. If you don’t add the
attribute to the class you want to serialize, or if you include a field with a type that isn’t serializable,
then your program will have an error when you try to run it. See for yourself...

Do this
Create a class and serialize it
Remember the Guy Class from Chapter 3? Let’s serialize Joe so we can keep a file that knows how much
money he’s got in his pockets even after you close your program.
 [Serializable]
 public class Guy

Here’s code to serialize it to a file called “Guy_file.dat”—add a “Save Joe” button and a “Load Joe”
button to the Form

 using System.IO;
 using System.Runtime.Serialization.Formatters.Binary;

 ...

 private void saveJoe_Click(object sender, EventArgs e)
 {
 using (Stream output = File.Create(“Guy_File.dat”)) {
 BinaryFormatter formatter = new BinaryFormatter();
 formatter.Serialize(output, joe);
 }
 }
 private void loadJoe_Click(object sender, EventArgs e)
 {
 using (Stream input = File.OpenRead(“Guy_File.dat”)) {
 BinaryFormatter formatter = new BinaryFormatter();
 joe = (Guy)formatter.Deserialize(input);
 }
 UpdateForm();
 }

11

Run the program and play around with it.
If Joe had two hundred dollars saved up from his transactions with Bob during your time running
the program, it would be a pain to lose all that money just because you needed to exit. Now your
program can save Joe out to a file and restore him whenever you want.

22

You’ll need these two
using lines. The first
one is for the file and
stream methods, and the
second is for serialization.

You need to add this attribute to the top of any class in order to serialize it.

Download at WoweBook.Com

422 Chapter 9

Let’s serialize and deserialize a deck of cards
Take a deck of cards and write it out to a file. C# makes
serializing objects really easy. All you need to do is
create a stream and write out your objects.

Create a new project and add the Deck and Card classes
Right-click on the project in the Solution Explorer and choose “Add/Existing Item”, and add the
Card and Deck classes you created in Chapter 7. You’ll also need to add the two card comparer
classes, since Deck uses them. The IDE will copy the files into the new project—make sure you
change the namespace line at the top of each class file to match your new project’s namespace.

11

Mark all of the classes serializable
Add the [Serializable] attribute to all of the classes you added to
the project.

22

Add a couple of useful methods to the form
The RandomDeck method creates a random deck of cards, and the
DealCards method deals all of the cards and prints them to the console.

Random random = new Random();
private Deck RandomDeck(int Number) {
 Deck myDeck = new Deck(new Card[] { });
 for (int i = 0; i < Number; i++)
 {
 myDeck.Add(new Card(
 (Card.Suits)random.Next(4),
 (Card.Values)random.Next(1, 14)));
 }
 return myDeck;
}

private void DealCards(Deck DeckToDeal, string Title) {
 Console.WriteLine(Title);
 while (DeckToDeal.Count > 0)
 {
 Card nextCard = DeckToDeal.Deal(0);
 Console.WriteLine(nextCard.Name);
 }
 Console.WriteLine(“------------------”);
}

33

If you don’t do
this, C# won’t let
you serialize the
classes to a file.

Do this

The DealCards() method deals each of the cards off of the deck and prints it to the console.

This creates an empty
deck and then adds some
random cards to it using
the Card class from the
last chapter.

i like milk on my serial

Download at WoweBook.Com

you are here 4 423

reading and writing files
Okay, prep work’s done.. now serialize that deck
Start by adding buttons to serialize a random deck to a file and read it back. Check the
console output to make sure the deck you wrote out is the same as the deck you read.

private void button1_Click(object sender, EventArgs e) {
 Deck deckToWrite = RandomDeck(5);
 using (Stream output = File.Create(“Deck1.dat”)) {
 BinaryFormatter bf = new BinaryFormatter();
 bf.Serialize(output, deckToWrite);
 }
 DealCards(deckToWrite, “What I just wrote to the file”);
}

private void button2_Click(object sender, EventArgs e) {
 using (Stream input = File.OpenRead(“Deck1.dat”)) {
 BinaryFormatter bf = new BinaryFormatter();
 Deck deckFromFile = (Deck)bf.Deserialize(input);
 }
 DealCards(deckFromFile, “What I read from the file”);
}

44

The BinaryFormatter object
takes any object marked with
the Serializable attribute—in
this case a Deck object—and
writes it out to a stream using
its Serialize() method.

The BinaryFormatter’s
Deserialize() method returns
an Object, which is just the
general type that every C#
object inherits from—which is
why we need to cast it to a
Deck object.

Now serialize a bunch of decks to the same file
Once you open a stream, you can write as much as you want to it. You can serialize as
many objects as you need into the same file. So now add two more buttons to write out a
random number of decks to the file. Check the output to make sure everything looks good.

private void button3_Click(object sender, EventArgs e) {
 using (Stream output = File.Create(“Deck1.dat”)) {
 BinaryFormatter bf = new BinaryFormatter();
 for (int i = 1; i <= 5; i++) {
 Deck deckToWrite = RandomDeck(random.Next(1,10));
 bf.Serialize(output, deckToWrite);
 DealCards(deckToWrite, “Deck #” + i + “ written”);
 }
 }
}
 private void button4_Click(object sender, EventArgs e) {
 using (Stream input = File.OpenRead(“Deck1.dat”)) {
 BinaryFormatter bf = new BinaryFormatter();
 for (int i = 1; i <= 5; i++) {
 Deck deckToRead = (Deck)bf.Deserialize(input);
 DealCards(deckToRead, “Deck #” + i + “ read”);
 }
 }
}

55

You can serialize
one object after
another to the
same stream.

As long as you cast the
objects you read off the
stream to the right type,
there’s no limit to the
number of objects you can
serialize.

Take a look at the file you wrote
Open up Deck1.dat in Notepad. It may not be quite something you’d read on the
beach, but it’s got all the information to restore your whole deck of cards.

66

Notice how the line that
reads a single deck from
the file uses (Deck) to cast
the output of Deserialize()
to a Deck. That’s because
Deserialize() returns an
object, but doesn’t necessarily
know what type of object.

Download at WoweBook.Com

424 Chapter 9

When you serialize objects out to a file, they’re
written in a binary format.
But that doesn’t mean it’s indecipherable—just compact. That’s why you
can recognize the strings when you open up a file with serialized objects
in it: that’s the most compact way C# can write strings to a file—as
strings. But writing out a number as a string would be really wasteful.
Any int can be stored in four bytes. So it would be odd if C# stored,
say, the number 49,369,144 as an 8-character string that you could
read—10 characters if you include commas. That would be a waste of
space!

Wait a minute. I’m not sure I like all this writing objects out
to some weird file that looks like garbage when I open it up. When
I wrote the deck of cards as strings, I could open up the output in
Notepad and see everything in it. Isn’t C# supposed to make it easy

for me to understand everything I’m doing?

.NET	uses	Unicode	to	encode	a	char	or	string	into	bytes.	Luckily,	Windows	has	a	useful	
little	tool	to	help	us	figure	out	how	Unicode	works.	Open	up	the	Character	Map	(it’s	in	the	
Start	menu	under	Accessories,	or	do	Start	/	Run	and	type	“charmap.exe”).

Behind
the Scenes

When you look at all the letters and symbols that are used in languages all around the world, you realize just how
many different things need to be written to a file just to store text. That’s why .NET encodes all of its strings and
characters in a format called Unicode. Encoding just means taking the logical data (like the letter H) and turning it
into bytes (the number 72). It needs to do that because letters, numbers, enums and other data all end up in bytes
on disk or in memory. And that’s why Character Map’s useful—it shows you how letters are encoded into numbers.

Select the Arial font and
scroll down until you reach
the Hebrew letters. Find the
letter Shin and click on it.

As soon as you click on the
letter, its Unicode number
shows up in the status bar. The
Hebrew letter Shin is number
05E9. That’s a hexadecimal
number—“hex” for short.

You can convert it to decimal using the Windows calculator: open it up, put it in Scientific mode, click the “Hex” radio button, enter “05E9”, and then click “Dec”—it’s 1,513.
Unicode is an industry standard developed by a non-profit group called the
Unicode Consortium, and it works across programs and different computer
platforms. Take a minute and look at their website: http://www.unicode.org/

builds character

Download at WoweBook.Com

you are here 4 425

reading and writing files

.NET converts text to Unicode automatically
The two C# value types for storing text—string and char—keep their data in
memory as Unicode. When that data’s written out as bytes to a file, each of those
Unicode numbers is written out to the file. So start a new project and drag three
buttons onto a form, and we’ll use the File.WriteAllBytes() and ReadAllBytes() methods
to get a sense of exactly how Unicode data is written out to a file.

Write a normal string out to a file and read it back
Use the same WriteAllText() method that you used in the text editor to have the first button
write the string “Eureka!” out to a file called “eureka.txt”. Then create a new byte array called
eurekaBytes, read the file into it, and then print out all of the bytes read:

File.WriteAllText(“eureka.txt”, “Eureka!”);

byte[] eurekaBytes = File.ReadAllBytes(“eureka.txt”);

foreach (byte b in eurekaBytes)

 Console.Write(“{0} ”, b);

Console.WriteLine();

You’ll see these bytes written to the output: 69 117 114 101 107 97 33. Now open up the
file in the Simple Text Editor that you wrote earlier in the chapter. It says “Eureka!”

11

The ReadAllBytes() method returns a reference
to a new array of bytes that contains all of the
bytes that were read in from the file.

Do this!

Make the second button display the bytes as hex numbers
It’s not just Character Map that shows numbers in hex. Almost anything you read that has to do
with encoding data will show that data in hex, so it’s useful to know how to work with it. Make
the code for second button’s event handler in your program identical to the first one, except
change the Console.Write() line so it looks like this instead:

 Console.Write(“{0:x2} ”, b);

That tells Write() to print parameter #0 (the first one after the string to print) as a two-character
hex code. So it writes the same seven bytes in hex instead of decimal: 45 75 72 65 6b 61 21

22

Hex uses the numbers 0 through 9 and letters A through F to represent numbers in base 16, so 6B is equal to 107.

Make the third button write out Hebrew letters
Go back to Character Map and double-click on the Shin character (or click the Select button). It’ll add it to
the “Characters to copy” box. Then do the same for the rest of the letters in “Shalom”: Lamed (U+05DC),
Vav (U+05D5), and Final Mem (U+05DD). Now add the code for the third button’s event handler. It’ll
look exactly like button 2, except for one change. Click the “Copy” button in Character Map, and then
paste the letters over “Eureka!” and add the Encoding.Unicode parameter, so it looks like this:

File.WriteAllText(“eureka.txt”, “שלום”, Encoding.Unicode);

Did you notice that the IDE pasted the letters in backwards? That’s because it knows that Hebrew is
read right-to-left, so any time it encounters Hebrew Unicode letters, it displays them right-to-left. Put
your cursor in the middle of the letters—the left and right arrow keys reversed! That makes it a lot easier
if you need to type in Hebrew. Now run the code, and look closely at the output: ff fe e9 05 dc 05
d5 05 dd 05. The first two characters are “FF FE”, which is the Unicode way of saying that we’re
going to have a string of two-byte characters. The rest of the bytes are the Hebrew letters—but they’re
reversed, so U+05E9 appears as e9 05. Now open the file up in your Simple Text Editor—it looks right!

33

Download at WoweBook.Com

426 Chapter 9

Since all your data ends up encoded as bytes, then it makes
sense to think of a file as one big byte array. And you already
know how to read and write byte arrays.

C# can use byte arrays to move data around

byte[] greeting;

greeting = File.ReadAllBytes(filename);Hello!!

7 byte variables

 72 101 108 108 111 33 33

7 byte variables

 33 33 111 108 108 101 72

!!olleH

Array.Reverse(greeting);

File.WriteAllBytes(filename, greeting);

Here’s the code to create a byt
e

array, open an input stream, and
read data into bytes 0 through 6
of the array.

This is a static method for
Arrays that reverses the
order of the bytes. We’re
just using it to show that the
changes you make to the byte
array get written out to the
file exactly.

Now the bytes are in
reverse order.

When the program writes the
byte array out to a file, the
text is in reverse order too.

These numbers are the Unicode numbers for the characters in “Hello!!”

take a byte out of crime

Download at WoweBook.Com

you are here 4 427

reading and writing files

Use a BinaryWriter to write binary data
You could encode all of your strings, chars, ints, and floats into byte arrays before
writing them out to files, but that would get pretty tedious. That’s why .NET gives you
a very useful class called BinaryWriter that automatically encodes your data
and writes it to a file. All you need to do is create a FileStream and pass it into the
BinaryWriter’s constructor. Then you can call its methods to write out your data. So add
another button to your program, and we’ll show you how to use BinaryWriter().

__ - ___ bytes

Start by setting up some data to write to a file.

 int intValue = 48769414;
 string stringValue = “Hello!”;
 byte[] byteArray = { 47, 129, 0, 116 };
 float floatValue = 491.695F;
 char charValue = ‘E’;

11

Do this!

To use a BinaryWriter, first you need to open a new stream with File.Create():

 using (FileStream output = File.Create(“binarydata.dat”)) {

 BinaryWriter writer = new BinaryWriter(output);

22

Now just call its Write() method. Each time you do, it adds new bytes onto the end of the file
that contain an encoded version of whatever data you passed it as a parameter.

 writer.Write(intValue);

 writer.Write(stringValue);

 writer.Write(byteArray);

 writer.Write(floatValue);

 writer.Write(charValue);

 }

33

Each Write() statement encodes one
value into bytes, and then sends those
bytes to the FileStream object. You
can pass it any value type, and it’ll
encode it automatically.

Here’s a hint: Strings can be
different lengths, so the string has to start with a number to tell .NET how long it is. Also, you can look up the string and char Unicode values using Character Map.

If you use File.Create(), it’ll start a new file—if there’s one there already, it’ll blow it away and start a brand new one. There’s also the File.OpenWrite() method, which opens the existing one and starts overwriting it from the beginning.

Now use the same code you used before to read in the file you just wrote.

 byte[] dataWritten = File.ReadAllBytes(“binarydata.dat”);

 foreach (byte b in dataWritten)

 Console.Write(“{0:x2} “, b);

 Console.WriteLine(“ - {0} bytes”, dataWritten.Length);

Write down the output in the blanks below. Can you figure out what bytes
correspond to each of the five Write() statements? Mark each group of bytes with
the name of the variable.

44

The FileStream
writes the bytes to
the end of the file.

Download at WoweBook.Com

428 Chapter 9

86 29 e8 02 06 48 65 6c 6c 6f 21 2f 81 00 74 f6 d8 f5 43 45 20__ - ___ bytes

intValue stringValue byteArray floatValue charValue
char holds a Unicode
character, and ‘E’ only
takes one byte—it’s
encoded as U+0045.

Use BinaryReader to read the data back in
The BinaryReader class works just like BinaryWriter. You create a stream,
attach the BinaryReader object to it, and then call its methods. But the reader
doesn’t know what data’s in the file! And it has no way of knowing.
Your float value of 491.695F was encoded as d8 f5 43 45. But those
same bytes are a perfectly valid int—1,140,185,334. So you’ll need to tell the
BinaryReader exactly what types to read from the file. Add one more button
to your form, and have it read the data you just wrote.

float and int values take up four bytes when
you write them to a file. If you’d used long or
double, then they’d take up eight bytes each.

If you use the Windows
calculator to convert these
bytes from hex to decimal, you
can see that these are the
numbers in byteArray.

The first byte in the string is 6—that’s
the length of the string. You can use
Character Map to look up each of the
characters in “Hello!”—it starts with
U+0048 and ends with U+0021.

Start out by setting up the FileStream and BinaryReader objects:

 using (FileStream input = File.OpenRead(“binarydata.dat”)) {
 BinaryReader reader = new BinaryReader(input);

11

You tell BinaryReader what type of data to read by calling its different methods.

 int intRead = reader.ReadInt32();

 string stringRead = reader.ReadString();

 byte[] byteArrayRead = reader.ReadBytes(4);

 float floatRead = reader.ReadSingle();

 char charRead = reader.ReadChar();

22
Each value type has its own method in BinaryReader() that returns the data in the correct type. Most don’t need any parameters, but ReadBytes() takes one parameter that tells BinaryReader how many bytes to read.

You tell BinaryReader what type of data to read by calling its different methods.

 Console.Write(“int: {0} string: {1} bytes: ”, intRead, stringRead);

 foreach (byte b in byteArrayRead)

 Console.Write(“{0} ”, b);

 Console.Write(“ float: {0} char: {1} ”, floatRead, charRead);

 }

Here’s the output that gets printed to the console:

 int: 48769414 string: Hello! bytes: 47 129 0 116 float: 491.695 char: E

33

Don’t take our word for it.
Replace the line that reads the
float with a call to ReadInt32().
(You’ll need to change the type
of floatRead to int.) Then you
can see for yourself what it
reads from the file.

an amalgam of data

Download at WoweBook.Com

you are here 4 429

reading and writing files

You can read and write serialized files manually, too
Serialized files don’t look so pretty when you open them up in Notepad. You’ll find all the
files you write in your project’s “bin/Debug” folder—let’s take a minute and get more
acquainted to the inner workings of a serialized file.

Serialize two Card objects to different files
Use the serialization code you’ve already written to serialize the Three of Clubs to card1.dat and
Six of Hearts to card2.dat. Check to make sure that both files were written out and are now in a
folder, and that they both have the same file size. Then open one of them in Notepad:

11

Write a loop to compare the two binary files
We used the ReadByte() method to read the next byte from a stream—it returns an int that contains
the value of that byte. We also used the stream’s Length field to make sure we read the whole file.

byte[] firstFile = File.ReadAllBytes(“card1.dat”);
byte[] secondFile = File.ReadAllBytes(“card2.dat”);
for (int i = 0; i < firstFile.Length; i++)
 if (firstFile[i] != secondFile[i])
 Console.WriteLine(“Byte #{0}: {1} versus {2}”,
 i, firstFile[i], secondFile[i]);

22

This loop examines the first byte from each of
the files and compares them, then the second byte,
then the third, etc. When it finds a difference, it
writes a line to the console.

There are
some words in
the file (like
“Chapter9”,
which was the
namespace we
used), but
it’s mostly
unreadable.

The two files are read into two
different byte arrays, so they can
be compared byte by byte. Since
the same class was serialized to two
different files, they’ll be almost
identical... but let’s see just HOW
identical they are.

We’re not done yet—flip the page!

Do this!

 When you write to a file, you don’t
always start from a clean slate!

Be careful if you use File.OpenWrite(). It
doesn’t delete the file—it just starts overwriting
the data starting at the beginning. That’s why

we’ve been using File.Create()—it creates a new file.

Download at WoweBook.Com

430 Chapter 9

Take a look at the console output to see how the two files differ
The console should show that two bytes differ:

 Byte #218: 1 versus 3
 Byte #266: 3 versus 6

That should make a lot of sense! Go back to the Card.Suits enum from the last chapter, and
you’ll find that value for Clubs is 1 and the value for Hearts is 3, so that’s the first difference. And the
second difference—six versus three—is pretty obviously the card’s value. You might see different byte
numbers, which isn’t surprising: you might be using a different namespace, which would change the
length of the file.

33

Write code to manually create a new file that contains King of Spades
We’ll take one of the arrays that we read, alter it to contain a new card, and write it back out.

firstFile[218] = (byte)Card.Suits.Spades;

firstFile[266] = (byte)Card.Values.King;

File.Delete(“card3.dat”);

File.WriteAllBytes(“card3.dat”, firstFile);

Now deserialize the card from card3.dat and see if it’s the King of Spades!

44

Now that you know which bytes
contain the suit and value, you
can change just those bytes
in the array before it gets
written out to card3.dat.

If you found
different
byte numbers
in step #3,
substitute
them in here.

Remember how the namespace was included as part of the serialized file? If your namespace is different, then the byte numbers will be different too.

Find where the files differ, and use
that information to alter them

Hmm, if byte #218 in the serialized file
represents the suit, then we should be able to
change the suit of the card by reading that file
in, changing that one byte, and writing it out
again. (Remember, your own serialized file might
store the suit at a different location.)

celebrate our differences

The loop you just wrote pinpoints exactly where the two serialized
Card files differ. Since the only difference between the two objects
were their Suit and Value fields, then that should be the only difference
in their files, too. So if we find the bytes that hold the suit and value,
we should be able to change them to make a new card with
whatever suit and value we want!

Download at WoweBook.Com

you are here 4 431

reading and writing files

There’s another option—it’s a format called a “hex dump”, and it’s a pretty standard way to look at
binary data. It’s definitely more informative than looking at the file in Notepad. Hexadecimal—or

“hex”—is a convenient way to display bytes in a file. Every byte takes 2 characters to display in hex, so
you can see a lot of data in a really small space, and a format that makes it easy to spot patterns. Also,
it’s useful to display binary data in rows that are 8, 16, or 32 bytes long because most binary data tends
to break down in chunks of 4, 8, 16, or 32…like all the types in C#. For example, an int takes up 4
bytes, and is 4 bytes long when serialized on disk. Here’s what that same file looks like as a hex dump,
using one of any number of free hex dump programs available for Windows:

Working with binary files can be tricky
What do you do if you have a file and you aren’t quite sure what’s inside it? You don’t
know what application created it, and you need to know something about it—but when
you open it in Notepad, it looks like a bunch of garbage. What if you’d exhausted all
your other options, and really needed to just look inside? Looking at that picture, it’s
pretty clear that Notepad just isn’t the right tool.

Here’s the serialized card, opened up in Notepad. That’s not going to be useful at all.

You can make out a few things—like the enum names (“Suit”

and “Value”), and the name of the namespace we used

(“Chapter9”). But that’s not all that helpful.

You can immediately
see the numeric
value of each byte
in the file.

The number at the
beginning of each
line is the offset
(or distance into the
file) of the first
byte in the line.

You still
get to see
the original
text, but
the garbage
characters
are stripped
out.

Download at WoweBook.Com

432 Chapter 9

How to make a hex dump
Start with some familiar text:

 We the people of the United States, in order to form a more perfect union...

Here’s what a hex dump of that text would look like:

Each of those numbers—57, 65, 6F—is the value of one byte in the file. The reason some of the “numbers”
have letter values is that they’re hexadecimal (or hex). That’s just another way of writing a number. Instead of
using ten digits from 0 to 9, it uses sixteen digits from 0 to 9 plus the letters A through F.

Each line in our hex dump represents sixteen characters in the input that was used to generate it. In our
dump, the first four characters are the offset in the file—the first line starts at character 0, the next at
character 16 (or hex 10), then character 32 (hex 20), etc. (Other hex dumps look slightly different, but this
one will do for us.)

Use file streams to build a hex dumper
A hex dump is a hexadecimal view of the contents of a file, and it’s
a really common way for programmers to take a deep look at a file’s
internal structure. Most operating systems ship with a built-in hex
dump utility. Unfortunately, Windows doesn’t. So let’s build one!

69 73 6e 27 74 20 74 68 69 73 20 66 75 6e 3f 0a

Again, you can immediately see the
numeric value of each byte in the file.

We’ll add the number at the beginning of each line by using
the offset of the first byte in the line.

And we’ll
need to
replace the
garbage
characters
with periods.

 0000: 57 65 20 74 68 65 20 70 -- 65 6f 70 6c 65 20 6f 66 We the people of
 0010: 20 74 68 65 20 55 6e 69 -- 74 65 64 20 53 74 61 74 the United Stat
 0020: 65 73 2c 20 69 6e 20 6f -- 72 64 65 72 20 74 6f 20 es, in order to
 0030: 66 6f 72 6d 20 61 20 6d -- 6f 72 65 20 70 65 72 66 form a more perf
 0040: 65 63 74 20 75 6e 69 6f -- 6e 2e 2e 2e ect union...

String.Format() uses parameters just lke Console.WriteLine(), so you don’t need to learn anything new to use it.

Working with hex
You can put hex numbers directly into your program—just add the
characters 0x in front of the number:

 int j = 0x20;
 MessageBox.Show(“The value is ” + j);

When you use the + operator to concatenate a number into a
string, it gets converted to decimal. You can use the static String.
Format() method to convert your number to a hex-formatted
string instead:

 string h = String.Format(“{0:x2}”, j);

Download at WoweBook.Com

you are here 4 433

reading and writing files

Our hex dumper will write its dump out to a file, and since it’s just writing text a
StreamWriter will do just fine. But we can also take advantage of the ReadBlock()
method in StreamReader. It reads a block of characers into a char array—you specify
the number of characters you want to read, and it’ll either read that many characters
or, if there are fewer than that many left in the file, it’ll read the rest of the file. Since
we’re displaying 16 characters per line we’ll read blocks of 16 characters.

So add one more button to your program—add this hex dumper to it. Change the first
two lines so that they point to real files on your hard drive. Start with a serialized Card
file. Then see if you can modify it to use the Open and Save As dialog boxes.

using (StreamReader reader = new StreamReader(@”c:\files\inputFile.txt”))
using (StreamWriter writer = new StreamWriter(@”c:\files\outputFile.txt”, false))
{
 int position = 0;
 while (!reader.EndOfStream) {
 char[] buffer = new char[16];
 int charactersRead = reader.ReadBlock(buffer, 0, 16);
 writer.Write(“{0}: ”, String.Format(“{0:x4}”, position));
 position += charactersRead;
 for (int i = 0; i < 16; i++) {
 if (i < charactersRead) {
 string hex = String.Format(“{0:x2}”, (byte)buffer[i]);
 writer.Write(hex + “ ”);
 }
 else
 writer.Write(“ ”);
 if (i == 7) { writer.Write(“-- ”); }
 if (buffer[i] < 32 || buffer[i] > 250) { buffer[i] = ‘.’; }
 }
 string bufferContents = new string(buffer);
 writer.WriteLine(“ ” + bufferContents.Substring(0, charactersRead));
 }
}

You can convert a
char[] array to a string by passing it to the overloaded constructor for
string.

Every string has a substring method that returns a piece of the
string. In this case, it returns the first charactersRead characters
starting at the beginning (position 0). (Look back at the top of the loop
to see where charactersRead is set—the ReadBlock() method
returns the number of characters that it read into the array.

The static String.Format method converts numbers to strings. “{0:x4}” tells Format() to print the second parameter—in this case, position—as a 4-character hex number.

A StreamReader’s EndofStream field returns false
if there are characters still left to read in the file.

This ReadBlock() call reads up to 16
characters into a char array.

This loop goes
through the
characters
and prints
each of them
to a line in
the output.

Some characters with an value
under 32 don’t print, so we’ll
replace all of them with a period.

StreamReader and StreamWriter will do just fine

The reason the method’s
called “ReadBlock()” is
that when you call it, it
“blocks” (which means it
keeps executing and doesn’t
return to your program)
until it’s either read all the
characters you asked for or
run out of data to read.

The hex dumper works just fine for
text files. But there’s a problem. Use
File.WriteAllBytes() to write an array
of bytes with values over 127 to a file
and then run it through your dumper.
Uh-oh – they’re all read in as “fd”!
That’s because StreamReader is built
to read text files, which only contain
bytes with values under 128.

Here’s a bonus exercise: See if you can figure out how
to use the BinaryReader class to fix the problem!

Download at WoweBook.Com

434 Chapter 9

Q: Why didn’t I have to use the
Close() method to close the file after
I used File.ReadAllText() and
File.WriteAllText()?

A:	The	File	class	has	several	very	
useful	static	methods	that	automatically	
open	up	a	file,	read	or	write	data,	and	
then	close it automatically.	In	addition	
to	the	ReadAllText()	and	
WriteAllText()	methods,	
there	are	ReadAllBytes()	and	
WriteAllBytes()	that	work	with	
byte	arrays,	and	ReadAllLines()	
and	WriteAllLines(),	which	read	
and	write	string	arrays,	where	each	string	in	
the	array	is	a	separate	line	in	the	file.	All	of	
these	methods	automatically	open	and	close	
the	streams,	so	you	can	do	your	whole	file	
operation	in	a	single	statement.

Q: If the FileStream has methods
for reading and writing, why do I ever
need to use StreamReader and
StreamWriter?

A:	The	FileStream	class	is	really	
useful	for	reading	and	writing	bytes	to	binary	
files.	Its	methods	for	reading	and	writing	
operate	with	bytes	and	byte	arrays.	But	a	
lot	of	programs	work	exclusively	with	text	
files—like	the	first	version	of	the	Excuse	
Generator,	which	only	wrote	strings	out	to	
files.	That’s	where	the	StreamReader	
and	StreamWriter	come	in	really	
handy.	They	have	methods	that	are	built	
specifically	for	reading	and	writing	lines	of	
text.	Without	them,	if	you	wanted	to	read	a	
line	of	text	in	from	a	file,	you’d	have	to	first	
read	a	byte	array	and	then	write	a	loop	to	
search	through	that	array	for	a	linebreak—so	
it’s	easy	to	see	how	they	make	your	life	
easier.

Q: When should I use File, and
when should I use FileInfo?

A:	The	main	difference	between	the	
File	and	FileInfo	classes	is	that	the	
methods	in	File	are	static,	so	you	don’t	
need	to	create	an	instance	of	them.	On	the	
other	hand,	FileInfo	requires	that	you	
instantiate	it	with	a	filename.	In	some	cases,	
that	would	be	more	cumbersome,	like	if	you	
only	need	to	perform	a	single	file	operation	
(like	just	deleting	or	moving	one	file).	On	
the	other	hand,	if	you	need	to	do	many	file	
operations	to	the	same	file,	then	it’s	more	
efficient	to	use	FileInfo,	because	
you	only	need	to	pass	it	the	filename	once.	
You	should	decide	which	one	to	use	based	
on	the	particular	situation	you	encounter.	
In	other	words,	if	you’re	doing	one	file	
operation,	use	File.	If	you’re	doing	a	lot	of	
file	operations	in	a	row,	use	FileInfo.

Q: Back up a minute. Why was
“Eureka!” written out with one byte per
character, but when I wrote out the
Hebrew letters they took up two bytes?
And what was that “FF FE” thing at the
beginning of the bytes?

A:	What	you’re	seeing	is	the	difference	
between	two	closely related	Unicode	
encodings.	Plain	English	letters,	numbers,	
normal	punctuation	marks,	and	some	
standard	characters	(like	curly	brackets,	
ampersands,	and	other	things	you	see	on	
your	keyboard)	all	have	very	low	Unicode	
numbers—between	0	and	127.	(If	you’ve	
used	ASCII	before,	they’re	the	same	as	the	
ASCII	characters.)	If	a	file	only	contains	
those	Unicode	characters	with	low	numbers,	
it	just	prints	out	their	bytes.	
	
	
	

	
Things	get	a	little	more	complicated	
when	you	add	higher-numbered	Unicode	
characters	into	the	mix.	One	byte	can	only	
hold	a	number	between	0	and	255.	But	two	
bytes	in	a	row	can	store	numbers	between	0	
and	65,536—which,	in	hex,	is	FFFF.	The	file	
needs	to	be	able	to	tell	whatever	program	
opens	it	up	that	it’s	going	to	contain	these	
higher-numbered	characters.	So	it	puts	
a	special	reserved	byte	sequence	at	the	
beginning	of	the	file:	“FF	FE”.	That’s	called	
the	“byte	order	mark”.	As	soon	as	a	program	
sees	that,	it	knows	that	all	of	the	characters	
are	encoded	with	two	bytes	each.	(So	an	E	
is	encoded	as	00	45—with	leading	zeroes.)

Q: Why is it called a byte order mark?

A:	Remember	how	your	bytes	were	
reversed?	Shin’s	Unicode	value	of	U+05E9	
was	written	to	the	file	as	E9	05.	That’s	
called	“little	endian”.	Go	back	to	the	code	
that	wrote	out	those	bytes	and	change	the	
third	parameter	to	WriteAllText():	Encoding.
BigEndianUnicode.	That	tells	it	to	write	the	
data	out	in	“big	endian”,	which	doesn’t	flip	the	
bytes	around.You’ll	see	the	bytes	come	out	as	

“05	E9”	this	time.	You’ll	also	see	a	different	byte	
order	mark:	“FE	FF”.	And	your	Simple	Text	
Editor	is	smart	enough	to	read	both	of	them!

no dumb questions

If you’re writing a string that
only has Unicode characters
with low numbers, it writes
one byte per character. But
if it’s got high‑numbered
characters, they’ll be written
using two or more bytes each.

This encoding is called UTF-8, which .NET uses by default. You
can tell File.WriteAllText() to use a different encoding by passing
it a different Encoding object. You can learn more about Unicode
encodings at http://unicode.org.

Download at WoweBook.Com

you are here 4 435

reading and writing files

Make the Excuse class serializable
Mark the Excuse class with the [Serializable] attribute to make it serializable.
Also, you’ll need to add the using line:
using System.Runtime.Serialization.Formatters.Binary;

11

Change the Excuse.Save() method to serialize the excuse
When the Save() method writes a file out to the folder, instead of using
StreamWriter to write the file out, have it open a file and serialize itself out.
You’ll need to figure out how the current class can deserialize itself.

22

Change the Excuse.OpenFile() method to deserialize an excuse
You’ll need to create a temporary Excuse object to deserialize from the file, and
then copy its fields into the current class.

33

Hint: What keyword
can you use inside of
a class that returns a
reference to itself?

Change	Brian’s	Excuse	Generator	so	it	uses	binary	files	with	serialized	Excuse	objects	
instead	of	text	files.

Wow, that was really easy! All the code for saving and
opening excuses was inside the Excuse class. I just had to
change the class—I barely had to touch the form at all. It’s like the
form doesn’t even care how the class saves its data. It just passes in

the filename and knows everything will get saved properly.

Now just change the form so it uses a new file extension
There’s just one very small change you need to make to the form. Since we’re
no longer working with text files, we shouldn’t use the .txt extension any more.
Change the dialog boxes, default filenames and directory search code so that
they work with *.excuse files instead.

44

That’s right! Your code was very easy to change
because the class was well encapsulated.
When you’ve got a class that hides its internal operations from
the rest of the program and only exposes the behavior that needs
to be exposed, it’s called a well encapsulated class. In the
Excuse Manager program, the form doesn’t have any information
about how excuses are saved to files. It just passes a filename into
the excuse class, and the class takes care of the rest. That makes
it very easy to make big changes to how your class works with
files. The better you encapsulate your classes, the easier they are
to alter later on.

Remember how
encapsulation was
one of the four
core OOP principles?
Here’s an example
of how using those
principles makes your
programs better.

Download at WoweBook.Com

436 Chapter 9

Change	Brian’s	Excuse	Generator	so	it	uses	binary	files	with	serialized	
Excuse	objects	instead	of	text	files.

private void save_Click(object sender, EventArgs e) {
 // existing code
 saveFileDialog1.Filter = “Excuse files (*.excuse)|*.excuse|All files (*.*)|*.*”;
 saveFileDialog1.FileName = description.Text + “.excuse”;
 // existing code
}
 private void open_Click(object sender, EventArgs e) {
 // existing code
 openFileDialog1.Filter =
 “Excuse files (*.excuse)|*.excuse|All files (*.*)|*.*”;
 // existing code
}

[Serializable]
public class Excuse {
 public string Description;
 public string Results;
 public DateTime LastUsed;
 public string ExcusePath;
 public Excuse() {
 ExcusePath = “”;
 }
 public Excuse(string excusePath) {
 OpenFile(ExcusePath);
 }
 public Excuse(Random random, string folder) {
 string[] fileNames = Directory.GetFiles(folder, “*.excuse”);
 OpenFile(fileNames[random.Next(fileNames.Length)]);
 }
 private void OpenFile(string excusePath) {
 this.ExcusePath = excusePath;
 BinaryFormatter formatter = new BinaryFormatter();
 Excuse tempExcuse;
 using (Stream input = File.OpenRead(excusePath)) {
 tempExcuse = (Excuse)formatter.Deserialize(input);
 }
 Description = tempExcuse.Description;
 Results = tempExcuse.Results;
 LastUsed = tempExcuse.LastUsed;
 }
 public void Save(string fileName) {
 BinaryFormatter formatter = new BinaryFormatter();
 using (Stream output = File.OpenWrite(fileName)) {
 formatter.Serialize(output, this);
 }
 }
}

We pass in “this”
because we want this
class to be serialized.

The only change to the form is to have it change the file extension it passes to the Excuse class.

The constructor for loading
random excuses needs to look
for the “.excuse” extension
instead of “*.txt” files.

exercise solution

Standard save and
open dialog boxes do
the trick here.

You only need to change these three statements in the
form: two in the save button’s Click event, and one in the
open button’s—they just change the dialogs to use the
.excuse extension, and set the default save filename.

Download at WoweBook.Com

you are here 4 437

reading and writing files

1 2 3 4

5 6 7

8 9

10

11 12

13

14

15

16

17 18

19

Across

6. The method in the File class that checks whether or
not a specific file is on the drive
9. This statement indicates the end of a case inside a
switch statement
10. The abstract class that FileStream inherits from
11. A nonvisual control that lets you pop up the
standard Windows "Save As" dialog box
15. How you write numbers in base-16
16. If you don't call this method, your stream could be
locked open so other methods or programs can't open it
17. The StreamReader method that reads data into a
char[] array
18. An encoding system that assigns a uniue number to
each character

Down

1. This class has a method that writes any value type
to a file
2. The static method in the Array class that turns an
array backwards
3. The event handler that gets run whenever someone
modifies the data in an input control
4. This class has many static methods that let you
manipulate folders
5. Using this OOP principle makes it a lot easier to
maintain your code
7. If you don't use this attribute to indicate that a class
can be written to a stream, BinaryFormatter will
generate an error
8. This BinaryFormatter method reads an object from
a stream
12. \n and \r are examples of this kind of sequence

Filecross

Across	
6.	The	method	in	the	File	class	that	checks	whether	or	not	a	specific	
file	is	on	the	drive	
9.	This	statement	indicates	the	end	of	a	case	inside	a	switch	statement	
10.	The	abstract	class	that	FileStream	inherits	from	
11.	A	non-visual	control	that	lets	you	pop	up	the	standard	Windows	
“Save	As”	dialog	box	
15.	How	you	write	numbers	in	base-16	
16.	If	you	don’t	call	this	method,	your	stream	could	be	locked	open	so	
other	methods	or	programs	can’t	open	it	
17.	The	StreamReader	method	that	reads	data	into	a	char[]	array	
18.	An	encoding	system	that	assigns	a	uniue	number	to	each	character	
19.	Use	this	statement	to	indicate	which	statements	should	be	
executed	when	the	value	being	tested	in	a	switch	statement	does	not	
match	any	of	the	cases

Down	
1.	This	class	has	a	method	that	writes	any	value	type	to	a	file	
2.	The	static	method	in	the	Array	class	that	turns	an	array	backwards	
3.	The	event	handler	that	gets	run	whenever	someone	modifies	the	
data	in	an	input	control	
4.	This	class	has	many	static	methods	that	let	you	manipulate	folders	
5.	Using	this	OOP	principle	makes	it	a	lot	easier	to	maintain	your	code	
7.	If	you	don’t	use	this	attribute	to	indicate	that	a	class	can	be	written	to	
a	stream,	BinaryFormatter	will	generate	an	error	
8.	This	BinaryFormatter	method	reads	an	object	from	
a	stream	
12.	\n	and	\r	are	examples	of	this	kind	of	sequence
13.	This	class	lets	you	perform	all	the	operations	in	the	File	class	for	a	
specific	file
14.	This	method	sends	text	to	a	stream	followed	by	a	line	break

Download at WoweBook.Com

438 Chapter 9

Filecross
solution

exercise solution

B
1

R
2

C
3

D
4

I E
5

E H E
6

X I S T S
7

D
8

N N V B
9

R E A K R E

E A C E N E R

S
10

T R E A M R G C I

E Y P S E T A

R W S
11

A V E F I L E
12

D I A L O G L

I R U S R I

A I L F
13

C Y Z

L T A I A W
14

A

I E T L P R B

Z R I H
15

E X A D E C I M A L L

E O I T E

N N C
16

L O S E

F L

R
17

E A D B L O C K U
18

N I C O D E

N

D
19

E F A U L T

Across

6. The method in the File class that checks whether or
not a specific file is on the drive [exists]
9. This statement indicates the end of a case inside a
switch statement [break]
10. The abstract class that FileStream inherits from
[stream]
11. A nonvisual control that lets you pop up the
standard Windows "Save As" dialog box
[savefiledialog]
15. How you write numbers in base-16 [hexadecimal]
16. If you don't call this method, your stream could be
locked open so other methods or programs can't open it
[close]
17. The StreamReader method that reads data into a
char[] array [readblock]

Down

1. This class has a method that writes any value type
to a file [binarywriter]
2. The static method in the Array class that turns an
array backwards [reverse]
3. The event handler that gets run whenever someone
modifies the data in an input control [changed]
4. This class has many static methods that let you
manipulate folders [directory]
5. Using this OOP principle makes it a lot easier to
maintain your code [encapsulation]
7. If you don't use this attribute to indicate that a class
can be written to a stream, BinaryFormatter will
generate an error [serializable]
8. This BinaryFormatter method reads an object from
a stream [deserialize]

Download at WoweBook.Com

this is a new chapter 439

Good thing I wrote code to
handle my HangoverException.

exception handling10

Putting out fires gets old

Programmers aren’t meant to be firefighters.
You’ve worked your tail off, waded through technical manuals and a few engaging

Head First books, and you’ve reached the pinnacle of your profession: master

programmer. But you’re still getting pages from work because your program

crashes, or doesn’t behave like it’s supposed to. Nothing pulls you out of the

programming groove like having to fix a strange bug…but with exception handling,

you can write code to deal with problems that come up. Better yet, you can even

react to those problems, and keep things running.

Programmers aren’t meant to be firefighters.
You’ve worked your tail off, waded through technical manuals and a few engaging

Head First books, and you’ve reached the pinnacle of your profession: master

programmer. But you’re still getting pages from work because your program

crashes, or doesn’t behave like it’s supposed to. Nothing pulls you out of the

programming groove like having to fix a strange bug…but with exception handling,

you can write code to deal with problems that come up. Better yet, you can even

react to those problems, and keep things running.

Download at WoweBook.Com

440 Chapter 10

Brian needs his excuses to be mobile
Brian recently got reassigned to the international division. Now
he flies all over the world. But he still needs to keep track of his
excuses, so he installed the program you built on his laptop, and
takes it with him everywhere.

Work’s boring today. I want to
go scuba diving. Time to fire up
the Excuse generator.

Brian’s got the excuse generator running on his laptop.

Same ol’ Brian...
always looking for
an excuse to get
out of work.

An unhandled
exception... must
have been a
problem we didn’t
account for.

mo’ programs mo’ problems

But the program isn’t working!
Brian clicks the “Random Excuse” button, and gets a pretty nasty
looking error. Something about not finding his excuses. What gives?

Download at WoweBook.Com

you are here 4 441

exception handling

public static void BeeProcessor() {

 object myBee = new HoneyBee(36.5, “Zippo”);

 float howMuchHoney = (float)myBee;

 HoneyBee anotherBee = new HoneyBee(12.5, “Buzzy”);

 double beeName = double.Parse(anotherBee.MyName);

 double totalHoney = 36.5 + 12.5;

 string beesWeCanFeed = “”;

 for (int i = 1; i < (int) totalHoney; i++) {

 beesWeCanFeed += i.ToString();

 }

 float f =
 float.Parse(beesWeCanFeed);

 int drones = 4;

 int queens = 0;

 int dronesPerQueen = drones / queens;

 anotherBee = null;

 if (dronesPerQueen < 10) {

 anotherBee.DoMyJob();

 }

}

1

2

3

5

4

Here’s another example of some broken code. There are five different exceptions
that this code throws, and the error messages are shown on the right. It’s your
job to match the line of code that has a problem with the exception that line
generates. Read the exception messages for a good hint.

Calling double.Parse(“32”) will
parse a string and return a
double value, like 32.

When you have a
reference that
doesn’t point to any
object, it gets a
special value called
null. Setting a
reference to null,
tells C# it doesn’t
point to anything.

Download at WoweBook.Com

442 Chapter 10

HoneyBee anotherBee = new HoneyBee(12.5, “Buzzy”);

double beeName = double.Parse(anotherBee.MyName);

object myBee = new HoneyBee(36.5, “Zippo”);

float howMuchHoney = (float)myBee;

Your job was to match the line of code that has a
problem with the exception that line generates.

C# has no idea how to cast a HoneyBee
object to a float, and trying to do it will
cause an InvalidCastException.

The Parse() method wants you to give it a string in a certain format. “Buzzy” isn’t a string it knows how to convert to a number. That’s why it throws a FormatException.

breaking the rules

double totalHoney = 36.5 + 12.5;

string beesWeCanFeed = “”;

for (int i = 1; i < (int) totalHoney; i++) {

 beesWeCanFeed += i.ToString();

}

float f = float.Parse(beesWeCanFeed);

The for loop will create a string called
beesWeCanFeed that contains a number with over
60 digits in it. There’s no way a float can hold
a number that big, and trying to cram it into a
float will throw an OverflowException.

You’d never actually get all these exceptions
in a row. The program would throw the first
exception and then stop. You’d only get to
the second exception if you fixed the first.

Download at WoweBook.Com

you are here 4 443

exception handling

Setting the anotherBee reference variable equal to
null tells C# that it doesn’t point to anything. So
instead of pointing to an object, it points to nothing.
Throwing a NullReferenceException is C#’s way of
telling you that there’s no object whose DoMyJob()
method can be called.

anotherBee = null;

if (dronesPerQueen < 10) {

 anotherBee.DoMyJob();

}

int drones = 4;

int queens = 0;

int dronesPerQueen = drones / queens;

That DivideByZero error didn’t have to happen. You can see just by looking
at the code that there’s something wrong. The same goes for the other
exceptions. These problems were preventable—and the more you know
about exceptions, the better you’ll be at keeping your code from crashing.

It’s really easy to throw a
DivideByZeroException. Just
divide any number by zero.

Dividing any number by zero always throws this kind of exception. Even if you
don’t know the value of queens, you can prevent it just by checking the value to
make sure it’s not zero before you divide it into drones.

Download at WoweBook.Com

444 Chapter 10

Exception obj

ec
t

When your program throws an exception,
.NET generates an Exception object.
You’ve been looking at .NET’s way of telling you something went
wrong in your program: an exception. In C#, when an exception
occurs, an object is created to represent the problem. It’s called, no
surprise here, Exception.

For example, suppose you have an array with four items. Then, you try
and access the sixteenth item (index 15, since we’re zero-based here):

ex-cep-tion, noun.
a person or thing that is
excluded from a general
statement or does not
follow a rule. While Jim
usually hates peanut butter, he
made an exception for Ken’s
peanut butter fudge.

int anArray[] = {3, 4, 1, 11};
int aValue = anArray[15];

.NET goes to the trouble of creating an object because it wants to give you all
the information about what caused the exception. You may have code to fix,
or you may just need to make some changes to how you handle a particular
situation in your program.

In this case, an IndexOutOfRangeException indicates you have a bug:
you’re trying to access an index in the array that’s out of range. You’ve also got
information about exactly where in the code the problem occurred, making it
easy to track down the problem (even if you’ve got thousands of lines of code).

The exception object has a
message that tells you what’s
wrong and a list of all of the
calls that were made to the
system’s memory leading up to the
event that caused the exceptio

n.

You can see this detail
by clicking on the View
Detail link in the unhandled
exception window.

As soon as your program runs into an unhandled exception, it generates an object with all the data it has about it.

This code is
obviously going to
cause problems.

mmm fudge

Download at WoweBook.Com

you are here 4 445

exception handling

Q: Why are there so many kinds of exceptions?

A:	There	are	all	sorts	of	ways	that	you	can	write	code	that	
C#	simply	doesn’t	know	how	to	deal	with.	It	would	be	difficult	
to	troubleshoot	your	problems	if	your	program	simply	gave	a	
generic	error	message	(“A	problem	occurred	at	line	37”).	It’s	a	
lot	easier	to	track	down	and	fix	problems	in	your	code	when	you	
know	specifically	what	kind	of	error	occurred.

Q: So what is an exception, really?

A:	It’s	an	object	that	.NET	creates	when	there’s	a	problem	
(more	about	that	in	a	minute).

Q: Wait, what? It’s an object?

A:	Yes,	an	exception	is	an	object.	The	properties	in	the	
object	tell	you	information	about	the	exception.	For	example,	it’s	
got	a	Message	property	that	has	a	useful	string	like	“Specified	
cast	was	invalid”	and	“Value	was	either	too	large	or	too	small	
for	a	Single”,	which	is	what	it	used	to	generate	the	exception	
window.	The	reason	that	.NET	generates	it	is	to	give	you	as	
much	information	as	it	can	about	exactly	what	was	going	on	
when	it	executed	the	statement	that	threw	the	exception.

Q: Okay, I still don’t get it. Sorry. Why are there so many
different kinds of exceptions, again?

A:	Because	there	are	so	many	ways	that	your	code	can	act	
in	unexpected	ways.	There	are	a	lot	of	situations	that	will	cause	
your	code	to	simply	crash.	It	would	be	really	hard	to	troubleshoot	
the	problems	if	you	didn’t	know	why	the	crash	happened.	
By	throwing	different	kinds	of	exceptions	under	different	
circumstances,	.NET	is	giving	you	a	lot	of	really	valuable	
information	to	help	you	track	down	and	correct	the	problem.

Q: So exceptions are there to help me, not just cause a
pain in my butt?

A:	Yes!	Exceptions	are	all	about	helping	you	expect	the	
unexpected.	A	lot	of	people	get	frustrated	when	they	see	code	
throw	an	exception.	But	if	you	think	about	an	exception	as	
.NET’s	way	of	helping	you	track	down	and	debug	your	program,	it	
really	helps	out	when	you’re	trying	to	track	down	what’s	causing	
the	code	to	bomb	out.

Q: So when my code throws an exception, it’s not
necessarily because I did something wrong?

A:	Exactly.	Sometimes	your	data’s	different	than	you	
expected	it	to	be—like	you’ve	got	a	method	that’s	dealing	with	
an	array	that’s	a	lot	longer	or	shorter	than	you	anticipated	when	
you	first	wrote	it.	And	don’t	forget	that	human	beings	are	using	
your	program,	and	they	almost	always	act	in	an	unpredictable	
way.	Exceptions	are	.NET’s	way	to	help	you	handle	those	
unexpected	situations	so	that	your	code	still	runs	smoothly	and	
doesn’t	simply	crash	or	give	a	cryptic,	useless	error	message.

Q: Once I knew what I was looking for, it was pretty clear
that the code on the previous page was going to crash. Are
all exceptions easy to spot?

A:	No.	Unfortunately,	there	are	times	when	your	code	will	
have	problems,	and	it’ll	be	really	hard	to	figure	out	what’s	
causing	them	just	by	looking	at	it.	That’s	why	the	IDE	gives	you	
a	really	useful	tool	called	the	debugger.	It	lets	you	pause	your	
program	and	execute	it	statement	by	statement,	inspecting	the	
value	of	each	individual	variable	and	field	as	you	go.	That	makes	
it	a	lot	easier	for	you	to	figure	out	where	your	code	is	acting	in	
a	way	that’s	different	from	how	you	expect	it	to	act.	That’s	when	
you	have	the	best	chance	of	finding	and	fixing	the	exceptions—
or,	even	better,	preventing	them	in	the	first	place.

Exceptions are all about
helping you find and fix
situations where your
code behaves in ways
you didn’t expect.

Download at WoweBook.Com

446 Chapter 10

Brian’s code did something unexpected
When Brian wrote his excuse manager, he never expected
the user to try to pull a random excuse out of an empty
directory.

public Excuse(Random random, string Folder) {
 string[] fileNames = Directory.GetFiles(Folder, “*.excuse”);
 OpenFile(fileNames[random.Next(fileNames.Length)]);
}

The problem happened when Brian pointed his Excuse Manager program at an
empty folder on his laptop and clicked the Random button. Let’s take a look at
it and see if we can figure out what went wrong. Here’s the unhandled exception
window that popped up when he ran the program outside the IDE:

11

Okay, that’s a good starting point. It’s telling us that the index was outside the
bounds of the array, right? So let’s look for an array in the code for the Random
Excuse button’s event handler:

22

private void RandomExcuseButton_Click(object sender, EventArgs e) {
 if (CheckChanged() == true) {
 CurrentExcuse = new Excuse(random, Folder);
 UpdateForm(false);
 }
}

Hmm, no arrays in there. But it creates a new Excuse object using one of the
overloaded constructors. Maybe there’s an array in the constructor code:

33

Bingo! There’s the array.
We must be trying to use
an index that’s past the
end of the array.

nobody expects the ...

Download at WoweBook.Com

you are here 4 447

exception handling

That’s right. Exceptions are a really useful tool
that you can use to find places where your code
acts in ways you don’t expect.
A lot of programmers get frustrated the first time they see an
exception. But exceptions are really useful, and you can use them to
your advantage. When you see an exception, it’s giving you a lot of
clues to help you figure out when your code is reacting to a situation
that you didn’t anticipate. And that’s good for you: it lets you know
about a new scenario that your program has to handle, and it gives
you an opportunity to do something about it.

It turns out that Directory.GetFiles() returns an empty array when you
point it at a directory with no files in it. Hey, we can test for that! All we need
to do is add a check to make sure the directory’s not empty before we
open a file, and the nasty unhandled exception window will be replaced with an
informative messagebox.

44

private void RandomExcuseButton_Click(object sender, EventArgs e) {
 string[] fileNames = Directory.GetFiles(selectedFolder,”*.excuse”);
 if (fileNames.Length == 0) {
 MessageBox.Show(“Please specify a folder with excuse files in it”,
 “No excuse files found”);
 } else {
 if (CheckChanged() == true) {
 CurrentExcuse = new Excuse(random, Folder);
 UpdateForm(false);
 }
 }
}

By checking for excuse
files in the folder before
we create the Excuse
object, we can prevent
the exception from being
thrown—and pop up a
helpful message box, too.

Oh, I get it. Exceptions aren’t always bad.
Sometimes they identify bugs, but a lot of the time
they’re just telling me that something happened

that was different from what I expected.

Download at WoweBook.Com

448 Chapter 10

All exception objects inherit from Exception
.NET has lots of different exceptions it may need to report. Since many of these
have a lot of similar features, inheritance comes into play. .NET defines a base
class, called Exception, that all specific exceptions types inherit from.

The Exception class has a couple of useful members. The Message property
stores an easy-to-read message about what went wrong. And StackTrace tells
you what was going on in memory when the exception occurred, and what led up
to the exception. (There are others, too, but we’ll use those first.)

IndexOutOfRange
Exception

Message	
StackTrace
GetBaseException()
ToString()

FormatException

Message	
StackTrace	
GetBaseException()
ToString()

OverflowException

Message	
StackTrace
GetBaseException()
ToString()

Exception

Message	
StackTrace	
GetBaseException()
ToString()

Exception can be extended like any other class. So you can write your own exception classes, and use
Message and any other Exception properties and methods.

It’s really useful that .NET
gives us so many types of
exceptions, because each
different exception is thrown
in a different situation. You
can learn a lot about the
unexpected action that’s causing
the exception just by looking at
which one was thrown.

ToString() generates a summary
of all of the information in the
exception’s fields and returns it in
a string.

the exception family tree

DivideByZero
Exception

Message	
StackTrace
GetBaseException()
ToString()

Download at WoweBook.Com

you are here 4 449

exception handling

Continue: run until the
next breakpoint is hit
or the program ends.

Break all: break the program
immediately and jump to the
statement being executed.

Stop: end the program and
exit the debugger.

Restart: stop
execution and start
the program again.

Show next statement: scroll
to the next statement that’s

going to be executed.

Step into: execute the next
statement. If it’s a method,

execute the first statement in
the method.

Step over: execute the next
statement. If it’s a method,

execute it as a single statement.

Step out: run the rest of the
statements in the current method,

and break when it’s done.

The debugger helps you track down and
prevent exceptions in your code
Before you can add exception handling to your program, you need to know
which statements in your program are throwing the exception. That’s where
the debugger that’s built into the IDE can be really helpful. When you run
the debugger, the IDE pops up a toolbar with some really useful buttons.
Take a minute and hover your mouse cursor over each of them to see its
name and shortcut key. (Those shortcut keys come in really handy.)

Debugging means running your code line by line
to see what happens
Whenever you run your program inside the IDE, you can always pause it at any
time by hitting the Break All button in the toolbar (or choosing the command
from the Debug menu). This causes your program to stop in its tracks and show
you the line of code that it’s about to run. It turns that line of code yellow to show
you that it’s the one that’ll run next. If you press Continue, then your program
will keep running as if you’d never stopped it. But you can also step through your
code, which means executing the current line and going to the next one. If the next
line is a method, then you can step into the method, which causes the debugger
to jump to the first line of the method and highlight it. Or you can step over the
method, which executes the whole thing. If you’re inside a method, you can step
out of it, which causes the debugger to execute the rest of the statements in the
method and break at the first line after it returns from the method.

You can also inspect and change variables and fields in your code using the Watch
window. Just right-click on a variable in the code and select “Add Watch”, and it’ll
appear in the Watch window—or you can type it directly into the Watch window.
Then its value will be displayed. If it’s an object, you can drill down into its fields.

When you break
inside the debugger,
the IDE stops
your program and
displays the next
line of code that
it’s about to run
highlighted in
yellow. Then you
can move forward
line by line until you
find your problem.

The Debug toolbar only shows up when you’re debugging your program in the IDE. So you’ll have to run a program in order to hover over the toolbar icons.

Download at WoweBook.Com

450 Chapter 10

Use the IDE’s debugger to ferret out exactly
what went wrong in the excuse manager
Let’s use the debugger to take a closer look at the problem that we ran
into in the excuse manager. It’s a good place to get some practice with
the debugger, because you know exactly what you’re looking for. (That’s a
luxury that you don’t have most of the time!)

Use a breakpoint to break—or pause—your program
You’ve got a starting point—the exception happens when the Random Excuse button
is clicked after an empty folder is selected. So open up the code for the button, click
anywhere in the first line of the method, and select “Toggle Breakpoint” from the
Debug menu (or press F9):

11

Debug this

The IDE turned the line red and put a circle in the left-hand margin. That’s the
debugger’s way of telling you that it set a breakpoint on the line. Now, when
you debug the program in the IDE, execution will stop on that line. Give it a
try—run the program in the IDE (using the same “Start Debugging” command
you’ve been using all along). When you reproduce the problem, the line should
turn yellow, with an arrow pointing to the code. Now your program’s temporarily
paused. The “Start Debugging” menu item’s turned into “Continue Debugging,”
too. Click it—the program will pick up exactly where it left off, starting with the
line you put the breakpoint on.

Now you know why the
IDE command for running a program is “Start
Debugging”—because you’re using the debugger built into the IDE.

you don’t know where that watch has been

Start Debugging - when

you have no break
points

set - is the same as

running your prog
ram.Step through the application

Use the Step Into command (using either the toolbar or the F11 key) to move through
the application line by line. When it gets to the line that creates the new Excuse
object, it’ll jump straight into the constructor that you fixed. Step past the first line so it
sets the fileNames variable. Then hover over the variable to see its value.

22

The debugger shows your
breakpoints as red lines with a big red dot in the left-hand margin.

The yellow line with a yellow
arrow in the left-hand margin
is the next line the debugger will
execute when it runs.Hover over any field or variable and the IDE will show you its value.

Download at WoweBook.Com

you are here 4 451

exception handling

Use the Watch window to reproduce the problem
One really powerful feature of the debugger is the Watch window, which lets you check the value of
variables and fields in your objects. Hover your mouse cursor over the “Length” part of fileNames.
Length. Then select all of fileNames.Length, right-click, and select “Add Watch” from the
menu. It’ll get added to the Watch window (which is in the same pane as Output—you can bring it up
by selecting “Watch” under Windows in the Debug menu). Then add each piece of the statement: first
random.Next(fileNames.Length). It should look something like this, depending on how many files
are in the folder you pointed to—in this case, we had five, so fileNames has five elements:

33

Set fileNames equal to an empty string array
Double-click in the empty space in the Watch window underneath the two watch variables. You’ll get a
cursor. Type this in: fileNames = new string[0]. Watch the top row in the window—as soon
as you hit enter, the value of fileNames will change to {string[0]}. A re-evaluate icon should
show up next to the random.Next line—click on it and its value gets set to 0. So what happened?

The Watch window has another very useful feature—it lets you change the value of variables and
fields that it’s displaying. And it even lets you execute methods and create new objects—and
when you do, it displays its re-evaluate icon () that you can click to tell it to execute that line again,
because sometimes running the same method twice will generate different results (like with Random).

44

Reproduce the problem that threw Brian’s original exception
Here’s where debugging gets really interesting. Add one more line to the debugger—the statement that
actually threw the exception: fileNames[random.Next(fileNames.Length)]. As soon as you
type it in, the Watch window evaluates it... and that throws the exception. It tells you that it found the
exception by displaying an exclamation point, and displays the text of the exception in the Value column.

55

When you get an exception, you can go back and reproduce it in the debugger. That’s
another way that more descriptive exception messages can help you fix your code.

This exclamation
point is the Watch
window’s way of
telling you it found
an exception.

This icon
tells the
Watch
window to
reevaluate
the Next()
method.

We’ll use the Watch window
to reproduce the problem
that caused the exception.
We’ll start by adding the
fileNames array.

You need to
break (pause)
the program
before you can
add a watch.

We know the problem
happened with an empty
fileNames array, so we’ll
use the Watch window
to change its value to an
empty string array.

Download at WoweBook.Com

452 Chapter 10

Q: How come Brian’s unhandled
exception window looked different than
the one in the IDE?

A:	Because	when	you	run	a	program	
inside	the	IDE,	you’re	running	it	in	the	
debugger,	which	breaks the program	
(as	if	you’d	pressed	the	Break	All	button	
or	inserted	a	breakpoint)	as	soon	as	it	
intercepts	an	exception,	and	displays	it	in	
a	useful	window.	That	lets	you	inspect	the	
Exception	object	and	your	program’s	fields	
and	variables	so	you	can	track	down	the	
problem.	
	
When	Brian	ran	his	program,	he	wasn’t	
running	it	from	inside	the	IDE.	He’d	
published	his	program	and	installed	it,	just	
like	you	did	back	in	Chapter	1	with	the	
Contact	List	program.	You	can	run	your	
program	outside	the	IDE	any	time	without	
publishing	it—just	build	your	program,	which	
causes	Visual	Studio	to	create	an	executable	
file.	Just	look	inside	your	project’s	folder	for	
the	bin/	folder—one	of	its	subdirectories	
should	have	the	exe	file	for	your	
application.	If	you	run	that,	any	exceptions	
that	it	throws	will	be	unhandled	and	show	the	
same	window	that	Brian	saw.

Q: So that’s it? When an exception
happens outside the IDE, my program
just stops and there’s nothing I can do
about it?

A:	Well,	your	program	does	stop	when	
there’s	an	unhandled	exception.	But	that	
doesn’t	mean	that	all	of	your	exceptions	
have	to	be	unhandled!	We’ll	talk	a	lot	more	
about	how	you	can	handle	exceptions	in	your	
code.	There’s	no	reason	your	users	ever	
have	to	see	an	unhandled	exception.

Q: How do I know where to put a
breakpoint?

A:	That’s	a	really	good	question,	and	
there’s	no	one	right	answer.	When	your	code	
throws	an	exception,	it’s	always	a	good	
idea	to	start	with	the	statement	that	threw	it.	
But	usually,	the	problem	actually	happened	
earlier	in	the	program,	and	the	exception	
is	just	fallout	from	it.	For	example,	the	
statement	that	throws	a	divide	by	zero	error	
could	be	dividing	values	that	were	generated	
10	statements	earlier	but	just	haven’t	been	
used	yet.	So	there’s	no	one	good	answer	to	
where	you	should	put	a	breakpoint,	because	
every	situation	is	different.	But	as	long	as	
you’ve	got	a	good	idea	how	your	code	works,	
you	should	be	able	to	figure	out	a	good	
starting	point.

Q: Can I run any method in the Watch
window?

A:	Yes.	Any	statement	that’s	valid	in	
your	program	will	work	inside	the	Watch	
window,	even	things	that	make	absolutely	no	
sense	to	run	inside	a	Watch	window.	Here’s	
an	example.	Bring	up	a	program,	start	it	
running,	break	it,	and	then	add	this	to	the	
Watch	window:	System.Threading.
Thread.Sleep(2000).	(Remember,	
that	method	causes	your	program	to	delay	
for	two	seconds.)There’s	no	reason	you’d	
ever	do	that	in	real	life,	but	it’s	interesting	to	
see	what	happens:	you’ll	get	an	hourglass	
for	two	seconds	while	the	method	evaluates.	
Then,	since	Sleep()	has	no	return	
value,	the	Watch	window	will	display	the	
value,	“Expression has been
evaluated and has no
value”	to	let	you	know	that	it	didn’t	return	
anything.	But	it	did	evaluate	it.	Not	only	that,	
but	it	displays	IntelliSense	pop-ups	to	
	

		
help	you	type	code	into	the	window.	That’s	
useful	because	it’ll	tell	you	what	methods	are	
available	to	an	object	when	your	program	is	
running.

Q: Wait, so isn’t it possible for me
to run something in the Watch window
that’ll change the way my program runs?

A:	Yes!	Not	permanently,	but	it	can	
definitely	affect	your	program’s	output.	But	
even	better,	just	hovering	over	fields	inside	
the	debugger	can	cause	your	program	to	
change	its	behavior,	because	hovering	
over	a	property	executes its get accessor.	
If	you	have	a	property	that’s	got	a	get	
accessor	that	executes	a	method,	then	
hovering	over	that	property	will	cause	that	
method	to	execute.	And	if	that	method	sets	
a	value	in	your	program,	then	that	value	will	
stay	set	if	you	run	the	program	again.	And	
that	can	cause	some	pretty	unpredictable	
results	inside	the	debugger.	Programmers	
have	a	name	for	results	that	seem	to	be	
unpredictable	and	random:	they’re	called	
heisenbugs	(which	is	a	joke	that	makes	
sense	to	physicists	and	cats	in	boxes).

When you run your
program inside the
IDE, an unhandled
exception will
cause it to break
as if it had run
into a breakpoint.

make a break for it

Download at WoweBook.Com

you are here 4 453

exception handling

**************	Exception	Text	**************

System.Runtime.Serialization.SerializationException:	End	of	Stream	encountered	before	parsing	
was	completed.

			at	System.Runtime.Serialization.Formatters.Binary.__BinaryParser.Run()

				at	System.Runtime.Serialization.Formatters.Binary.ObjectReader.Deserialize(HeaderHa
ndler	handler,	__BinaryParser	serParser,	Boolean	fCheck,	Boolean	isCrossAppDomain,	
IMethodCallMessage	methodCallMessage)

				at	System.Runtime.Serialization.Formatters.Binary.BinaryFormatter.Deserialize(Stream	
serializationStream,	HeaderHandler	handler,	Boolean	fCheck,	Boolean	isCrossAppDomain,	
IMethodCallMessage	methodCallMessage)

				at	System.Runtime.Serialization.Formatters.Binary.BinaryFormatter.Deserialize(Stream	
serializationStream)

				at	Chapter10.Excuse.OpenFile(String ExcusePath)	in	C:\Documents	and	Settings\Administrator\
My	Documents\Visual	Studio	2005\Projects\Chapter10\Chapter10\Excuse.cs:line	40

				at	Chapter10.Excuse..ctor(Random random, String Folder)	in	C:\Documents	and	Settings\
Administrator\My	Documents\Visual	Studio	2005\Projects\Chapter10\Chapter10\Excuse.cs:line	30

				at	Chapter10.Form1.RandomExcuseButton_Click(Object sender, EventArgs e)	in	C:\
Documents	and	Settings\Administrator\My	Documents\Visual	Studio	2005\Projects\Chapter10\
Chapter10\Form1.cs:line	146

Uh-oh—the code’s still got problems...
Brian was happily using his Excuse Manager, when he remembered
that he had a folder full of excuses that he made when he first built
the program—but he forgot that he made that folder before he
added serialization to the program. Let’s see what happens....

You can re-create Brian’s problem—just create your own text-based Excuse file
using Notepad. The first line should be the description, the second should be the
results, and the third should be the last used date (“10/4/2007 12:08:13 PM”).

11

Pop open the Excuse Manager and open up the excuse. It throws an exception!
But this time, click on the Details button so we can take a closer look at what it says.
Pay attention to the call stack—that’s what it’s called when a method is called by
another method, which is called by another method, etc.

22

So the Details button in the unhandled exception window tells you a lot about what
caused this problem. Can you think of anything you can do about it?

33

No, not again!

It looks like there was a problem with the
BinaryFormatter—which makes sense, because it was trying to deserialize a text file.

The program threw a SerializationException. Can we
figure out what line threw it from the exception details?

You can learn a lot from the
call stack, which tells you
which methods were running.
You can see that the Excuse
class’s OpenFile() method
was being called from its
constructor (“.ctor”),
which was called from the
“Random Excuse” button’s
click event handler.

Download at WoweBook.Com

454 Chapter 10

Wait a second. Of course the program’s
gonna crash—I gave it a bad file. Users
screw up all the time. You can’t expect me
to do anything about that, right?

Actually, there is something you can do about it.
Yes, it’s true that users screw up all the time. That’s a fact of life.
But that doesn’t mean you can’t do anything about it. There’s a
name for programs that deal with bad data, malformed input, and
other unexpected situations gracefully: they’re called robust. And
C# gives you some really powerful exception handling tools to
help you make your programs more robust. Because while you can’t
control what your users do, you can make sure that your program
doesn’t crash when they do it.

ro-bust, adj.
sturdy in construction; able
to withstand or overcome
adverse conditions. After the
Tacoma Narrows Bridge disaster,
the civil engineering team looked
for a more robust design for
the bridge that would replace it.

 BinaryFormatter will throw an
exception if there’s anything at all
wrong with a serialized file.

It’s easy to get the Excuse Manager to
throw a SerializationException—just

feed it any file that’s not a serialized Excuse object.
When you try to deserialize an object from a file,
BinaryFormatter expects the file to contain a serialized
object that matches the class that it’s trying to read. If
the file contains anything else, anything at all, then the
Deserialize() method will throw a SerializationException.

users are unpredictable

Download at WoweBook.Com

you are here 4 455

exception handling

Handle exceptions with try and catch
In C#, you can basically say, “Try this code, and if an exception
occurs, catch it with this other bit of code.” The part of code
you’re trying is the try block, and the part where you deal with
exceptions is called the catch block. In the catch block, you can
do thinks like print a friendly error message, instead of letting your
program come to a screeching halt:

private void RandomExcuseButton_Click(object sender,
EventArgs e) {

 // ... code you added a few pages ago goes here ...

 try {

 if (CheckChanged() == true) {

 CurrentExcuse = new Excuse(random, Folder);

 UpdateForm(false);

 }

 }

 catch {

 MessageBox.Show(

 “Your excuse file was invalid.”,

 “Unable to open a random excuse”);

 }

}
This is the simplest kind of exception
handling: stop the program, write out the
exception message, and keep running.

The catch keyword means that the block immediately following it contains an exception handler.

If throwing an exception makes your code
automatically jump to the catch block, what happens
to the objects and data you were working with before
the exception happened?

Put the code that might throw an exception inside the try block. If no exception happens, it’ll get run exactly as usual, and the statements in the catch block will be ignored. But if a statement in the try block throws an exception, the rest of the try block won’t get executed.

This is the
try block.
You start
exception
handling with
try.

When an exception
is thrown, the
program immediately
jumps to the catch
statement and
starts executing
the catch block.

Download at WoweBook.Com

456 Chapter 10

1 Let’s say your user is
using your code, and
gives it some input
that it didn’t expect.

2 That method does
something risky,
something that might
not work at runtime.

3 You need to know that
the method you’re
calling is risky.

What happens when a method you want to call is risky?

4 You then write code
that can handle the
failure if it does
happen. You need to be
prepared, just in case.

user
a class

you wrote

a user gives input
to your method

public void
 Process(Input i) {
 if (i.IsBad()) {
 explode();
 }
}

user

your class, now with
exception handling

public class Data {

 public void

 Process(Input i) {

 if (i.IsBad()) {

 explode();

 }

 }

}

a class
you wrote

public class Data {

 public void

 Process(Input i) {

 if (i.IsBad()) {

 explode();

 }

 }

}

public class Data {

 public void

 Process(Input i) {

 if (i.IsBad()) {

 explode();

 }

 }

}

user

now your program’s robust

some input

˙∆å˚ß∂ıÏÔ˚œ∑ˆ
øƒ¥∂∫√˚Ω∆¬˙√˚
ÔÒÎ˙˚∆¬åß¥∂ÒÅ
∆˚åƒ˙ß∂∆˙å∆˚ß
ƒå∂ß˙˚ƒ∆˚å∂ß∂
´˙®£√•√∂¨∂¬∆ƒ
ƒ˜å∂√˚ç¥ƒ´∂ˆ´
∂å˚∆ƒ´∫®˚´¨√∂

public class Data {

 public void

 Process(Input i) {

 try {

 if (i.IsBad()) {

 explode();

 } catch {

 HandleIt();

 }

 }

 }

Users are unpredictable. They feed all sorts of weird data into your
program, and click on things in ways you never expected. And
that’s just fine, because you can handle unexpected input with good
exception handling.

“Runtime” just means “while your program is running”. Some people refer to exceptions as “runtime errors”.

a class
you wrote

My Process() method
will blow up if it gets

bad input data!

I wonder
what happens
if I click here...

Wow, this program’s really stable!

risky business

Download at WoweBook.Com

you are here 4 457

exception handling

Q: So when do I use try and catch?

A:	Any	time	you’re	writing	risky	code,	or	
code	that	could	throw	an	exception.	The	trick	
is	figuring	out	which	code	is	risky,	and	which	
code	is	safer.	
	
You’ve	already	seen	that	code	that	uses	
input	provided	by	a	user	can	be	risky.	Users	
give	you	incorrect	files,	words	instead	of	
numbers,	names	instead	of	dates,	and	they	
pretty	much	click	everywhere	you	could	
possibly	imagine.	And	a	good	program	
will	take	all	that	input	and	work	in	a	calm,	
predictable	way.	It	might	not	give	the	users	
a	result	they	can	use,	but	it	will	let	them	
know	that	it	found	the	problem	and	hopefully	
suggest	a	solution.

Q: How can a program suggest a
solution to a problem it doesn’t even
know about in advance?

A:	That’s	what	the	catch	block	is	for.	A	
catch	block	is	only	executed	when	code	
in	the	try	block	throws	an	exception.	It’s	
your	chance	to	make	sure	the	user	knows	
that	something	went	wrong,	and	to	let	the	
user	know	that	it’s	a	situation	that	might	be	
corrected.	
	
If	the	excuse	manager	simply	crashes	when	
there’s	bad	input,	that’s	not	particularly	
useful.	But	if	it	tries	to	read	the	input	and	
displays	garbage	in	the	form,	that’s	also	not		

		
useful—fact,	some	people	might	say	that	it’s	
worse.	But	if	you	have	the	program	display	
an	error	message	telling	the	user	that	it	
couldn’t	read	the	file,	then	the	user	has	an	
idea	of	what	went	wrong,	and	information	
that	he	can	use	to	fix	the	problem.

Q: Is the debugger only used to
troubleshoot exceptions?

A:	No.	The	debugger’s	actually	a	really	
useful	tool	that	you	can	use	to	examine	any	
code	you’ve	written.	Sometimes	it’s	useful	to	
step	through	your	code	and	check	the	value	
of	certain	fields	and	variables—like	when	
you’ve	got	a	really	complex	method,	and	you	
want	to	make	sure	it’s	working	properly.	
	
But	as	you	may	have	guessed	from	the	
name	“debugger,”	its	most	common	use	is	
to	track	down	and	remove	bugs.	Sometimes	
those	bugs	are	exceptions	that	get	thrown.	
But	a	lot	of	the	time,	you’ll	be	using	the	
debugger	to	try	to	find	other	kinds	of	
problems,	like	code	that	gives	a	result	that	
you	don’t	expect.

Q: I’m not sure I totally got the Watch
window. What’s it for, again?

A:	When	you’re	debugging	a	program,	
you	usually	want	to	pay	attention	to	how	
a	few	variables	and	fields	change.	That’s	
where	the	Watch	window	comes	in.	If	you	
	

		
add	watches	for	a	few	variables,	the	Watch	
window	updates	their	values	every	time	you	
step	into,	out	of	or	over	code.	That	lets	you	
monitor	exactly	what	happens	to	them	after	
every	statement,	which	can	be	really	useful	
when	you’re	trying	to	track	down	a	problem.	
	
The	Watch	window	also	lets	you	type	in	any	
statement	you	want,	and	it’ll	evaluate	it.	If	
the	statement	updates	any	of	the	fields	and	
variables	in	your	program,	then	it	does	that,	
too.	That	lets	you	change	values	while	your	
program	is	running,	which	can	be	another	
really	useful	tool	for	reproducing	exceptions	
and	other	bugs.

The catch block
is only executed
when code in the
try block throws
an exception. It
gives you a chance
to make sure
your user has the
information to fix
the problem.

Any changes you make in the Watch window just affect the data in memory, and only last as long as the program is running. Restart your program, and values that you changed will be undone.

Download at WoweBook.Com

458 Chapter 10

An important part of exception handling is that when a statement in
your try block throws an exception, the rest of the code in the block
gets short-circuited. The program’s execution immediately jumps to
the first line in the catch block. But don’t take our word for it...

Debug this

Make sure that you’ve incorporated all of the code from this chapter into the Random
Excuse button in your Excuse Manager. Place a breakpoint on the first line in the Random
Excuse button’s Click event handler. Then run your program in the IDE. Click the Folder
button and specify a folder with a single excuse file in it—and make sure it’s a not a valid
excuse file (any other sort of file will cause it to throw an exception). Press the Random
Excuse button. The debugger should break the program at the breakpoint you placed.
Press the “Step Over” button (or F10) six times to get to the statement that calls the Excuse
constructor. Here’s what your debugger screen should look like:

11

Use Step Into (F11) to step into the new statement. The debugger will jump to the Excuse
constructor, and position its yellow “next statement” bar over the declaration line in the code.
Keep hitting Step Into (F11) to step into the OpenFile() method. Watch what happens when
you hit the Deserialize() line.

22

go with the flow

Use the debugger to follow the try/catch flow

Step over the
statements until
your yellow “next
statement” bar
shows that the
next statement to
get executed will
create the new
Excuse object.

Place a breakpoint
on the first line
of the Random
Excuse button
event handler.

Make sure you use the Step Over (F10)
command in the debugger so it doesn’t
step into the CheckChanged() method.

As soon as you
step into the
new statement
that creates the
Excuse object, the
debugger jumps to
the constructor
code.

Download at WoweBook.Com

you are here 4 459

exception handling

As soon as the debugger executes the Deserialize() statement, the exception is thrown
and the program jumps straight to the first statement in the catch block. It short-circuited
right past the call to UpdateForm() and jumped straight to the catch block.

33

 Be careful with exceptions in a constructor!

You’ve noticed by now that a constructor doesn’t have a return
value, not even void. That’s because a constructor doesn’t
actually return anything. Its only purpose is to initialize an
object—which is a problem for exception handling inside the

constructor. When an exception is thrown inside the constructor, then the
statement that tried to instantiate the class won’t end up with an instance
of the object. That’s why you had to move the try/catch block to the button’s
event handler. That way, if there’s an exception in the constructor, the code
won’t expect CurrentExcuse to contain a valid Excuse object.

Here’s a career
tip: a lot of C#
programming job
interviews include
a question about
how you deal with
exceptions in a
constructor.

Start the program again by pressing the Continue button (or F5). It’ll begin running the
program again, starting with whatever’s highlighted by the yellow “next statement” block—in
this case, the catch block.

44

The debugger
will highlight the
catch statement
with its yellow
“next statement”
block, but it shows
the rest of the
block in grey to
show you that it’s
about to execute
the whole thing.

Download at WoweBook.Com

460 Chapter 10

If you have code that ALWAYS should
run, use a finally block
When your program throws an exception, a couple of things can happen. If the exception
isn’t handled, your program will stop processing and crash. If the exception is handled, your
code jumps to the catch block. But what about the rest of the code in your try block? What
if you were closing a stream, or cleaning up important resources? That code needs to run,
even if an exception occurs, or you’re going to make a mess of your program’s state. That’s
where the finally block comes in really handy. It comes after the try and catch blocks.
The finally block always runs, whether or not an exception was thrown. Here’s how
you’d use it to finish the event handling in the Random Excuse button:

clean up after yourself

private void RandomExcuseButton_Click(object sender, EventArgs e) {
 string[] fileNames = Directory.GetFiles(Folder, “*.excuse”);
 if (fileNames.Length == 0) {
 MessageBox.Show(“Please specify a folder with excuse files in it”,
 “No excuse files found”);
 } else {
 try {
 if (CheckChanged() == true) {
 CurrentExcuse = new Excuse(random, Folder);
 }
 }
 catch (Exception) {
 CurrentExcuse = new Excuse();
 CurrentExcuse.Description = “”;
 CurrentExcuse.Results = “”;
 CurrentExcuse.LastUsed = DateTime.Now;
 MessageBox.Show(
 “Your excuse file was invalid.”,
 “Unable to open a random excuse”);
 }
 finally {
 UpdateForm(false);
 }
 }
}

If the Excuse constructor throws an exception, we
have no way of knowing what’s in CurrentExcuse.
But you do know that no instance of Excuse
was created. So the catch block creates a new
Excuse object and clears out all its fields.

The finally block makes sure that UpdateForm() gets run whether or not an exception was thrown. So if the Excuse constructor successfully read an excuse, it’ll call UpdateForm(), but it’ll also call it if the constructor threw an exception and cleared out the excuse.

Did you notice how catch was followed by (Exception)? When you have a catch statement, you can
follow it with a specific kind of exception telling it what to catch. If you specify (Exception) or leave it out, it
catches all exceptions. But if you only wanted to catch a SerializationException, you could specify that inside
the parentheses instead. Or you could use an IOException, which will catch any file input or output problem.

Download at WoweBook.Com

you are here 4 461

exception handling

Now debug this

Update the Random Excuse button’s event handler with the code on the facing page. Then
place a breakpoint on the first line in the method and debug the program.

11

Run the program normally, and make sure that the Random Excuse button works when you
set the program’s folder to one with a bunch of normal excuse files in it. The debugger should
break at the breakpoint you set:

22

Step through the rest of the Random Excuse button’s event handler and make sure it runs the
way you expect it to. It should finish the try block, skip over the catch block (because no
exceptions were thrown), and then execute the finally block.

33

Now set the program’s folder so that it’s pointed to the folder with one malformed excuse file
in it and click the Random excuse button. It should start executing the try block, and then
jump to the catch block when it throws the exception. After it finishes all of the statements
in the catch block, it’ll execute the finally block.

44

When
the “next
statement”
bar and the
breakpoint are
on the same
line, the IDE
shows you the
yellow arrow
placed over the
big red dot in
the margin.

Download at WoweBook.Com

462 Chapter 10

Q: Back up a second. So every time
my program runs into an exception, it’s
going to stop whatever it’s doing unless I
specifically write code to catch it. How is
that a good thing?

A:	One	of	the	best	things	about	
exceptions	is	that	they	make	it	really	obvious	
when	you	run	into	problems.	Imagine	how	
easy	it	could	be	in	a	complex	application	for	
you	to	lose	track	of	all	of	the	objects	your	
program	was	working	with.	Exceptions	call	
attention	to	your	problems	and	help	you	
root	out	their	causes	so	that	you	always	
know	that	your	program	is	doing	what	it’s	
supposed	to	do.			
Any	time	an	exception	occurs	in	your	
program,	something	you	expected	to	
happen	didn’t.	Maybe	an	object	reference	
wasn’t	pointing	where	you	thought	it	was,	
or	it	was	possible	for	a	user	to	supply	a	
value	you	hadn’t	considered,	or	a	file	you	
thought	you’d	be	working	with	suddenly	isn’t	
available.	If	something	like	that	happened	
and	you	didn’t	know	it,	it’s	likely	that	the	
output	of	your	program	would	be	wrong,	and	
the	behavior	from	that	point	on	would	be	
pretty	different	than	you	expected	when	you	
wrote	the	program.		
Now	imagine	that	you	had	no	idea	the	error	
had	occurred	and	your	users	started	calling	
you	up	with	incorrect	data	and	telling	you	
that	your	program	was	unstable.	That’s	why	
it’s	a	good	thing	that	exceptions	disrupt	
everything	your	program	is	doing.	They	force	
you	to	deal	with	the	problem	while	it’s	easy	
to	find	and	fix.	

Q: Okay, so now what’s a handled
exception and what’s an unhandled
exception?

A:	Whenever	your	program	throws	an	
exception,	the	runtime	environment	will	

			
search	through	your	code	looking	for	a	
catch	block	that	matches	it.	If	you’ve	written	
one,	the	catch	block	will	execute	and	do	
whatever	you	specified	for	that	particular	
exception.	Since	you	wrote	a	catch	block	to	
deal	with	that	error	up	front,	that	exception	is	
considered	handled.	If	the	runtime	can’t	find	
a	catch	block	to	match	the	exception,	it	stops	
everything	your	program	is	doing	and	raises	
an	error.	Then,	you’d	call	the	exception	
unhandled.	

Q: What was that bit about specifying
a particular kind of exception to catch?
Why would I ever want to do that?

A:	You	usually	don’t	want	to	catch	
every	kind	of	exception.	In	fact,	you	
should	do	your	best	to	avoid	catching	
Exception,	and	instead	catch	specific	
exceptions.	For	example,	let’s	say	you	
wanted	your	Excuse	class	to	prevent	a	
FileNotFoundException	from	
getting	back	to	the	form—say,	if	you	wanted	
to	make	it	so	that	if	you	tried	to	open	a	file	
that	wasn’t	found,	it	would	automatically	
create	a	excuse	file	with	that	filename	and	
give	it	some	default	values.	Then	you	could	
add	a	try	block	followed	by	catch	
(FileNotFoundException).	
Then	if	a	file	isn’t	found,	the	class	can	
handle	it—but	an	IOException	or	
SerializationException	would	
not	get	caught,	and	the	exception	handler	
you	added	to	the	form	would	catch	it.	But	
if	you	do	that,	you	have	to	make	sure	that	
there’s	some	method	in	the	call	stack	that	
does	have	a	catch-all	exception	handler,	
otherwise	the	exception	would	be	unhandled.	
And	that	would	cause	the	users	to	see	the	
ugly	“unhandled	exception”	crash.

Q: What happens when you have a
catch that doesn’t specify a particular
exception?

A:	A	catch	block	like	that	will	catch	any	
kind	of	exception	the	try	block	can	throw.	

Q: If a catch block with no specified
exception will catch anything, why would
I ever want to specify?

A:	Good	question.	Because	certain	
exceptions	might	require	different	actions	
to	keep	your	program	moving.	An	exception	
that	happens	when	you	divide	by	zero	might	
have	a	catch	block	where	you	go	back	and	
set	some	number	values	to	save	some	of	
the	data	you’ve	been	working	with.	A	null	
reference	exception	might	require	that	you	
create	new	instances	of	an	object	if	you’re	
going	to	recover.	

Q: Does all error handling happen in a
try/catch/finally sequence?

A:	No.	You	can	mix	it	up	a	bit.	You	could	
have	multiple catch blocks	if	you	wanted	
to	deal	with	lots	of	different	kinds	of	errors.	
You	could	also	have	no	catch	block	at	all.	It’s	
legal	to	have	a	try/finally	block.	That	wouldn’t	
handle	any	exceptions,	but	it	would	make	
sure	that	the	code	in	the	finally	block	ran	
even	if	you	got	stopped	half	way	through	the	
try	block.	But	we’ll	talk	a	lot	more	about	that	
in	a	minute...

An unhandled
exception means your
program will run
unpredictably. That’s
why the program
stops whenever it
runs into one.

exceptions lead to instability

Download at WoweBook.Com

you are here 4 463

exception handling

Pool Puzzle
Your job is to take code snippets from

the pool and place them into the
blank lines in the program. You
can use the same snippet more
than once, and you won’t need
to use all the snippets. Your
goal is to make the program

produce the output.

Note: each snippet
from the pool can be
used more than once!

using System.IO; public static void Main() {

 Kangaroo Joey = new Kangaroo();

 int Koala = Joey.Wombat(

 Joey.Wombat(Joey.Wombat(1)));

 try {

 Console.WriteLine((15 / Koala)

 + “ eggs per pound”);

 }

 catch (___________________) {

 Console.WriteLine(“G’Day Mate!”);

 } }

public class Kangaroo {

 ___________ fs;

 int Croc;

 int Dingo = 0;

 public int Wombat(int Wallaby) {

 _______ __;

 try {

 if (________ > 0) {

 __ = _____.OpenWrite(“wobbiegong”);

 Croc = 0;

 } else if (________ < 0) {

 Croc = 3;

 } else {

 ___ = _____.OpenRead(“wobbiegong”);

 Croc = 1;

 } }

 catch (IOException) {

 Croc = -3;

 }

 catch {

 Croc = 4;

 }

 finally {

 if (______ > 2) {

 Croc ___ Dingo;

 } }

 ________ ______;

 } }

Exception
IOException

NullPointerException
DivideByZeroException

InvalidCastException
OutOfMemoryException

Dingo
Wallaby
Koala
Croc

Platypus

ef
i

fs
int
j

++
-=
+=
==
!�=

FileInfo
File

Directory
Stream

FileStream

Output: G’day Mate!

return

Download at WoweBook.Com

464 Chapter 10

public static void Main() {

 Kangaroo Joey = new Kangaroo();

 int Koala = Joey.Wombat(Joey.Wombat(Joey.Wombat(1)));

 try {

 Console.WriteLine((15 / Koala) + “ eggs per pound”);

 }

 catch (DivideByZeroException) {
 Console.WriteLine(“G’Day Mate!”);

 } }

public class Kangaroo {

 FileStream fs;
 int Croc;

 int Dingo = 0;

 public int Wombat(int Wallaby) {

 Dingo ++;
 try {

 if (Wallaby > 0) {
 fs = File.OpenWrite(“wobbiegong”);
 Croc = 0;

 } else if (Wallaby < 0) {
 Croc = 3;

 } else {

 fs = File.OpenRead(“wobbiegong”);
 Croc = 1;

 } }

 catch (IOException) {

 Croc = -3;

 }

 catch {

 Croc = 4;

 }

 finally {

 if (Dingo > 2) {
 Croc -= Dingo;
 } }

 return Croc;
 } }

Pool Puzzle Solution

one object’s trash is another’s treasure

This catch block only
catches exceptions where
the code divides by zero.

The clue that this is a
FileStream is that it has
an OpenRead() method and
throws an IOException.

You already know that you always have
to close files when you’re done with
them. If you don’t, the file will be
locked open, and if you try to open it
again it’ll throw an IOException.

This code opens a file called “wobbiegong” and keeps it open the first time it’s called. Later on, it opens the file again. But it never closed the file, which causes it to throw an IOException.

Joey.Wombat() is called three
times, and the third time it
returns zero. That causes
the WriteLine() to throw a
DivideByZeroException.

Download at WoweBook.Com

you are here 4 465

exception handling

Exception obj

ec
t

Use the Exception object to get
information about the problem
We’ve been saying all along that .NET generates an Exception object when
an exception is thrown. When you write your catch block, you have access to
that object. Here’s how it works:

string mess
age = ex.Message;

An object is humming along, doing its thing, when it encounters some
something unexpected and throws an exception.

11

Uh-oh—what the
heck happened?

Luckily, its try/catch block caught the exception. Inside the catch
block, it gave the Exception a name: ex.

 try {

 DoSomethingRisky();

 }

 catch (Exception ex) {

 string message = ex.Message;

 MessageBox.Show(message, “An error occurred”);

 }

22

The exception object stays around until the catch block is done.
Then the ex reference disappears, and it’s garbage collected.

33

When you specify a specific type of
exception in the catch block, if you
provide a variable name then your code
can use it to access the Exception object.

An object

An object

EX

Download at WoweBook.Com

466 Chapter 10

Use more than one catch block to handle
multiple types of exceptions
You know that you can catch a specific type of exception . . . but what if you write code
where more than one problem can occur? In these cases, you may want to write code
that handles each different type of exception. That’s where using more than one catch
block comes in. Here’s an example from code from the beehive nectar processing plant.
You can see how it catches several kinds of exceptions. In some cases it uses properties
in the Exception object. It’s pretty common to use the Message property, which usually
contains a description of the exception that was thrown.

public void ProcessNectar(NectarVat vat, Bee worker, HiveLog log) {
 try {
 NectarUnit[] units = worker.EmptyVat(vat);
 for (int count = 0; count < worker.UnitsExpected, count++) {
 stream hiveLogFile = log.OpenLogFile();
 worker.AddLogEntry(hiveLogFile);
 }
 }
 catch (IndexOutOfRangeException) {
 vat.Emptied = true;
 }
 catch (IOException ex) {
 worker.AlertQueen(“Log file is corrupted: ” + ex.Message);
 }
 catch (Exception ex) {
 worker.AlertQueen(“An unspecified error happened: ”
 + “Message: ” + ex.Message + “\r\n”
 + “Stack trace: ” + ex.StackTrace + “\r\n”
 + “Data: ” + ex.Data + “\r\n”);
 }
 finally {
 vat.Seal();
 worker.FinishedJob();
 }
}

When you have several catch blocks,
they’re examined in order. In this code,
first it checks to see if there was an index
out of range. If not, then it’ll check for a
file I/O exception. The last catch block
is a general catch-all exception that will
get executed for any exception that wasn’t
already caught.

This statement uses three properties in the Exception object: Message, which has the message you’d normally see in the exception window in the IDE (“Attempted to divide by zero”); StackTrace, which gives you a summary of the call stack; and Data, which sometimes contains pertinent data that’s associated with the exception.

This catch block assigns the exception to the variable ex,
which it can use to get information from the Exception object.

You can also call the
exception’s ToString()
method to get a lot of
the pertinent data into
your MessageBox.

playing catch

If you won’t use the Exception object,
there’s no need to declare it.

It’s fine for two
blocks to use the
same name (“ex”)
for the Exception.

Download at WoweBook.Com

you are here 4 467

exception handling

BeeProfile ob
jec

t

H
ive object

BeeProfile ob
jec
t

One class throws an exception,
another class catches the exception
When you’re building a class, you don’t always know how it’s going to be used. Sometimes
other people will end up using your objects in a way that causes problems –and sometimes
you do it yourself ! That’s where exceptions come in.

The whole point behind throwing an exception is to see what might go wrong, so you can
put in place some sort of contingency plan. You don’t usually see a method that throws
an exception and then catches it. An exception is usually thrown in one method and then
caught in a totally different one—usually in a different object.

Instead of this...
Without good exception handling, one exception can
halt the entire program. Here’s how it would work in
a program that manages bee profiles for a queen bee.

...we can do this.
The BeeProfile object can intercept the exception and
add a log entry. Then it can turn around and throw
the exception back to the hive, which catches it and
recovers gracefully.

The BeeProfile object tried to read a file but it wasn’t there so File.Open() threw an exception. The hive didn’t catch it, so it went unhandled.

stream = File.Open(profile);

try {
 stream = File.Open(profile);
} catch (FileNotFoundException ex) {
 WriteLogEntry(“unable to open ” +
 profile + “: ” + ex.Message();
 throw ex;
}

try {
 prof = new BeeProfile(“prof.dat”);
} catch (FileNotFoundException) {
 Hive.RecreateBeeProfile(“prof.dat”);
}

This BeeProfile object’s constructor expects the filename for a profile data file that it’ll open using File.Open(). If there’s a problem opening the file, the program bombs out.

Now when the hive tries to create
a new BeeProfile object by passing
it an invalid filename, it can trust
BeeProfile to log the error and
then alert it to the problem by
throwing an exception. The Hive
can catch the exception and take
some corrective action—in this case,
recreating the bee profile.

Notice how the BeeProfile object intercepts the exception, logs it using its WriteLogEntry() method, and then throws it again so it’s passed along to the hive.

new
 BeePro

file(“prof.dat”)

new
 BeePro

file(“prof.dat”)

H
ive object

Of course, one method in a single class can throw and catch its own exceptions.

Download at WoweBook.Com

468 Chapter 10

Bees need an OutOfHoney exception
Your classes can throw their own exceptions. For example, if you get a null parameter in a method
that was expecting a value, it’s pretty common to throw the same exception a .NET method would:

 throw new ArgumentException();

But sometimes you want your program to throw an exception because of a special condition that
could happen when it runs. The bees we created in the hive, for example, consume honey at a
different rate depending on their weight. If there’s no honey left to consume, it makes sense to have
the hive throw an exception. You can create a custom exception to deal with that specific error
condition just by creating your own class that inherits from Exception and then throwing the
exception whenever you encounter a specific error.

public class OutOfHoneyException : System.Exception {

 public OutOfHoneyException(string message) : base(message) { }

}

public class HoneyDeliverySystem {

 ...

 public void FeedHoneyToEggs() {

 if (honeyLevel == 0) {

 throw new OutOfHoneyException(“The hive is out of honey.”);

 } else {

 foreach (Egg egg in Eggs) {

 ...

}

public partial class Form1 : Form {

...

 private void consumeHoney_Click(object sender, EventArgs e) {

 HoneyDeliverySystem delivery = new HoneyDeliverySystem();

 try {

 delivery.FeedHoneyToEggs()

 }

 catch (OutOfHoneyException ex){

 MessageBox.Show(ex.Message, “Warning: Resetting Hive”);

 Hive.Reset();

 }

 }

}

You can catch a custom exception by name just like any other exception, and do whatever you need to do to handle it.

This throws a new
instance of the
exception object.

You need to create a class for
your exception and make sure
that it inherits from System.
Exception. Notice how we’re
overloading the constructor so we
can pass an exception message.

In this case, if the hive is out of honey none
of the bees can work, so the simulator can’t
continue. The only way to keep the program
working once the hive runs out of honey is
to reset it, and we can do that by putting
the code to reset it in the catch block.

If there’s honey in the hive, the exception will never get thrown and this code will run.

Exception

Message	
StackTrace	
GetBaseException()
ToString()

your Exception

Message	
StackTrace	
GetBaseException()
ToString()

your very own exception

Your methods can throw this exception if they get
invalid or unexpected values in their parameters.

Download at WoweBook.Com

you are here 4 469

exception handling

public static void Main() {
 Console.Write(“when it “);
 ExTestDrive.Zero(“yes”);
 Console.Write(“ it “);
 ExTestDrive.Zero(“no”);
 Console.WriteLine(“.”);
}

class MyException : Exception { }

output:

when it thaws it throws.

Exception Magnets
Arrange the magnets so the application writes
the output to the console.

public class ExTestDrive {
 public static void Zero(string test) {

 Console.Write
(“r”);

 }
}

try {

Console.Write(“t”);

Console.Write(“o”);

doRisky(test);

}

} catch (MyException) {

Console.Write(“a”);

} finally {

Console.Write(“w”);

Console.Write(“s”);

}

static void doRisky(String t) {
 Console.Write(“h”);

if (“yes”.Equals(t)) {

throw new MyException();

}
Every value type—including constants like

“yes” or 37 or true—has built-in methods.
So “yes”.Equals(t) returns true if the
variable t contains the string “yes”.

Download at WoweBook.Com

470 Chapter 10

public class ExTestDrive {
 public static void Zero(string test) {

 Console.Write(“r”);
 }
}

try {

Console.Write(“t”);

Console.Write(“o”);

doRisky(test);

}

Console.Write(“a”);

} finally {

Console.Write(“w”);

Console.Write(“s”);

}

static void doRisky(String t) {
 Console.Write(“h”);

if (“yes”.Equals(t)) {

}

public static void Main() {
 Console.Write(“when it “);
 ExTestDrive.Zero(“yes”);
 Console.Write(“ it “);
 ExTestDrive.Zero(“no”);
 Console.WriteLine(“.”);
}

class MyException : Exception { }

output:

when it thaws it throws.

Exception Magnets Solution
Arrange the magnets so the application writes the
output to the console.

a little review

} catch (MyException) {

throw new MyException();

This line defines a
custom exception called
MyException, which gets
caught in a catch block in
the code.

The doRisky() method only throws an exception if it’s passed the string “yes”.

This line only gets executed
if doRisky() doesn’t throw
the exception.

The Zero() method either
prints “thaws” or “throws”,
depending on whether it was
passed “yes” or something else
as its test parameter.

The finally block makes sure
that the method always prints
“w”. And the “s” is printed outside
the exception handler, so it
always prints, too.

Download at WoweBook.Com

you are here 4 471

exception handling

Any	statement	can	throw	an	exception	if	something	fails	
at	runtime.	

Use	a	try/catch	block	to	handle	exceptions.	
Unhandled	exceptions	will	cause	your	program	to	stop	
execution	and	pop	up	an	error	window.

Any	exception	in	the	block	of	code	after	the	try	
statement	will	cause	the	program’s	execution	to	
immediately	jump	to	the	first	statement	in	the	block	of	
code	after	catch.

The	Exception	object	gives	you	information	
about	the	exception	that	was	caught.	If	you	specify	an	
Exception	variable	in	your	catch	statement,	that	
variable	will	contain	information	about	any	exception	
thrown	in	the	try	block:

 try {
 // statements that might
 // throw exceptions
 } catch (IOException ex) {
 // if an exception is thrown,
 // ex has information about it
 }

There	are	many	different	kinds	of	exception	that	
you	can	catch.	Each	has	its	own	object	that	inherits	
from	Exception.	Try	to	avoid	just	catching	
Exception—catch	specific	exceptions.

Each	try	can	have	more	than	one	catch:
 try { ... }
 catch (NullReferenceException ex) {
 // these statements will run if a
 // NullReferenceException is thrown
 }
 catch (OverflowException ex) { ... }
 catch (Exception ex) {
 // Any exception that hasn’t been
 // caught will jump to this block
 }

Your	code	can	throw	an	exception	using	throw:
 throw;

 throw new Exception(“Exception message”);

You	can	create	a	custom	exception	by	inheriting	from	
the	Exception	base	class.

 class CustomException : Exception;

Most	of	the	time,	you	only	need	to	throw	exceptions	
that	are	built	into	.NET,	like	ArgumentException.	The	
reason	you	use	different	kinds	of	exceptions	is	so	
that	you	can	give more information to your users.	
Popping	up	a	window	with	the	text	“An	unknown	
error	has	occurred”	is	not	nearly	as	useful	as	an	error	
message	that	says	“The	excuse	folder	is	empty.	Please	
select	a	different	folder	if	you	want	to	read	excuses.”

An easy way to avoid a lot of problems:
using gives you try and finally for free
You already know that using is an easy way to make sure that
your files always get closed. But what you didn’t know that it’s
really just a C# shortcut for try and finally!

using (YourClass c
 = new YourClass()) {

 // code

}

YourClass c = new YourClass();

try {

 // code

} finally {

 c.Dispose();
}

When you use a using statement, you’re
taking advantage of finally to make sure its Dispose() method is always called.

is the same as this

Remember, when you declare a reference in
a “using” statement, its Dispose() method is
automatically called at the end of the block.

Download at WoweBook.Com

472 Chapter 10

using (Stream Log = new File.Write(“log.txt”))
using (Nectar nect = new Nectar(16.3, hive, Log)) {
 Bee.FlyTo(flower);
 Bee.Harvest(nect);
 Bee.FlyTo(hive);
}

class Nectar : IDisposable {
 private double amount;
 private BeeHive hive;
 private Stream hiveLog;
 public Nectar(double amount, BeeHive hive, Stream hiveLog) {
 this.amount = amount;
 this.hive = hive;
 this.hiveLog = hiveLog;
 }
 public void Dispose() {
 Hive.Add(amount);
 Hive.WriteHiveLogEntry(hiveLog,
 amount + “mg of nectar was added”);
 }
}

The IDisposable interface only has one
member: the Dispose() method. Whatever
you put in this method will get executed
at the end of the using statement.

Your object must implement IDisposable if you want to
use your object within a using statement.

You’ll see nested using statements
like this when you need to declare
two IDisposable references in the
same block of code.

Exception avoidance: implement
IDisposable to do your own clean up
Streams are great, because they already have code written to close
themselves when the object is disposed of. But what if you have your own
custom object, and it always needs to do something when it’s disposed of ?
Wouldn’t it be great if you could write your own code that got run if your
object was used in a using statement?

C# lets you do just that with the IDisposable interface. Implement
IDisposable, and write your clean up code in the Dispose()
method, like this:

This particular code always logs the amount of nectar added. It’s important, and must happen, so we put it in the Dispose() method.
We can use multiple using statements now. First, let’s use a built-in object
Stream, which implements IDisposable, . Then, we’ll work with
our updated Nectar object, which also implements IDisposable:

The Nectar object uses the Log stream,
which will close automatically at the end
of the outer using statement.

Then the Bee object uses the nect object, which will log automatically at the end of the inner using statement.

an ounce of prevention

IDisposable is a really effective way to avoid common exceptions and problems. Make sure you use using statements any time you’re working with any class that implements it.

You can only use a class in a “using”
statement if it implements IDisposable;
otherwise, your program won’t compile.

Download at WoweBook.Com

you are here 4 473

exception handling

If try/catch is so great, why doesn’t the
IDE just put it around everything? Then we
wouldn’t have to write all these try/catch
blocks on our own, right?

You want to know what type of exception is
thrown, so you can handle that exception.
There’s more to exception handling than just printing out a
generic error message. For instance, in the excuse finder, if we
know we’ve got a FileNotFoundException, we might
print an error that suggested where the right files should be
located. If we have an exception related to databases, we
might send an email to the database administrator. All that
depends on you catching specific exception types.

This is why there are so
many classes that inherit
from Exception, and why
you may even want to write
your own classes to inherit
from Exception.

Q: Can I only use objects that
implement IDisposable with a using
statement?

A:	Yes.	IDisposable	is	tailor-made	
to	work	with	using	statements,	and	
adding	a	using	statement	is	just	like	
creating	a	new	instance	of	a	class,	except	
that	it	always	calls	its	Dispose()	
method.

Q:	Can you put any statement inside a
using block?

A:	Definitely.	The	whole	idea	with	
using	is	that	it	helps	you	make	sure	that	
every	object	you	create	with	it	is	disposed.	
But	what	you	do	with	those	objects	is	entirely	
up	to	you.	In	fact,	you	can	create	an	object	
with	a	using	statement	and	never	even	
use	it	inside	the	block.	But	that	would	be	
pretty	useless,	so	we	don’t	recommend	
doing	that.

Q: Can you call Dispose() outside
of a using statement?

A:	Yes.	You	don’t	ever	actually	need	
to	use	a	using	statement.	You	can	call	
Dispose()	yourself	when	you’re	done	
with	the	object.	Or	you	can	do	whatever	
cleanup	is	necessary—like	calling	a	stream’s	
Close()	method	manually.	But	if	you	use	
a	using	statement,	it’ll	make	your	code	
easier	to	understand	and	prevent	problems	
that	happen	if	you	don’t	dispose	your	objects.

Q: You mentioned a “try/finally” block.
Does that mean it’s okay to have a try and
finally without a catch?

A:	Yes!	You	can	definitely	have	a	try	block	
without	a	catch,	and	just	a	finally.	It	looks	
like	this:	

		
try {
 DoSomethingRisky();
 SomethingElseRisky();
}
finally {
 AlwaysExecuteThis();
}
If	DoSomethingRisky()	throws	an	
exception,	then	the	finally	block	will	
immediately	run.

Q: Does Dispose() only work with files
and streams?

A:	No,	there	are	a	lot	of	classes	that	
implement	IDisposable,	and	when	you’re	
using	one	you	should	always	use	a	using	
statement.	(You’ll	see	some	of	them	in	the	
next	few	chapters.)	And	if	you	write	a	class	
that	has	to	be	disposed	in	a	certain	way,	
then	you	can	implement	IDisposable,	too.

Download at WoweBook.Com

474 Chapter 10

The worst catch block EVER: comments
A catch block will let your program keep running if you want. An
exception gets thrown, you catch the exception, and instead of
shutting down and giving an error message, you keep going. But
sometimes, that’s not such a good thing.

Take a look at this Calculator class, which seems to be acting
funny all the time. What’s going on?

You should handle your exceptions, not bury them

public class Calculator {

...

 public void Divide(float dividend, float divisor) {

 try {

 this.quotient = dividend / divisor;

 } catch {

 // Note from Jim: we need to figure out a way to prevent

 // people from entering in zero in a division problem.

 }

 }

}

Just because you can keep your program running doesn’t mean
you’ve handled your exceptions. In the code above, the calculator
won’t crash... at least, not in the Divide() method. But what if
some other code calls that method, and tries to print the results?
If the divisor was zero, then the method probably returned an
incorrect (and unexpected) value.

Instead of just adding a comment, and burying the exception,
you need to handle the exception. And if you’re not able to
handle the problem, don’t leave empty or commented catch
blocks! That just makes it harder for someone else to track down
what’s going on. It’s better to let the program continue to throw
exceptions, because then it’s easy to figure out what’s going wrong.

Here’s the problem. If divisor
is zero, this will create a
DivdeByZeroException.

But there’s a catch block. So why are we still getting errors?

the one that got away

The programmer thought that he could bury his exceptions by using an empty catch block, but he just caused a headache for whoever had to track down problems with it later.

Download at WoweBook.Com

you are here 4 475

exception handling

public class Calculator {

...

 public void Divide(float dividend, float divisor) {

 try {

 this.quotient = dividend / divisor;

 } catch (Exception ex) {

 StreamWriter sw = new StreamWriter(@”C:\Logs\errors.txt”);

 sw.WriteLine(ex.getMessage());

 sw.Close();

 }

 }

}

I get it. It’s sort of like using
exception handling to place a
marker in the problem area.

This still needs to be fixed, but
short-term, this makes it clear
where the problem occurred.

Handling exceptions doesn’t always mean
the same thing as FIXING exceptions.
It’s never good to have your program bomb out. But it’s
way worse to have no idea why it’s crashing or what it’s
doing to users’ data. That’s why you need to be sure that
you’re always dealing with the errors you can predict and
logging the ones you can’t.

Temporary solutions are okay (temporarily)
Sometimes you find a problem, and know it’s a problem, but aren’t
sure what to do about it. In these cases, you might want to log the
problem, and note what’s going on. That’s not as good as handling
the exception, but it’s better than doing nothing.

Here’s a temporary solution to the calculator:

Download at WoweBook.Com

476 Chapter 10

A few simple ideas for exception handling

Design your code to handle failures GRACEFULLY.

Give your users USEFUL error messages.

Throw built-in .NET exceptions where you can. Only throw
custom exceptions if you need to give custom information.

Think about code in your try block that COULD get
short-circuited.

Avoid unnecessary file system errors... ALWAYS USE
A USING BLOCK ANY TIME YOU USE A STREAM!

 ALWAYS ALWAYS ALWAYS!

... and most of all ...

some quick suggestions

Download at WoweBook.Com

you are here 4 477

exception handling

Use	what	you	know	about	try/catch/finally	to	improve	the	exception	handling	in	
Brian’s	excuse	manager.

You’re not done yet. Open up the excuse manager, select a folder, enter data into the
“Description” and “Last Results” boxes, but don’t enter a Last Used date. Now select
a folder and try saving the excuse. Did you get this ArgumentOutOfRange exception?

33

Use the debugger to track down the exception. This particular exception is totally
avoidable—you can fix the program and make sure that the exception never happens?
(Hint: This has nothing to do with adding a try/catch block. You’ll need to figure out why the

“Last Used” date is causing a problem. Look carefully at the exception message for clues.)

Add exception handling to the Open button’s Click event handler. Just make a simple
try/catch block that pops up a message box. Here’s what it should pop up if you try to
open up a file that’s not a real excuse file:

11

One last thing. Before the program threw the ArgumentOutOfRange exception, it saved out
a file. Load that file in—you should get the same exception. And you’ll get a different exception
if you try to open a file that’s not a valid excuse file. Add an exception handling block nested
inside the one you added in step 2 to make sure it doesn’t fail when you try to load an
invalid excuse file (which can happen in several situations). Here’s what to do:

Declare a boolean variable called clearForm above the try/catch block. You’ll set this
to true if there’s an exception, and check it later to see if the form should be cleared.

Add another try/catch block inside the one you just added to the Open button.

Add a finally block to the outer try/catch to reset the form to its original empty
state. Reset LastUsed.Value to DateTime.Now (which returns the current date) if
the clearForm variable is set to true.

1.

2.

3.

44

You’ll get this exception message with a really small file, but a bigger one will give you a different error (“The input stream is not a valid binary format...”). Your message box should work either way.

Download at WoweBook.Com

478 Chapter 10

Use	what	you	know	about	try/catch/finally	to	improve	the	exception	handling	to	
Brian’s	excuse	manager.

exercise solution

private void open_Click(object sender, EventArgs e) {
 if (CheckChanged()) {

 openFileDialog1.InitialDirectory = selectedFolder;

 openFileDialog1.Filter =

 “Excuse files (*.excuse)|*.excuse|All files (*.*)|*.*”;

 openFileDialog1.FileName = description.Text + “.excuse”;

 DialogResult result = openFileDialog1.ShowDialog();

 if (result == DialogResult.OK) {

 bool clearForm = false;

 try {

 currentExcuse = new Excuse(openFileDialog1.FileName);

 try {

 UpdateForm(false);

 }

 catch {

 MessageBox.Show(“The excuse file ‘“

 + openFileDialog1.FileName + “’ is invalid”,

 “Unable to open the excuse”);

 clearForm = true;

 }

 }

 catch (Exception ex) {

 MessageBox.Show(“An error occurred while opening the excuse ‘“

 + openFileDialog1.FileName + “’\n” + ex.Message,

 “Unable to open the excuse”, MessageBoxButtons.OK,

 MessageBoxIcon.Error);

 clearForm = true;

 }

 finally {

 if (clearForm) {

 description.Text = “”;

 results.Text = “”;

 lastUsed.Value = DateTime.Now;

 }

 }

 }

 }

}

Here’s the try/catch block to create a pop up
error, in case problems occur when the form calls
the Excuse constructor to load an excuse.

Here’s a nested try/catch. It handles exceptions that happen if the file gets loaded but has invalid data in it. That’s not the same as problems arising from the Excuse constructor.

Both catch blocks set clearFo
rm to true so

that this finally block knows that the form

should be reset. It’s okay to
have code that

interacts with your finally block, since y
ou

know finally blocks will always run.

Here’s the messagebox from the outer try/
catch block. It prints the exception message.

Download at WoweBook.Com

you are here 4 479

exception handling

1 2

3 4

5 6

7

8 9

10 11 12

13

14 15

16

17

18

Across
5. The base class that DivideByZeroException and
FormatException inherit from
8. An ____________Exception happens when you try to cast a
value to a variable that can't hold it
10. If the next statement is a method, "Step _____" tells the
debugger to execute all the statements in the method and break
immediately afterwards
12. If you ____ your exceptions, it can make them hard to track
down
13. This method is always called at the end of a using block
14. The field in the Exception object that contains a string with a
description
15. One try block can have multiple _______ blocks
17. The ________ block contains any statements that absolutely
must be run after an exception is handled
18. An __________Exception means you tried to cram a
number that was too big into a variable that couldn't hold it

Down
1. The window in the IDE that you can use to check your
variables' values
2. You'll get an exception if you try to divide by this
3. Toggle this if you want the debugger to stop execution when it
hits a specific line of code
4. "Step ____" tells the debugger to execute the rest of the
statements in the current method and then break
6. What a reference contains if it doesn't point to anything
7. You can only declare a variable with a using statement if it
implements this interface
9. When a statement has a problem, it ________ an exception
11. A program that handles errors well.
16. If the next statement is a method, "Step _____" tells the
debugger to execute the first statement in that method

Exceptioncross

Download at WoweBook.Com

480 Chapter 10

W
1

Z
2

B
3

A O
4

E

R T U R

E
5

X C E P T I O N
6

A H U I
7

K I
8

N V A L I D C A S T
9

P L I H

O
10

V E R
11

S B
12

U R Y

I O P O

N B D
13

I S P O S E W

T U S S

M
14

E S S A G E C
15

A T C H

T I
16

B

F
17

I N A L L Y

T E

O
18

V E R F L O W

Across
5. The base class that DivideByZeroException and
FormatException inherit from [EXCEPTION]
8. An ____________Exception happens when you try to cast a
value to a variable that can't hold it [INVALIDCAST]
10. If the next statement is a method, "Step _____" tells the
debugger to execute all the statements in the method and break
immediately afterwards [OVER]
12. If you ____ your exceptions, it can make them hard to track
down [BURY]
13. This method is always called at the end of a using block
[DISPOSE]
14. The field in the Exception object that contains a string with a
description [MESSAGE]
15. One try block can have multiple _______ blocks [CATCH]
17. The ________ block contains any statements that absolutely
must be run after an exception is handled [FINALLY]
18. An __________Exception means you tried to cram a
number that was too big into a variable that couldn't hold it
[OVERFLOW]

Down
1. The window in the IDE that you can use to check your
variables' values [WATCH]
2. You'll get an exception if you try to divide by this [ZERO]
3. Toggle this if you want the debugger to stop execution when it
hits a specific line of code [BREAKPOINT]
4. "Step ____" tells the debugger to execute the rest of the
statements in the current method and then break [OUT]
6. What a reference contains if it doesn't point to anything
[NULL]
7. You can only declare a variable with a using statement if it
implements this interface [IDISPOSABLE]
9. When a statement has a problem, it ________ an exception
[THROWS]
11. A program that handles errors well. [ROBUST]
16. If the next statement is a method, "Step _____" tells the
debugger to execute the first statement in that method [INTO]

Exceptioncross Solution

get it? finally? yeah, we’re funny

Download at WoweBook.Com

you are here 4 481

exception handling

Good ol’ Brian. Never
misses a day of work unless
he’s got a real problem.

Your exception handling skills did more
than just prevent problems. They ensured
that Brian’s boss has no idea anything
went wrong in the first place! Good exception

handling is invisible
to your users. The
program never crashes,
and if there are
problems, they are
handled gracefully,
without confusing
error messages.

Brian finally gets
his vacation...
Now that Brian’s got a handle on his
exceptions, his job’s going smoothly
and he can take that well-deserved
(and boss-approved!) vacation day.

...and things are looking up
back home!

Download at WoweBook.Com

Download at WoweBook.Com

this is a new chapter 483

events and delegates11

What your code does when
you’re not looking

Your objects are starting to think for themselves.
You can’t always control what your objects are doing. Sometimes things...happen. And

when they do, you want your objects to be smart enough to respond to anything that

pops up. And that’s what events are all about. One object publishes an event, other

objects subscribe, and everyone works together to keep things moving. Which is

great, until you’ve got too many objects responding to the same event. And that’s when

callbacks will come in handy.

Your objects are starting to think for themselves.
You can’t always control what your objects are doing. Sometimes things...happen. And

when they do, you want your objects to be smart enough to respond to anything that

pops up. And that’s what events are all about. One object publishes an event, other

objects subscribe, and everyone works together to keep things moving. Which is

great, until you’ve got too many objects responding to the same event. And that’s when

callbacks will come in handy.

I’d better subscribe to that
TreePopsUpOutOfNowhere
event, or I’ll have to call my
OnBrokenLeg() method.

Download at WoweBook.Com

484 Chapter 11

Ever wish your objects could think for themselves?
Suppose you’re writing a baseball simulator. You’re going to model a game, sell the
software to the Yankees (they’ve got deep pockets, right?), and make a million bucks.
You create your Ball, Pitcher, Umpire, and Fan objects, and a whole lot more.
You even write code so that the Pitcher object can catch a ball.

Now you just need to connect everything together. You add an OnBallInPlay()
method to Ball, and now you want your Pitcher object to respond with its event
handler method. Once the methods are written, you just need to tie the separate
methods together:

We want the Pitcher to
catch this ball.Ball.OnBallInPlay(70, 82)

Pitcher.CatchBall(70, 90)

Here’s the problem. You really want your Ball object to only worry about
getting hit, and your Pitcher to object only worry about catching balls
that come its way. In other words, you really don’t want the Ball telling the
Pitcher, “I’m coming to you.”

When the ball gets
hit, OnBallInPlay()
gets called.

The ball was hit with a 70 degree trajectory from homeplate, and it’s going to travel 82 feet.

The pitcher can handle the angle the ball was hit, and the distance (90 is greater than 82).

But how does an object KNOW to respond?

The Ball doesn’t know which fielder will pick it up... maybe the Pitcher, or maybe the Catcher, or maybe ThirdBaseman who decided to ScootIn().

You want an
object to worry
about itself, not
other objects.
You’re separating
the concerns of
each object.

This doesn’t mean that objects ca
n’t

interact. It just means that a Ball

shouldn’t determine who fields it.

That’s not the Ball’s job.

Ball object

Pitcher objec
t

Ball object

That’s a standard way of
naming methods—we’ll talk
more about it later.

publisher, meet subscriber

Download at WoweBook.Com

you are here 4 485

events and delegates

Fan object
Pitcher objec

t

Umpire object

What you need to do when the ball is hit is use an event. An event is simply
something that’s happened in your program. Then, other objects can
respond to that event—like our Pitcher object.

Even better, more than one object can listen for events. So the Pitcher could
listen for a ball-being-hit event, as well as a Catcher, ThirdBaseman, an
Umpire, even a Fan. And each object can respond to the event differently.

So what we want is a Ball object that can raise an event. Then, we want to
have other objects to subscribe to that particular type of event... that
just means listen to it, and get notified when that event occurs.

BallInPlay event raised

When an EVENT occurs... objects listen

~ If we
subscribe to the

BallInPlay event, we’ll
always get notified when
the ball’s in play.

event, noun.
a thing that happens,
especially something of
importance. The solar
eclipse was an amazing
event to behold.

The Pitcher and other
players want to try and
field the ball.

The Fan object
subscribes in case a ball goes into the seats.

The umpire checks every ball to see if it’s fair or foul, and monitors what happens.

Events look like lightning
bolts in the IDE too.
You’ll see a an icon like
this next to events in
IntelliSense and in the
properties window.

When a Ball gets
hit, it raises a
BallInPlay event.

Any object can subscribe to this event... and the Ball object doesn’t need to know what objects are subscribed.

Once your object “hears” about an event, you can set up some code to run.
That code is called an event handler. An event handler gets information
about the event, and runs every time that event occurs.

Remember, all this happens without your intervention at runtime. So you
write code to raise an event, and then you write code to handle those events,
and fire up your application. Then, whenever an event is raised, your handler
kicks into action... without you doing anything. And, best of all, your objects have
separate concerns. They’re worrying about themselves, not other objects.

Want to DO SOMETHING with an event?
You need an event handler

We’ve been doing t
his

all along. Every time

you click a butto
n, an

event is raised, a
nd

your code respon
ds to

that event.

Ball object

Download at WoweBook.Com

486 Chapter 11

BallEventArgs

One object raises its event, others listen for it...
Let’s take a look at how events, event handlers, and subscription
works in C#:

 Something triggers an event
The ball gets hit. It’s time for the Ball object to raise a new event.

2

 The ball raises an event
A new event gets created (we’ll talk about exactly how that works in just a minute).
That event also has some arguments, like the velocity of the ball, as well as
its trajectory. Those arguments are attached to the event as an instance of an
EventArgs object, and then the event is sent off, available to anyone listening for it.

3

The Ball object starts ev
erything

rolling. It’s job is to
 raise an event

when it gets hit, and
 goes into play.

BallInPlay is an event that gets fired off by by Ball. BallInPlay referenc
es a new

object, BallEventArgs, which is

just a class
that define

s fields

for Velocity
 and Trajectory.

~
BallInPlay event

Ball object

Ball object

Sometimes we’ll talk
about raising an event,
or firing it, or invoking
it—they’re all the same
thing. People just use
different names for it.

Pitcher ob

je
ct

Umpire ob

je
ct

Fan obje
ct

 First, other objects subscribe to the event
Before the Ball can raise its BallInPlay event, other objects need to
subscribe to it. That’s their way of saying, anytime a BallInPlay event
occurs, we want to know about it.

1

These objects a
re saying

they want to know anytime a

BallInPlay event is r
aised.Every object adds its own event handler to listen for the event—just like you add button1_Click() to your programs to listen for Click events.

~
BallInPlay event

if a tree falls in the woods...

Download at WoweBook.Com

you are here 4 487

events and delegates

Fan object

Pitcher objec
t

Umpire object

BallEventArgs

~
BallInPlay event

Pitcher ob

je
ct

Umpire ob

je
ct

Fan obje
ct

BallEventArgs

~
BallInPlay eventBall object

Then, the other objects handle the event

Subscribrs get notification
Since the Pitcher, Umpire, and Fan object subscribed to the Ball
object’s BallInPlay event, they all get notified—all of their event
handler methods get called one after another.

4

Once an event is raised, all the objects subscribed to that event get
notification, and can do something:

As soon as the ball raises its event, it creates a BallEventArgs object with the ball’s trajectory and distance so it can pass it to the subscribers’ event handlers.

Each object handles the event
Now, Pitcher, Umpire, and Fan can all handle the BallInPlay event in their
own way. But they don’t all run at the same time—their event handlers get called
one after another, with a reference to a BallEventArgs object as its parameter.

5

The Pitcher object chec
ks

BallEventArgs, and if the ba
ll

is close, it fields t
he ball.

The Umpire watches. It might even subscribe to other events, like BallFielded or BallThrown, to further react what happens.

The Fan objects checks BallEventArgs to see if the ball is close enough to catch.

Here’s what each object that han
dles the

event gets to work with. It also gets a

reference to the object
that raised the event.

Events are handled on a
first-come, first-served
basis—the object that
subscribes first gets
notified first.

An event handler is just the method in the subscriber object that gets run when the event is raised.

Download at WoweBook.Com

488 Chapter 11

Connecting the dots
Now that you’ve got a handle on what’s going on,
let’s take a closer look at how the pieces fit together.
Luckily, there are only a few moving parts.

 We need an object for the event arguments
Remember, our BallInPlay event has a few arguments that it
carries along. So we need a very simple object for those arguments.
.NET has a standard class for it called EventArgs, but that class
has no members. Its sole purpose is to allow your event arguments
object to be passed to the event handlers that use it. Here’s the class
declaration:

 public class BallEventArgs : EventArgs

11

BallEventArgs
Trajectory
Distance

EventArgs

It’s a good idea (althoug
h not required)

for your event argument objects to

inherit from EventArgs. That’s an

empty class—it has no public members.

The ball will use these
properties to pass
information hit to the
event handlers about
where the ball’s been hit.

Next we’ll need to define the event in the class that’ll raise it
The ball class will have a line with the event keyword—this is how it informs
other objects about the event, so they can subscribe to it. This line can be
anywhere in the class—it’s usually near the property declarations. But as long as
it’s in the Ball class, other objects can subscribe to a ball’s event. It looks like this:

 public event EventHandler BallInPlay;

22

Events are usually public. This
event is defined in the Ball
class, but we’ll want Pitcher,
Umpire, etc., to be able to
reference it. You could make
it private if you only wanted
other instances of the same
class to subscribe to it.

After the event keyword comes EventHandler. That’s not a reserved C# keyword—it’s defined as part of .NET. The reason you need it is to tell the objects subscribing to the event what their event handler methods should look like.

When you use EventHandler, you’re telling other methods that their event handlers need to take two parameters, an
object named sender and an EventArgs reference named e. sender is a reference to the object that raised the event, and e is a reference to an EventArgs object.

It means that you can
upcast your EventArgs
object in case you
need to send it to an
event that doesn’t
handle it in particular.

i came here for an argument

Download at WoweBook.Com

you are here 4 489

events and delegates

The subscribing classes need event handler methods
Every object that has to subscribe to the Ball’s BallInPlay event needs to have an event
handler. You already know how event handlers work—every time you added a method
to handle a Button’s Click event or a NumericUpDown’s ValueChanged event, the
IDE added an event handler method to your class. The Ball’s BallInPlay event is no
different, and an event handler for it should look pretty familiar:

 void ball_BallInPlay(object sender, EventArgs e)

33

There’s no C# rule that says your event handlers
need to be named a certain way, but there’s a
pretty standard naming convention: the name of
the object reference, followed by an underscore,
followed by the name of the event.

The class that has this particular event
handler method has a Ball reference variable
called ball, so its BallInPlay event handler
starts with “ball_”, followed by the name
of the event being handled, “BallInPlay”.

The BallInPlay event declaration listed its event
type as EventHandler, which means that it
needs to take two parameters—an object called
sender and an EventArgs called e—and have no
return value.

Each individual object subscribes to the event
Once we’ve got the event handler set up, the various Pitcher, Umpire, ThirdBaseman, and Fan
objects need to hook up their own event handlers. Each one of them will have its own specific
ball_BallInPlay method that responds differently to the event. So if there’s a Ball object
reference variable or field called ball, then the += operator will hook up the event handler:

 ball.BallInPlay += new EventHandler(ball_BallInPlay);

44

Turn the page, there’s a little more...

This tells C# to hook the event handler up to the BallInPlay event of whatever object the ball reference is pointing to.

The += operator tells
C# subscribe an event
handler to an event.

This part specifies which
event handler method to
subscribe to the event.

The event handler method’s signature
(its parameters and return value) has to
match the one defined by EventHandler
or the program won’t compile.

Download at WoweBook.Com

490 Chapter 11

 If you raise
an event with
no handlers,
it’ll throw an
exception.

If no other objects have
added their event handlers
to an event, it’ll be null. So
always check to make sure
your event handler isn’t
equal to null before you raise
it. If you don’t, it’ll throw a
NullReferenceException.

Pitcher objec
t

Ball object

BallInPlay(this, e)

ball_BallInPlay()

The ball gets hit, and
the Ball object goes
into action...

...by creating a new BallEventArgs object with the right data...
...and
passing
it to the
event being
raised.

Now the
event is
active. Who’s
subscribed?The pitcher hooked up its

event handler to the ball’s
BallInPlay event.

So the pitc
her’s

method gets
called,

with the righ
t data,

and can do
what it

wants with the eve
nt.

~
BallInPlay event

BallEventArgs

A Ball object raises its event to notify subscribers that it’s in play
Now that the events are all set up, the Ball can raise its event in response to something else
that happens in the simulator. Raising an event is easy—it just calls the BallInPlay event.

if (BallInPlay != null)

 BallInPlay(this, e);

55

Use a standard name when you add a method to raise an event
Take a minute and go the code for any form and type the keyword override any place you’d
declare a method. As soon as you press space, an IntelliSense window pops up:

There are a huge number of events that a Form object can raise, and every one of them has
its own method that raises it. The form’s OnDoubleClick() raises the DoubleClick event, and
that’s the whole reason it’s there. So the Ball event will follow the same convention: we’ll
make sure it has a method called OnBallInPlay that takes a BallEventArgs object as a
parameter. The baseball simulator will call that method any time it needs the ball to raise its
BallInPlay event—so when the simulator detects that the bat hit the ball, it’ll create a new
instance of BallEventArgs with the ball’s trajectory and distance and pass it to OnBallInPlay().

Notice how each of these methods
takes an EventArgs as a parameter?
They all pass that parameter on to
the event when they raise it.

e is a new
BallEventArgs object.

the event of the season

Download at WoweBook.Com

you are here 4 491

events and delegates

Q: Why do I need to include the word
EventHandler when I declare an event? I
thought the event handler was what the
other objects used to subscribe to the
events.

A:	That’s	true—when	you	need	to	
subscribe	to	an	event,	you	write	a	method	
called	an	event	handler.	But	did	you	notice	
how	we	used	EventHandler	in	the	
the	event	declaration	(step	#2)	and	the	in	
line	to	subscribe	the	event	handler	to	it	(step	
#4)?	What	EventHandler	does	is	it	
defines	the	signature	of	the	event—it	tells	
the	objects	subscribing	to	the	event	exactly	
how	they	need	to	define	their	event	handler	
methods.	Specifically,	it	says	that	if	you	want	
to	subscribe	a	method	to	this	event,	it	needs	
to	take	two	parameters	(an	object	and	
an	EventArgs	reference)	and	have	a	
void	return	value.

Q: What happens if I try to use a
method that doesn’t match the ones that
are defined by EventHandler?

A:	Then	your	program	won’t	compile.	
The	compiler	will	make	sure	that	you	
don’t	ever	accidentally	subscribe	an	
incompatible	event	handler	method	to	an	
event.	That’s	why	the	standard	event	handler,	
EventHandler,	is	so	useful—as	soon	
as	you	see	it,	you	know	exactly	what	your	
event	handler	method	needs	to	look	like.

Q:Wait, “standard” event handler?
There are other kinds of event handlers?

A:Yes!	Your	events	don’t	have to	send	
an	object	and	an	EventArgs.	In	fact,	they	
can	send	anything	at	all—or	nothing	at	
all!	Look	at	the	last	line	in	the	IntelliSense	
window	on	the	bottom	on	the	facing	page.	
Notice	how	the	OnDragDrop	method	takes	
a	DragEventArgs	reference	instead	of	an	
EventArgs	reference?	DragEventArgs	
inherits	from	EventArgs,	just	like	
BallEventArgs	does.	The	form’s	DragDrop	
event	doesn’t	use	EventHandler.	It	uses	
something	else,	DragEventArgs,	and	if	
you	want	to	handle	it,	your	event	handler	
method	needs	to	take	an	object	and	a	
DragEventArgs	reference.	
	
The	parameters	of	the	event	are	defined	by	
something	called	a	delegate—EventHandler	
and	DragEventArgs	are	two	examples	of	
delegates.	But	we’ll	talk	more	about	that	in	
a	minute.

Q: So I can probably have my event
handlers return something other than
void, too, right?

A:	Well,	you	can,	but	it’s	often	a	bad	idea.	
If	you	don’t	return	void	from	your	handler,	
you	can’t	chain	event	handlers.	That	means	
you	can’t	connect	more	than	one	handler	
to	each	event.	Since	chaining	is	a	handy	
feature,	you’d	do	best	to	always	return	void	
from	your	event	handlers.

Q:Chaining? What’s that?

A:	It’s	how	more	than	one	object	can	
subscribe	to	the	same	event—they	chain	
their	event	handlers	onto	the	event,	one	after		

	
another.	We’ll	talk	a	lot	more	about	that	in	a	
minute,	too.

Q: Is that why I used += when when
I added my event handler? Like I’m
somehow adding a new handler to
existing handlers?

A:	Exactly!	Anytime	you	add	an	event	
handler,	you	want	to	use	+=.	That	way,	your	
handler	doesn’t	replace	existing	handlers.	
It	just	becomes	one	in	what	may	be	a	very	
long	chain	of	other	event	handlers,	all	of	
which	are	listening	to	the	same	event.

Q:Why does the ball use “this” when
it raises the BallInPlay() event?

A:Because	that’s	the	first	parameter	
of	the	standard	event	handler.	Have	you	
noticed	how	every	Click	event	handler	
method	has	a	parameter	“object	sender”?	
That	parameter	is	a	reference to the object
that’s raising the event.	So	if	you’re	
handling	a	button	click,	sender	points	
to	the	button	that	was	clicked.	And	if	you’re	
handling	a	BallInPlay	event,	sender	will	
point	to	the	Ball	object	that’s	in	play—and	
the	ball	sets	that	parameter	to	this	when	
it	raises	the	event.

A SINGLE event is
always raised by a
SINGLE object.

But a SINGLE
event can be
responded to by
MULTIPLE objects.

Download at WoweBook.Com

492 Chapter 11

The IDE creates event handlers for you automatically
Most programmers follow the same convention for naming their event handlers. If
there’s a Ball object that has a BallInPlay event, and the name of the reference
holding the object is called ball, then the event handler would typically be named
ball_BallInPlay(). That’s not a hard-and-fast rule, but if you write your code
like that, it’ll be a lot easier for other programmers to read.

Luckily, the IDE makes it really easy to name your event handlers properly. It has a
feature that automatically adds event handler methods for you when you’re
working with a class that raises an event. It shouldn’t be too surprising that the IDE
can do this for you—after all, this is exactly what it does when you double-click on a
button in your form.

Start a new Windows application and add the Ball and BallEventArgs
Here’s the Ball class:

public class Ball {
 public event EventHandler BallInPlay;
 public void OnBallInPlay(BallEventArgs e) {
 if (BallInPlay != null)
 BallInPlay(this, e);
 }
}

And here’s the BallEventArgs class:

public class BallEventArgs : EventArgs {
 public int Trajectory { get; private set; }
 public int Distance { get; private set; }
 public BallEventArgs(int Trajectory, int Distance) {
 this.Trajectory = Trajectory;
 this.Distance = Distance;
 }
}

11

Do this

Start adding the Pitcher’s constructor
Add a new Pitcher class to your project. Then give it a constructor that takes a Ball reference
called ball as a parameter. There will be one line of code in the constructor to add its event
handler to ball.BallInPlay. Start typing the statement, but don’t type += yet.

public Pitcher(Ball ball) {
 ball.BallInPlay
}

22

that’ll save you some typing

Download at WoweBook.Com

you are here 4 493

events and delegates

The IDE will add your event handler, too
You’re not done—you still need to add a method to chain onto the event. Luckily, the IDE takes care
of that for you, too.

new EventHandler(

Hit the tab key again to make the IDE add this event handler method to your Pitcher class. The
IDE will always follow the objectName_HandlerName() convention:

void ball_BallInPlay(object sender, EventArgs e) {

 throw new NotImplementedException();

}

44

Type += and the IDE will finish the statement for you
As soon as you type += in the statement, the IDE displays a very useful little box:

public Pitcher(Ball ball) {
 ball.BallInPlay +=
}

33

As soon as you press the tab key, the IDE will finish the statement for you. It’ll look like this:

public Pitcher(Ball ball) {
 ball.BallInPlay += new EventHandler(ball_BallInPlay);
}

Finish the pitcher’s event handler
Now that you’ve got the event handler’s skeleton added to your class, fill in the rest of its code. The
pitcher should catch any low balls, otherwise he covers first base.

void ball_BallInPlay(object sender, EventArgs e) {
 if (e is BallEventArgs) {
 BallEventArgs ballEventArgs = e as BallEventArgs;
 if ((ballEventArgs.Distance < 95) && (ballEventArgs.Trajectory < 60))
 CatchBall();
 else
 CoverFirstBase();
 }
}

55

The IDE always fills in this
NotImplementedException() as a placeholder
so if you run the code it’ll throw an exception
that tells you that you still need to implement
something it filled in automatically.

You’ll add these methods
in a minute.

When you double-click on a button in the form designer, the IDE does the exact same trick—adding an event handler automatically—except that it adds the code to the form’s InitializeComponent() method in the Form1.Designer.cs file instead of just adding it to the end of the class file.

Since BallEventArgs is a subclass of
EventArgs, we’ll downcast it using the
as keyword so we can use its properties.

Download at WoweBook.Com

494 Chapter 11

2 It’s	time	to	put	what	you’ve	learned	so	far	into	practice.	Your	job	is	to	complete	the	Ball	and	
Pitcher	classes,	add	a	Fan	class,	and	make	sure	they	all	work	together	with	a	very	basic	
version	of	your	baseball	simulator.	

Complete the Pitcher class.
Below is what we’ve got for Pitcher. Add the CatchBall() and CoverFirstBase()
methods. Both should print out that the catcher has either caught the ball, or run to first base.

11

public class Pitcher {
 public Pitcher(Ball ball) {
 ball.BallInPlay += new EventHandler(ball_BallInPlay);
 }

 void ball_BallInPlay(object sender, EventArgs e) {
 if (e is BallEventArgs){
 BallEventArgs ballEventArgs = e as BallEventArgs;
 if ((ballEventArgs.Distance < 95) && (ballEventArgs.Trajectory < 60))
 CatchBall();
 else
 CoverFirstBase();
 }
 }
}

Write a Fan class.
Create another class called Fan. Fan should also subscribe to the BallInPlay
event in its constructor. The fan’s event handler should see if the distance is
greater than 400 feet and the trajectory is greater than 30 (a home run), and
grab for a glove to try and catch the ball if it is. If not, the fan should scream
and yell. Write out what’s going on with the fan to the console.

22

You’ll need to implement these
two methods to write a line of
output to the console.

Pitcher object

Fan object

?Look at the output window on the facing page to see exactly what it should print.

put it all together

Download at WoweBook.Com

you are here 4 495

events and delegates

2

Build a very simple simulator.
Create a new application. The application should have two NumericUpDown
controls: one for the ball’s distance, and one for its trajectory. Add a button,
labeled “Play ball!” When “Play ball!” is clicked, a ball is hit with the values in
the two NumericUpDowns. Your form should look something like this:

44

Create the following output.
See if you can make your simulator generate this output with three successive
balls put into play. Write down the values you used to get the result below:

55

Ball 3:

Trajectory:

Distance:

Ball 2:

Trajectory:

Distance:

Ball 1:

Trajectory:

Distance:

The value for trajectory
can range from 0 to
100, so set its Minimum
property to 0, Maximum
to 100 and Value to 20. The Distance can range from 0 to 500, with a default value of 100.

Don’t forget to cast the
Value properties to ints
before you use them.

Download at WoweBook.Com

496 Chapter 11

public class Ball
{
 public event EventHandler BallInPlay;
 public void OnBallInPlay(BallEventArgs e)
 {
 if (BallInPlay != null)
 BallInPlay(this, e);
 }
}

public class BallEventArgs : EventArgs {
{
 public int Trajectory { get; private set; }
 public int Distance { get; private set; }
 public BallEventArgs(int Trajectory, int Distance)
 {
 this.Trajectory = Trajectory;
 this.Distance = Distance;
 }
}

public class Fan {
 public Fan(Ball ball)
 {
 ball.BallInPlay += new EventHandler(ball_BallInPlay);
 }

 void ball_BallInPlay(object sender, EventArgs e)
 {
 if (e is BallEventArgs) {
 BallEventArgs ballEventArgs = e as BallEventArgs;
 if (ballEventArgs.Distance > 400 && ballEventArgs.Trajectory > 30)
 Console.WriteLine(“Fan: Home run! I’m going for the ball!”);
 else
 Console.WriteLine(“Fan: Woo-hoo! Yeah!”);
 }
 }
}

It’s	time	to	put	what	you’ve	learned	so	far	into	practice.	Your	job	is	to	complete	the	Ball	and	
Pitcher	classes,	add	a	Fan	class,	and	make	sure	they	all	work	together	with	a	very	basic	
version	of	your	baseball	simulator.	

Read-only
automatic
properties work
really well in event
arguments because
the event handlers
only read the data
passed to them.

The OnBallInlay() method just raises the BallInPlay event—but it has to check make sure it’s not null, otherwise it’ll throw an exception.

The Fan object’s constructor
chains its event handler onto the
BallInPlay event.

The fan’s BallInPlay
event handler looks
for any ball that’s
high and long.

exercise solution

Download at WoweBook.Com

you are here 4 497

events and delegates

public class Pitcher {
 public Pitcher(Ball ball) {
 ball.BallInPlay += new EventHandler(ball_BallInPlay);
 }
 void ball_BallInPlay(object sender, EventArgs e) {
 if (e is BallEventArgs) {
 BallEventArgs ballEventArgs = e as BallEventArgs;
 if ((ballEventArgs.Distance < 95) && (ballEventArgs.Trajectory < 60))
 CatchBall();
 else
 CoverFirstBase();
 }
 }
 private void CatchBall() {
 Console.WriteLine(“Pitcher: I caught the ball”);
 }
 private void CoverFirstBase() {
 Console.WriteLine(“Pitcher: I covered first base”);
 }
}

public partial class Form1 : Form {
 Ball ball = new Ball();
 Pitcher pitcher;
 Fan fan;

 public Form1() {
 InitializeComponent();
 pitcher = new Pitcher(ball);
 fan = new Fan(ball);
 }

 private void playBall_Click(object sender, EventArgs e) {
 BallEventArgs ballEventArgs = new BallEventArgs(
 (int)trajectory.Value, (int)distance.Value);
 ball.OnBallInPlay(ballEventArgs);
 }
}

75
105

48
80

40
435

Here are the values we used to get the output. Yours might be a little different.

You already have the
pitcher’s BallInPlay event
handler. It looks for any
low balls.

The form needs one ball, one fan, and one pitcher. It hooks the fan and
pitcher up to the ball in its constructor.

When the button’s clicked, the form tells the
pitcher to pitch the ball to the batter, which tells
the ball to fire off its BallInPlay event, which calls
the event handlers in the pitcher and fan objects.

Ball 3:

Trajectory:

Distance:

Ball 2:

Trajectory:

Distance:

Ball 1:

Trajectory:

Distance:

Download at WoweBook.Com

498 Chapter 11

The forms you’ve been building all use events
Every time you’ve created a button, double-clicked on it in the designer,
and written code for a method like button1_Click(), you’ve been
working with events. Do this

Visual Studio did more than just write a little method declaration for you, though. It also
hooked the event handler up to the Form objects Click event. Open up Form1.Designer.cs and
use the Quick Find feature in the IDE to search for the text Form1_Click in the current
project. You’ll find this line of code:

 this.Click += new System.EventHandler(this.Form1_Click);

Now run the program and make sure your code works!

33

Create a new Windows Application project. Go to the Properties window for the form.
There are icons at the top of the window—click on the one that’s got a lightning bolt icon
on it. That will bring up the events page in the Properties window:

11

Scroll down to Click and double-
click on the word “Click”. When
you do, the IDE will add a new
click event handler to your form
that gets fired every time you
click on it. And it’ll add a line
to Form1.Designer.cs to hook the
event handler up to the event.

You can see all of the
events for a control:
just click on it and
then click on this
events button in the
properities window.

You can create an event that
will fire every time someone
clicks on the form by selecting
Form1_Click next to Click in the
events window.

 Event handlers always need to be “hooked up”.

If you drag a button onto your form and add a method
called button1_Click(), that has the right parameters,
but isn’t registered to listen to your button, the method
won’t ever get called. Double-click on the button in the

designer—the IDE will see the default event handler name is taken, so
it’ll add an event handler for the button called button1_Click_1().

Double-click on the “Click” row in the events page. The IDE will automatically add an event
handler method to your form called Form1_Click. Add this line of code to it:

 private void Form1_Click(object sender, EventArgs e) {
 MessageBox.Show(“You just clicked on the form”);
 }

22

introducing the events page

Download at WoweBook.Com

you are here 4 499

events and delegates

Form1 object

One event, multiple handlers
Here’s a really useful thing that you can do with events: you can chain them
so that one event or delegate calls many methods, one after another. Let’s
add a few buttons to your application to see how it works.

Add these two methods to your form:

 private void SaySomething(object sender, EventArgs e) {
 MessageBox.Show(“Something”);
 }
 private void SaySomethingElse(object sender, EventArgs e) {
 MessageBox.Show(“Something else”);
 }

Now add two buttons to your form. Double-click on each button to add its event
handler. Here’s the code for both event handlers:

 private void button1_Click(object sender, EventArgs e) {
 this.Click +=new EventHandler(SaySomething);
 }
 private void button2_Click(object sender, EventArgs e) {
 this.Click +=new EventHandler(SaySomethingElse);
 }

Now run your program and do this:

Click the form—you’ll see a message box pop up that says, “You just clicked on the form”.

Now click button1 and then click on the form again. You’ll see two message boxes
pop up: “You just clicked on the form” and then “Something”.

Click button2 twice and then click on the form again. You’ll see four message boxes:
“You just clicked on the form”, “Something”, “Something else”, and “Something else”.

So what happened?

Every time you clicked one of the buttons, you chained another method—either Something() or
SomethingElse()—onto the form’s Click event. You can keep clicking the buttons, and they’ll keep
chaining the same methods onto the event. The event doesn’t care how many methods are
chained on, or even if the same method is in the chain more than once. It’ll just call them all every
time the event fires, one after another, in the order they were added.

≥

≥

≥

SaySomething()

SaySomethingElse()

~
Click event

Form1_Click()

SaySomethingElse()
The same method
can be chained on
to an event more
than once.

Q: When I added a new event
handler to the Pitcher object, why did
the IDE make it throw an exception?

A:	It	added	code	to	throw	a	
NotImplementedException	to	remind	you	
that	you	still	need	to	implement	code	there.	
That’s	a	really	useful	exception,	because	
you	can	use	it	as	a	placeholder	just	like	
the	IDE	did.	For	example,	you’ll	typically	
use	it	when	you	need	to	build	the	skeleton	
of	a	class	but	you	don’t	want	to	fill	in	all	
the	code	yet.	That	way,	if	your	program	
throws	that	exception,	you	know	it’s	
because	you	still	need	to	finish	the	code,	
and	not	because	your	program	is	broken.

4

5

6

When you click these buttons, they chain different event handlers onto the form’s
Click event.

That means you won’t see
anything when you click the
buttons! You’ll need to click
on the form, because the
buttons change the form’s
behavior by modifying its
Click event.

Download at WoweBook.Com

500 Chapter 11

Connecting event senders with event receivers
One of the trickiest things about events is that the sender of the event has
to know what kind of event to send—including the arguments to pass to the
event. And the receiver of the event has to know about the return type and the
arguments its handler methods must use.

But—and here’s the tricky part—you can’t tie the sender and receiver together.
You want the sender to send the event and not worry about who receives it. And the
receiver cares about the event, not the object that raised the event. So both sender
and receiver focus on the event, not each other.

Ball needs to know
about BallInPlay,
because it needs to
raise that event.

Pitcher needs to know about BallInPlay, so it can respond to that event, and build an appropriate event handler.

Ball does NOT want to worry
about Pitcher. It doesn’t care
what type of object works with it:
Fan, Pitcher, Umpire, etc.

~
BallInPlay event

“My people will get in touch with your people.”

You know what this code does:

 Ball currentBall;

It creates a reference variable that can point to any Ball object. It’s not tied
to a single Ball. Instead, it can point to any ball object—or it can be null, and
not point to anything at all.

An event needs a similar kind of reference—except instead of pointing to an
object, it needs one that points to a method. Every event needs to keep track
of a list of methods that are subscribed to it. You’ve already seen that they can
be in other classes, and they can even be private. So how does it keep track of
all of the event handler methods that it needs to call?

Pitcher object

Ball object

givers and receivers

Download at WoweBook.Com

you are here 4 501

events and delegates

del-e-gate, noun.
a person sent or
authorized to represent
others. The president sent
a delegate to the summit.

A delegate STANDS IN for an actual method
One of the most useful aspects of events is that when an event fires, it has no idea
whose event handler methods it’s calling. Anyone who happens to subscribe to an event
gets his event handler called. So how does the event manage that?

It uses a C# type called a delegate. A delegate lets you create a reference variable, but
instead of referring to an instance of a class, it refers to a method inside a class.

You’ve actually already been using delegates thoughout this chapter! When you
created the BallInPlay event, you used EventHandler. Well, an EventHandler
is just a delegate. If you right-click on EventHandler in the IDE and select “Go to
definition”, this is what you’ll see (try it yourself):

public delegate void EventHandler(object sender, EventArgs e);

A delegate adds a new type to your project
When you add a delegate to your project, you’re adding a delegate type. And when you use it to create a field or
variable, you’re creating an instance of that delegate type. So create a new project. Then add a new class file to
the project called ReturnsAString.cs. But instead of putting a class inside it, add a single line:

 public delegate string ReturnsAString();

Go to the form code and add this field to the form:

 ReturnsAString someMethod;

Now build your program—it compiles! (It gets a warning because you never used that field—that’s okay.) As soon as
you added your new delegate to the program, it created a new type called ReturnsAString. If you use that type to
declare a variable, you can set that variable equal to any method that takes no parameters and returns a string. Try it
out—add this method to your code:

 private string HiThere() {
 return “Hi there!”;
 }

Add a button that has these three lines. Click it and see what happens:

 someMethod = new ReturnsAString(HiThere);
 string message = someMethod();
 MessageBox.Show(message);

Do this

So this delegate can be
used to reference any
method that takes an
object and an EventArgs
and has no return value.

When you create a
delegate, all you need
to do is specify the
signature of methods
that it can point to.

This specifies the return value of the delegate’s
signature—which means an EventHandler can only
point to methods with void return values.

The name of this delegate is EventHandler.

You can set someMethod just like
any other variable, But when you call
it like a method, it calls whatever
method it happens to point to.

This method’s signature
matches ReturnsAString.

ReturnsAString is a delegate type that you’ve added to your
project. Now you can use it to declare variables and fields.

someMethod is an instance of the delegate type ReturnsAString.

Download at WoweBook.Com

502 Chapter 11

Do this
Delegates in action
There’s nothing mysterious about delegates—in fact, they
don’t take much code at all to use. Let’s use them to help a
restaurant owner sort out his top chef ’s secret ingredients.

Create a new Windows project and add a delegate
Delegates usually appear outside of any other classes, so add a new class file to your project and
call it GetSecretIngredient.cs. It will have exactly one line of code in it:

 public delegate string GetSecretIngredient(int amount);

This delegate can be used to create a variable that can point to any method that takes one int
parameter and returns a string.

11

Add a class for the first chef, Suzanne
Suzanne.cs will hold a class that keeps track of the first chef ’s secret ingredient. It has a private
method called SuzannesSecretIngredient() with a signature that matches GetSecretIngredient.
But it also has a read-only property—and check out that property’s type. It returns a
GetSecretIngredient. So other objects can use that property to get a reference to her
SuzannesIngredientList() method.

 public class Suzanne {
 public GetSecretIngredient MySecretIngredientMethod {
 get {
 return new GetSecretIngredient(SuzannesSecretIngredient);
 }
 }
 private string SuzannesSecretIngredient(int amount) {
 return amount.ToString() + “ ounces of cloves”;
 }
 }

22

Then add a class for the second chef, Amy
Amy’s method works a lot like Suzanne’s:

public class Amy {
 public GetSecretIngredient AmysSecretIngredientMethod {
 get {
 return new GetSecretIngredient(AmysSecretIngredient);
 }
 }
 private string AmysSecretIngredient(int amount) {
 if (amount < 10)
 return amount.ToString()
 + “ cans of sardines -- you need more!”;
 else
 return amount.ToString() + “ cans of sardines”;
 }
}

33

Amy’s GetSecretIngredient property
returns a new instance of the
GetSecretIngredient delegate that’s
pointing to her secret ingredient method.

Amy’s secret
ingredient method
also takes an int
called amount and
returns a string,
but it returns a
different string
from Suzanne’s.

Suzanne’s secret
ingredient method
takes an int
called amount and
returns a string
that describes her
secret ingredient.

delegate your authority

Download at WoweBook.Com

you are here 4 503

events and delegates

Create a new Windows project and add a delegate
Build this form.

Here’s the code for the form:

GetSecretIngredient ingredientMethod = null;
Suzanne suzanne = new Suzanne();
Amy amy = new Amy();

private void useIngredient_Click(object sender, EventArgs e) {
 if (ingredientMethod != null)
 Console.WriteLine(“I’ll add ” + ingredientMethod((int)amount.Value));
 else
 Console.WriteLine(“I don’t have a secret ingredient!”);
}

private void getSuzanne_Click(object sender, EventArgs e) {
 ingredientMethod = new GetSecretIngredient(suzanne.MySecretIngredientMethod);
}

private void getAmy_Click(object sender, EventArgs e) {
 ingredientMethod = new GetSecretIngredient(amy.AmysSecretIngredientMethod);
}

44

Use the debugger to explore how delegates work
You’ve got a great tool—the IDE’s debugger—that really help you get a handle on how delegates
work. Do the following steps:

Start by running your program. First click the “Get the ingredient” button—it should write a
line to the console that says, “I don’t have a secret ingredient.”

Click the “Use Suzanne’s delegate” button—that takes the form’s ingredientMethod
field (which is a GetSecretIngredient delegate) and set it equal to whatever Suzanne’s
GetSecretIngredient property returns. That property returns a new instance of the
GetSecretIngredient type that’s pointing to the SuzannesSecretIngredient() method.

Click the “Get the ingredient” button again. Now that the form’s ingredientMethod
field is pointing to SuzannesSecretIngredient(), it calls that, passing it the value in the
numericUpDown control and writing its output to the console.

Click the “Use Amy’s delegate” button. It uses the Amy.GetSecretIngredient property to set
the form’s ingredientMethod field to point to the AmysSecretIngredient() method.

Click the “Get the ingredient” method one more time. Now it calls Amy’s method.

Now use the debugger to see exactly what’s going on. Place a breakpoint on the first line
of each of the three methods in the form. Then restart the program (which resets the
ingredientMethod so that it’s equal to null), and start over with the above five steps. Use
the Step Into (F11) feature of the debugger to step through every line of code. Watch what
happens when you click “Get the ingredient”. It steps right into the Suzanne and Amy
classes, depending on which method the ingredientMethod field is pointing to.

≥

≥

≥

≥

≥

≥

55

Download at WoweBook.Com

504 Chapter 11

Pool Puzzle

Your job is to take snippets from the pool
and place them into the blank lines in the
code. You can use the same snippet more
than once, and you won’t need to use all
the snippets. Your goal is to complete the
code for a form that writes this output to
the console when its button1 button is
clicked.

Output
Fingers is coming to get you!

Note: each thing from
the pool can be used
more than once

public Form1() {

 InitializeComponent();

 this.______ += new EventHandler(Minivan);

 this.______ += new EventHandler(____________);

}

void Towtruck(object sender, EventArgs e) {

 Console.Write(“is coming ”);

}

void Motorcycle(object sender, EventArgs e) {

 button1.______ += new EventHandler(____________);

}

void Bicycle(object sender, EventArgs e) {

 Console.WriteLine(“to get you!”);

}

void ____________(object sender, EventArgs e) {

 button1.______ += new EventHandler(Dumptruck);

 button1.______ += new EventHandler(____________);

}

void ____________(object sender, EventArgs e) {

 Console.Write(“Fingers ”);

}

Load
Save
Open
Close
Click
Scroll

+
++
==
-=
!�=

Van
Car

Minivan
Motorcycle

Tricycle

Airplane
Bicycle

Dumptruck
Towtruck
Flatbed

event
delegate

int
private
public

some events are too public

Download at WoweBook.Com

you are here 4 505

events and delegates

BatEve
ntA

rg
s

Ball object

Bat object

Any object can subscribe to a public event...
Suppose we add a new class to our simulator, a Bat class, and that class adds a
HitTheBall event into the mix. Here’s how it works: if the simulator detects that the
player hit the ball, it calls the Bat object’s OnHitTheBall() method, which raises a
HitTheBall event.

So now we can add a bat_HitTheBall method to the Ball class that subscribes to
the Bat object’s HitTheBall event. Then when the ball gets hit, its own event handler
calls its OnBallInPlay() method to raise its own event, BallInPlay, and the chain
reaction begins. Fielders field, fans scream, umpires yell... we’ve got a ball game.

bat.OnHitTheBall() bat_HitTheBall()

Now its event handler can
take information about
how hard the swing was,
figure out the distance
and trajectory, and raise a
BallInPlay event.

~
HitTheBall event

The simulator detects that
the bat collided with the ball,
so it calls the bat object’s
OnHitTheBall() method.

Ball subscribed to the
HitTheBall event.

...but that’s not always a good thing!
There’s only ever going to be one ball in play at any time. But if the Bat
object uses an event to announce to the ball that it’s been hit, then any Ball
object can subscribe to it. And that means we’ve set ourself up for a nasty
little bug—what happens if a programmer accidentally adds three more
Ball objects? Then the batter will swing, hit, and four different balls
will fly out into the field!

Ball objec
t

Ball object

bat_HitTheBall()bat_HitTheBall()

Uh-oh! These balls were
supposed to be held in reserve
in case the first one was hit
out of the park.

BatEve
ntA

rg
s

~
HitTheBall event

Ball objec
t

bat_HitTheBall()

Ball object

bat_HitTheBall()

But a careless programmer subscribed
them all to the bat’s HitTheBall
event... so when the bat hit the ball
that the pitcher threw, all four of
them flew out into the field!

Download at WoweBook.Com

506 Chapter 11

public Form1() {
 InitializeComponent();
 this.Load += new EventHandler(Minivan);
 this.Load += new EventHandler(Motorcycle);
}
void Towtruck(object sender, EventArgs e) {
 Console.Write(“is coming ”);
}
void Motorcycle(object sender, EventArgs e) {

 button1.Click += new EventHandler(Bicycle);
}
void Bicycle(object sender, EventArgs e) {
 Console.WriteLine(“to get you!”);
}
void Minivan(object sender, EventArgs e) {
 button1.Click += new EventHandler(Dumptruck);
 button1.Click += new EventHandler(Towtruck);
}
void Dumptruck(object sender, EventArgs e) {
 Console.Write(“Fingers ”);
}

The constructor
chains two event
handlers onto
the load events.
They get fired
off as soon
as the form is
loaded. The two Load event handlers hook up three separate event handlers to the button’s Click event handler.When the button

is clicked, it calls
the three event
handlers that are
chained to it.

The Case of the Golden Crustacean
Henry “Flatfoot” Hodgkins is a TreasureHunter. He’s hot on the trail of one of the most
prized possessions in the rare and unusual aquatic-themed jewelry markets: a jade-encrusted
translucent gold crab. But so are lots of other TreasureHunters. They all got a reference to
the same crab in their constructor, but Henry wants to claim the prize first.

In a stolen set of class diagrams, Henry discovers that the GoldenCrab class raises a
RunForCover event every time anyone gets close to it. Even better, the event includes

NewLocationArgs, which detail where the crab is moving to. But none of the other
treasure hunters know about the event, so Henry figures he can cash in.

Henry adds code to his constructor to register his treasure_RunForCover() method
as an event handler for the RunForCover event, on the crab reference he’s got. Then,

he sends a lowly underling after the crab, knowing it will run away, hide, and raise the
RunForCover event—giving Henry’s treasure_RunForCover() method all the information
he needs.

Everything goes according to plan, until Henry gets the new location and rushes to grab the
crab. He’s stunned to see three other TreasureHunters already there, fighting over the crab.

How did the other treasure hunters beat Henry to the crab?

Five Minute
Mystery
Five Minute
Mystery

callbacks to the rescue

Pool Puzzle
Solution

Answers on page 511.

Download at WoweBook.Com

you are here 4 507

events and delegates

Ball objec
t

Ball object

Ball object

Ball object
Bat object

Use a callback instead of an event to hook up
exactly one object to a delegate
Our system of events only works if we’ve got one Ball and one Bat. If you’ve got several Ball
objects, and they all subscribe to the public event HitTheBall, then they’ll all go flying when
the event is raised. But that doesn’t make any sense... it’s really only one Ball object that got hit.
We need to let the one ball that’s being pitched hook itself up to the bat, but we need to do it in a
way that doesn’t allow any other balls to hook themselves up. And that’s what a callback is—it’s
a way of using a delegate so the object that’s calling it is guaranteed to only call the one method
that it needs to call, and no other method can chain itself onto the delgate.

Here’s how the callback will work:

HitTheBall() OnBallInPlay()

BallHasBeenHit()

BallHasBeenHit()

BallHasBeenHit()

The Bat will keep its delegate field private
The easiest way to keep the wrong Ball objects from chaining themselves onto the Bat’s
delegate is for the bat to make it private. That way, it has control over which Ball object’s
method gets called.

11

The Bat’s constructor takes a delegate that points to a method in the ball
When the ball is in play, it creates the new instance of the bat, and it passes the Bat object a
pointer to its OnBallInPlay() method. This is called a callback method because the Bat is
using it to call back to the object that instantiated it.

22

When the bat hits the ball, it calls the callback method
But since the bat kept its delegate private, it can be 100% sure that no other ball has been hit.
That solves the problem!

33

private

hitBallCallback

Bat object

hitTheBallCallback
The Ball object passes a delegate
reference to its own OnBallInPlay()
method to the Bat’s constructor.
The bat saves that delegate in its
private hitTheBallCallback field.

The other balls can’t
chain themselves onto
the delegate because
it’s a private field in
the Bat object.

Now the Bat object can
call its hitBallCallback
delegate, which calls
the Ball object’s
OnBallInPlay() method.

Download at WoweBook.Com

508 Chapter 11

Callbacks use delegates, but NOT events
A callback is a different way of using a delegate. It’s not a new
keyword or operator. It just describes a pattern—a way that you use
delegates with your classes so that one object can tell another object,

“Notify me when this happens—and don’t tell anyone else!”

We set the callback in the Bat object’s constructor. But in some cases, it makes more sense to set up the callback method using a public method or property’s set accessor.

Do this
 Add another delegate to your Baseball project
Since the Bat will have a private delegate field that points to the Ball object’s OnBallInPlay()
method, we’ll need a delegate that matches its signature:

 public delegate void BatCallback(BallEventArgs e);

11

Add the Bat class to the project
The Bat class is simple. It’s got a HitTheBall() method that the simulator will call every time
a ball is hit. That HitTheBall() method uses the hitBallCallback() delegate to call the ball’s
OnBallInPlay() method (or whatever method is passed into its constructor).

 public class Bat {
 private BatCallback hitBallCallback;
 public Bat(BatCallback callbackDelegate) {
 this.hitBallCallback = new BatCallback(callbackDelegate);
 }
 public void HitTheBall(BallEventArgs e) {
 if (hitBallCallback != null)
 hitBallCallback(e);
 }
 }

22

We’ll need to hook the bat up to a ball
So how does the Bat’s constructor get a reference to a particular ball’s OnBallInPlay() method?
Easy—just call that Ball object’s GetNewBat() method, which you’ll have to add to Ball:

 public Bat GetNewBat()
 {
 return new Bat(new BatCallback(OnBallInPlay));
 }

33

The Bat object’s callback will point to a
Ball object’s OnBallInPlay() method, so
the callback’s delegate needs to match the
signature of OnBallInPlay()—so it needs to
take a BallEventArgs parameter and have
a void return value.

We used = instead of += because
there’s no need to chain. This delegate
only gets set once. But if you really
feel like using += instead, it’ll work
just fine.

Make sure you
check every
delegate to
make sure
it’s not null,
otherwise it
could throw a
null reference
exception.

The Ball’s GetNewBat() method
creates a new Bat object, and it uses the BatCallBack delegate to pass a reference to its own OnBallInPlay() method to the new bat. That’s the callback method the bat will use when it hits the ball.

leave a message i’ll call you back

Download at WoweBook.Com

you are here 4 509

events and delegates

When	you	add	a	delegate	to	your	project,	you’re	
creating a new type that	stores	references	to	methods.
Events	use	delegates	to	notify	objects	that	actions	have	
occurred.
Objects	subscribe	to	an	object’s	event	if	they	need	to	
react	to	something	that	happened	in	that	object.
An	EventHandler	is	a	kind	of	delegate	that’s	really	
common	when	you	work	with	events.
You	can	chain	several	event	handlers	onto	one	event.	
That’s	why	you	use	+=	to	assign	an	handler	to	an	event.		
Always	check	that	an	event	or	delegate	is	not	null	before	
you	use	it	to	avoid	a	NullReferenceException.

All	of	the	controls	in	the	toolbox	use	events	to	make	
things	happen	in	your	programs.
When	one	object	passes	a	reference	to	a	method	to	
another	object	so	it—and	only	it—can	return	information,	
it’s	called	a	callback.
Events	let	any	method	subscribe	to	your	object’s	events	
anonymously,	while	callbacks	let	your	objects	exercise	
more	control	over	which	delegates	they	accept.
Both	callbacks	and	events	use	delegates	to	reference	
and	call	methods	in	other	objects.
The	debugger	is	a	really	useful	tool	to	help	you	
understand	how	events,	delegates,	and	callbacks	work.	
Take	advantage	of	it!

Now we can encapsulate the Ball class a little better
It’s unusal for one of the On... methods that raise an event to be public. You can check this for
yourself—go to the form and try to call the playBall button’s OnClick() event. You won’t be able
to, because it’s protected (so a subclass can override it). So let’s follow that pattern with our ball
too, by making its OnBallInPlay() method protected:

 protected void OnBallInPlay(BallEventArgs e)
 {
 if (BallInPlay != null)
 BallInPlay(this, e);
 }

44

All that’s left to do is hook up the form
The form can’t call the Ball object’s OnBallInPlay() method anymore—which is exactly what we
wanted. That’s why we set up the Ball.GetNewBat() method. Now the form needs to ask the Ball
for a new bat in order to hit the ball. And when it does, the Ball object will make sure that its
OnBallInPlay() method is hooked up to the bat’s callback.

 private void playBall_Click(object sender, EventArgs e)
 {
 Bat bat = ball.GetNewBat();
 BallEventArgs ballEventArgs = new BallEventArgs(
 (int)trajectory.Value, (int)distance.Value);
 bat.HitTheBall(ballEventArgs);
 }

Now run the program—it should work exactly like it did before. But it’s now protected from
any problems that would be caused by more than one ball listening for the same event.

55

This is a really standard pattern that you’ll
see over and over again when you work with
.NET classes. When a .NET class has an event
that gets fired, you’ll almost always find a
protected method that starts with “On”.

If the form (or the simulator) wants
to hit a Ball object, it needs to
get a new Bat object from that
ball. The ball will make sure that
the callback is hooked up to the bat.
Now when the form calls the bat’s
HitTheBall() method, it calls the
ball’s OnBallInPlay() method, which
fires its BallInPlay event.

But don’t take our word for it—pop it open in the debugger!

Download at WoweBook.Com

510 Chapter 11

Q: How are callbacks different from events?

A:	Events	are	part	of	C#.	They’re	a	way	for	one	object	to	
announce	to	other	objects	that	something	specific	has	happened.	
When	one	object	publishes	an	event,	any	number	of	other	objects	
can	subscribe	to	it	without	the	publishing	object	knowing	or	caring.	
When	an	object	fires	off	an	event,	if	anyone	happens	to	have	
subscribed	to	it	then	it	calls	each	of	their	event	handlers.	
	
Callbacks	are	not	published.	Instead,	a	callback	establishes	a	
relationship	between	two	clases	where	one	object	automatically	
reacts	to	another.	A	callback	is	generally	kept	private,	and	the	class	
that	stores	the	callback	maintains	control	over	who	has	access	to	it.	A	
callback	is	often	set	up	in	an	object’s	constructor.

Q: So a callback isn’t an actual type in C#?

A:	No,	it	isn’t.	A	callback	is	a	pattern—it’s	just	a	novel	way	of	
using	the	existing	types,	keywords	and	tools	that	C#	comes	with.	Go	
back	and	take	another	look	at	the	callback	code	you	just	wrote	for	the	
Bat	and	Ball.	Did	you	see	any	new	keywords	that	we	haven’t	used	
before?	Nope!		
	
It	turns	out	that	there	are	a	lot	of	patterns	that	you	can	use.	In	fact,	
there’s	a	whole	area	of	programming	called	design patterns. There	
are	a	lot	problems	that	you’ll	run	into	which	have	been	solved	before,	
and	the	ones	that	pop	up	over	and	over	again	have	their	own	design	
patterns	that	you	can	benefit	from.

Q: So callbacks are just private events?

A:	Not	quite.	It	seems	easy	to	think	about	it	that	way,	but	private	
events	are	a	different	beast	altogether.	Remember	what	the	
private	access	modifier	really	means?	When	you	mark	a	class	
member	private,	only	instances	of	that	same	class	can	access	it.	So	
if	you	mark	an	event	private,	then	other	instances	of	the	same	
class	can	subscribe	to	it.	That’s	different	from	a	callback,	because	
it	still	involves	one	or	more	objects	anonymously	subscribing	to	an	
event.

Q: But it looks just like an event, except with the event
keyword, right?

A:	The	reason	a	callback	looks	so	much	like	an	event	is	that	
they	both	use	delegates.	And	it	makes	sense	that	they	both	use	
delegates,	because	that’s	C#’s	tool	for	letting	one	object	pass	
another	object	a	reference	to	one	of	its	methods.	
	
But	the	big	difference	between	normal	events	and	callbacks	is	
that	an	event	is	a	way	for	a	class	to	publish	to	the	world	that	some	
specific	thing	has	happened.	A	callback,	on	the	other	hand,	is	never	
published.	It’s	private,	and	the	method	that’s	doing	the	calling	keeps	
tight	control	over	who	it’s	calling.

Check out “Head First Design Patterns” at the Head First
Labs website. It’s a great way to learn about different
patterns that you can apply to your own programs.

www.headfirstlabs.com/books/hfdp/

The first one you’ll learn about is called
the “Observer” (or “Publisher-Subscriber”)
pattern, and it’ll look really familiar to
you. One object publishes information, and
other objects subscribe to it. Hmmm...

design patterns are useful

Download at WoweBook.Com

you are here 4 511

events and delegates

The Case of the Golden Crustacean
How did the other treasure hunters beat Henry to the crab?
The crux of the mystery lies in how the treasure hunter seeks his quarry. But
first we’ll need to see exactly what Henry found in the stolen diagrams.

In a stolen set of class diagrams, Henry discovers that the GoldenCrab class raises
a RunForCover event every time anyone gets close to it. Even better, the event includes
NewLocationArgs, which detail where the crab is moving to. But none of the other
treasure hunters know about the event, so Henry figures he can cash in.

Five Minute
Mystery

Solved

Five Minute
Mystery

Solved

public class GoldenCrab {
 public delegate void Escape(NewLocationArgs e);
 public event Escape RunForCover;
 public void SomeonesNearby() {
 NewLocationArgs e = new NewLocationArgs(“Under the rock”);
 RunForCover(e);
 }
}
public class NewLocationArgs {
 public NewLocationArgs(HidingPlace newLocation) {
 this.newLocation = newLocation;
 }
 private HidingPlace newLocation;
 public HidingPlace NewLocation { get { return newLocation; } }
}

So how did Henry take advantage of his newfound insider information?

Henry adds code to his constructor to register his treasure_RunForCover() method as an event handler for the
RunForCover event, on the crab reference he’s got. Then, he sends a lowly underling after the crab, knowing it
will run away, hide, and raise the RunForCover event—giving Henry’s treasure_RunForCover() method all the
information he needs.

public class TreasureHunter {
 public TreasureHunter(GoldenCrab treasure) {
 treasure.RunForCover += new GoldenCrab.Escape(treasure_RunForCover);
 }
 void treasure_RunForCover(NewLocationArgs e) {
 MoveHere(e.NewLocation);
 }
 void MoveHere(HidingPlace Location) {
 // ... code to move to a new location ...
 }
}

And that explains why Henry’s plan backfired. When he added the event handler to the TreasureHunter
constructor, he was inadvertently doing the same thing for all of the treasure hunters! And that
meant that every treasure hunter’s event handler got chained onto the same RunForCover event. So when
the Golden Crustacean ran for cover, everyone was notified about the event.. And all of that that would
have been fine if Henry were the first one to get the message. But Henry had no way of knowing when the
other treasure hunters would have been called—if they subscribed before he did, they’d get the event first.

Any time someone comes close to the golden crab, its SomeonesNearby() method fires off a RunForCover event, and it finds a place to hide.

Henry thought he was being clever by altering his
class’s constructor to add an event handler that calls
his MoveHere() method every time the crab raises its
RunForCover event. But he forgot that the other
treasure hunters inherit from the same class, and his
clever code adds their event handlers to the chain, too!

Download at WoweBook.Com

512 Chapter 11

public partial class Form1 : Form {
 Mole mole;
 Random random = new Random();
 public Form1() {
 InitializeComponent();

 mole = new Mole(random, new Mole.____________(_____________________));
 timer1.Interval = random.Next(500, 1000);
 timer1.Start();
 }
 private void timer1_Tick(object sender, EventArgs e) {
 timer1.Stop();
 ToggleMole();
 }
 private void ToggleMole() {
 if (mole.Hidden == true)
 mole.Show();
 else
 mole.HideAgain();
 timer1.Interval = random.Next(500, 1000);
 timer1.Start();
 }
 private void MoleCallBack(int MoleNumber, bool Show) {
 if (MoleNumber < 0) {
 timer1.Stop();
 return;
 }
 Button button;
 switch (MoleNumber) {
 case 0: button = button1; break;
 case 1: button = button2; break;
 case 2: button = button3; break;
 case 3: button = button4; break;
 default: button = button5; break;
 }
 if (Show == true) {
 button.Text = “HIT ME!”;
 button.BackColor = Color.Red;
 } else {
 button.Text = “”;
 button.BackColor = SystemColors.Control;
 }
 timer1.Interval = random.Next(500, 1000);
 timer1.Start();
 }
 private void button1_Click(object sender, EventArgs e) {
 mole.Smacked(0);
 }
}

When you type in the code, add
five button event handlers.
Have button2_click() call mole.
Smacked(1), and then make
button3 call mole.Smacked(2),
and make button4 call mole.
Smacked(3) and button5 call
mole.Smacked(4).

Fill in the blanks to make this game of Whack-a-mole
work. You need to supply the code that does the
callbacks. Once you’ve got it filled in, go ahead and
type it into the IDE. Or you can try to get it working in
the IDE, and then fill in the blanks afterwards. It’s fun!

This is a Timer control.
Drag it out of the toolbox,
then double-click on it.

When you double-click on the timer in the form (after you drag it out of the toolbox), the IDE will create this event handler for it. Timers fire the Tick event over and over again. You’ll learn all about them in the next chapter.

The form passes a delegate
pointing to a callback
method into the mole’s
constructor. Fill it in.

Just add these event handlers the usual way
by double-clicking in the form designer.

This switch
makes sure
that the
right button changes its
color and
text.

This method’s
called to pop
up or hide
the mole when
the timer’s
elapsed.

whack that mole!

Download at WoweBook.Com

you are here 4 513

events and delegates

public class Mole {

 public ______________ void PopUp(int hole, bool show);

 private ___________ popUpCallback;
 private bool hidden;
 public bool Hidden { get { return hidden; } }
 private int timesHit = 0;
 private int timesShown = 0;
 private int hole = 0;
 Random random;

 public Mole(Random random, PopUp popUpCallback) {
 if (popUpCallback == null)
 throw new ArgumentException(“popUpCallback can’t be null”);
 this.random = random;

 this._____________________ = _____________________;
 hidden = true;
 }

 public void Show() {
 timesShown++;
 hidden = false;
 hole = random.Next(5);

 _____________________(hole, true);
 }

 public void HideAgain() {
 hidden = true;

 _____________________(hole, false);
 CheckForGameOver();
 }

 public void Smacked(int holeSmacked) {
 if (holeSmacked == hole) {
 timesHit++;
 hidden = true;
 CheckForGameOver();

 _____________________(hole, false);
 }
 }

 private void CheckForGameOver() {
 if (timesShown >= 10) {
 popUpCallback(-1, false);
 MessageBox.Show(“You scored ” + timesHit, “Game over”);
 Application.Exit();
 }
 }
}

Fill in the delegate and field to hold the delegate—they’re both at the top of the Mole class.

When the form creates a new Mole
object, it passes it a reference
to its callback method. Take a
look in the form to see how the
constructor is called, and then fill
in this blank.

After the mole shows itself, it needs to call the method on the form that displays the mole by turning the button red and showing the text “HIT ME!”

The HideAgain() and Smacked()
methods also use the callback delegate
to call the method on the form.

The way the game works is that it uses the
timer to wait a random period of time between
half a second and 1.5 seconds. Once that time
is elapsed, it tells the mole to show itself. The
form gives the Mole object a callback that it
uses to tell the form to show or hide the mole
in one of the five holes. The form uses its
timer to wait between .5 and 1.5 seconds again,
and then tells the mole to hide itself.

The game’s over after the mole shows itself 10
times. Your score is the number of times you hit it.

Here’s where we make sure the callback
is not null—if it is, the Mole object
throws an ArgumentException.

Download at WoweBook.Com

514 Chapter 11

public partial class Form1 : Form {
 private void Form1_Load(object sender, EventArgs e) {

 mole = new Mole(random, new Mole.____________(_____________________));
 timer1.Interval = random.Next(500, 1000);
 timer1.Start();
 }
.}

public class Mole {

 public ______________ void PopUp(int hole, bool show);

 private ___________ popUpCallback;

 ...

 public Mole(Random random, PopUp popUpCallback) {
 this.random = random;

 this._____________________ = _____________________;
 hidden = true;
 }

 public void Show() {
 timesShown++;
 hidden = false;
 hole = random.Next(5);

 _____________________(hole, true);
 }

 public void HideAgain() {
 hidden = true;

 _____________________(hole, false);
 CheckForGameOver();
 }

 public void Smacked(int holeSmacked) {
 if (holeSmacked == hole) {
 timesHit++;
 hidden = true;
 CheckForGameOver();

 _____________________(hole, false);
 }

PopUp MoleCallBack

delegate

PopUp

popUpCallback popUpCallback

popUpCallback

popUpCallback

popUpCallback

Fill in the blanks to make this game of Whack-a-mole work. You need to supply
the code that does the callbacks. Once you’ve got it filled in, go ahead and
type it into the IDE. It’s fun!

This is where the form passes a reference to its MoleCallBack() method into the Mole object. That lets the mole call its method.

Here’s where the mole defines its
delegate and uses it to set up a
private field to hold a reference
to the method on the form that
changes the colors of the buttons.

When the form creates a new instance of
the Mole object, it passes a reference to its
MoleCallBack() method to the constructor
as a parameter. This line in the constructor
copies that reference to its popUpCallback
field. Its methods can use that field to call
the MoleCallBack() method in the form.

When the mole shows itself, hides again, or

gets smacked, the Mole object uses its
popUpCallback delegate field to call the
method on the form that changes the color

and text of one of the buttons.

exercise solution

Download at WoweBook.Com

this is a new chapter 515

I just know I read about how
upcasting and downcasting make
event handling easier somewhere...

review and preview12

Knowledge, power, and
building cool stuff

Learning’s no good until you BUILD something.
Until you’ve actually written working code, it’s hard to be sure if you really get some

of the tougher concepts in C#. In this chapter, we’re going to learn about some new

odds and ends: timers and dealing with collections using LINQ (to name a couple).

We’re also going to build phase I of a really complex application, and make sure

you’ve got a good handle on what you’ve already learned from earlier chapters. So

buckle up…it’s time to build some cool software.

Learning’s no good until you BUILD something.
Until you’ve actually written working code, it’s hard to be sure if you really get some

of the tougher concepts in C#. In this chapter, we’re going to learn about some new

odds and ends: timers and dealing with collections using LINQ (to name a couple).

We’re also going to build phase I of a really complex application, and make sure

you’ve got a good handle on what you’ve already learned from earlier chapters. So

buckle up…it’s time to build some cool software.

Download at WoweBook.Com

516 Chapter 12

You’ve come a long way, baby
We’ve come a long way since we first used the IDE to help us rescue the
Objectville Paper Company. Here’s just a few of the things you’ve done
over the last several hundreds pages:

[note from human resources: “baby” is no longer politically correct. Please use age-challenged or infant to avoid offending readers.]

Navigator obj
e c

tnavigator3

4.2 miles

Navigator obj
e c

tnavigator1

3.5 miles

Navigator obj
e c

t

navigator2

3.8 miles

Navigator

SetDestination()
ModifyRouteToAvoid()
ModifyRouteToInclude()
GetRoute()
GetTimeToDestination()
TotalDistance()

7 int variables

heig
hts[

]

 int int int int int int int

.NET Framework
solutions

Form Obje
ct

s

Data access DinnerParty
NumberOfPeople
CostOfDecorations
CostOfBeveragesPerPerson
HealthyOption
CalculateCostOfDecorations()
CalculateCost()
SetHealthyOption()

BirthdayParty
NumberOfPeople
CostOfDecorations
CakeSize
CakeWriting
CalculateCostOfDecorations()
CalculateCost()

Party
NumberOfPeople
CostOfDecorations

CalculateCostOfDecorations()
CalculateCost()

You’ve used inheritance, as well as interfaces and subclasses, to build object trees.
You’ve built forms, used the
.NET framework, and even
talked with databases.

You’ve used event
s to notify

objects about cer
tain things

that happen, while keeping your

objects’ concerns
separate.

Objects, classes, instance
s...

all these strange term
s are

now part of your everyda
y

programming toolbox.

Even complex types like arrays
are no big deal to work with.

Debugging and exceptions are part of your problem-eliminating techniques.

my brain’s full

Download at WoweBook.Com

you are here 4 517

review and preview

We’ve also become beekeepers
Back in Chapter 6, we built some bee classes. Remember these?

We had different bees doing different jobs...

...and even
shifts that the
bees worked on.

But we can do a lot better now...
You’ve learned a lot since Chapter 6, though. So let’s start from
scratch, and build an animated beehive simulator over the
next few chapters. We’ll end up with a user interface that shows
us the hive and the field the bees are keeping, and even a stats
window letting users know what their bees are doing.

The Hive window shows
us what’s happening.

The stats window
lets us monitor the
simulation in detail.

We can even watch the bees
work a field of flowers.

Download at WoweBook.Com

518 Chapter 12

The beehive simulator architecture

System.Window
s.

Fo
rm

s.
Fo

rm

Main form

List of Bee o
bj

e
c

ts

Hive obje
ct

List of Flower o
b

je
c

ts

Here’s the architecture for the bee simulator. Even
though the simulator will be controlling a lot of different
bees, the overall object model is pretty simple.

This is the object for the main
window that shows the bee
stats and messages.

The World object keeps track of everything in the simulator: the state of the hive, every bee, and every flower.

Each bee knows its location (outside the hive at point 174, 36) and its state (“flying to a flower”, “gathering nectar”, “making honey”).
Everything in the architecture m

aps to the

overall world of bees, which we’ll build a GUI

for in the next chapter.

World represents the
entire thing.

We’ll need Flower objects
for each flower.

The Hive is home base for the bees.

And of course, we’ll
need a Bee class.

doesn’t look too tough... right?

World obje
ct

Download at WoweBook.Com

you are here 4 519

review and preview

Building the beehive simulator
Of course, we’ve never built anything this complex before,
so it’s going to take us a couple of chapters to put all the
pieces together. Along the way, you’ll add timers, LINQ,
and a lot of graphical skill to your toolkit.

Here’s what you’re going to do in this chapter (more to
come in the next):

Build a Flower class that ages, produces nectar,
and eventually wilts and dies.

11

Build a Bee class that has several different states
(gathering nectar from a flower, returning to the
Hive), and knows what to do based on its state.

22

Build a Hive class that has an entrance, exit,
nursery for new bees, and honey factory for
turning collected nectar into honey.

33

Build a World class that manages the hive,
flowers, and bees for any given moment.

44

Build a main form that collects statistics from the
other classes, and keeps the world going.

55

Download at WoweBook.Com

520 Chapter 12

Let’s	jump	right	into	some	code.	First	up,	we	need	a	Flower	class.	The	Flower	class	has	a	
location,	defined	by	a	Point,	an	age,	and	a	lifespan.	As	time	goes	on,	the	flower	gets	older.	Then,	
when	its	age	reaches	its	lifespan,	the	flower	dies.	It’s	your	job	to	put	all	this	into	action.

Flower
Location:	Point
Age:	int
Alive:	bool
Nectar:	double
NectarHarvested:	double
lifespan:	int

HarvestNectar():	double
Go()

Write the skeleton code for Flower
Below is the class diagram for Flower. Write the basic class skeleton. Location,
Age, Alive, Nectar, and NectarHarvested are automatic properties.
NectarHarvested is writable, the other four are read-only. For now, leave the methods
blank; we’ll come back to those in a minute.

11

All of these
should be read-
only properties.

This is used only in the
class, so it just needs to
be a private field

The type after the
colon is the type o

f
the variable...

...or the return type
of the method.

Add several constants to the class
We need lots of constants for flowers. Add six to your Flower class:

22

 LifeSpanMin, the shortest flower lifespan

 LifeSpanMax, the longest flower lifespan

 InitialNectar, how much nectar a flower starts with

 MaxNectar, how much nectar a flower can hold

 NectarAddedPerTurn, how much nectar gets added each time the flower grows older

 NectarGatheredPerTurn, how much nectar gets collected during a cycle

You should be able to figure out the types for each constant based on their
values. Flowers live between 15,000 and 30,000 cycles, and have 1.5 units
of nectar when they start out. They can store up to 5 units of nectar. In
each cycle of life, a flower adds 0.01 units of nectar, and in a single cycle,
0.3 units can be collected.

A class “skeleton” is jus
t its field,

property and method declarations,

with no implementation.

FYI, you don’t usually
show constants in a
class diagram.

stop and smell the flowers

Since this simulator will be animated, we’ll be drawing it frame by frame. We’ll use the words “frame,” “cycle,” and “turn” interchangeably.

Download at WoweBook.Com

you are here 4 521

review and preview

Build the constructor
The constructor for Flower should take in a Point, indicating the flower’s location, and an
instance of the Random class. You should be able to use those arguments to set the location
of the flower, and then set its age to 0, set the flower to alive, and set its nectar to the initial
amount of nectar for a flower. Since no nectar has been harvested yet, set that variable
correctly, as well. Finally, figure out the flower’s lifespan. Here’s a line of code to help you:

33

lifeSpan = random.Next(LifeSpanMin, LifeSpanMax + 1);

This will only work if you’ve got your
variables and constants named right, as well
as the argument to the Flower constructor.

Write code for the HarvestNectar() method
Every time this method is called, it should check to see if the nectar gathered every cycle
is larger than the amount of nectar left. If so, return 0. Otherwise, you should remove
the amount collected in a cycle from the nectar the flower has left, and return how much
nectar was collected. Oh, and don’t forget to add that amount to the NectarHarvested
variable, which keeps up with the total nectar collected from this particular flower.

44

Hint: You’ll use NectarGatheredPerTurn, Nectar, and NectarHarvested in this method, but nothing else.

Write code for the Go() method
This is the method that makes the flower go. Assume every time this method is called, one
cycle passes, so update the flower’s age appropriately. You’ll also need to see if the age is
greater than the flower’s lifespan. If so, the flower dies.

Assuming the flower stays alive, you’ll need to add the amount of nectar each flower gets
in a cycle. Be sure and check against the maximum nectar your flower can store, and don’t
overrun that.

55

Answers on the next page... try and finish
your code and compile it before peeking.

The final product will be animated, with little
pictures of bees flying around. The Go() method
will be called once every frame, and there will be
several frames run per second.

You’ll need to add using System.Drawing; to the top of any class file that uses a Point.

Download at WoweBook.Com

522 Chapter 12

public class Flower {
 private const int LifeSpanMin = 15000;
 private const int LifeSpanMax = 30000;
 private const double InitialNectar = 1.5;
 private const double MaxNectar = 5.0;
 private const double NectarAddedPerTurn = 0.01;
 private const double NectarGatheredPerTurn = 0.3;
 public Point Location { get; private set; }
 public int Age { get; private set; }
 public bool Alive { get; private set; }
 public double Nectar { get; private set; }
 public double NectarHarvested { get; set; }
 private int lifeSpan;

 public Flower(Point location, Random random) {
 Location = location;
 Age = 0;
 Alive = true;
 Nectar = InitialNectar;
 NectarHarvested = 0;
 lifeSpan = random.Next(LifeSpanMin, LifeSpanMax + 1);
 }

 public double HarvestNectar() {
 if (NectarGatheredPerTurn > Nectar)
 return 0;
 else {
 Nectar -= NectarGatheredPerTurn;
 NectarHarvested += NectarGatheredPerTurn;
 return NectarGatheredPerTurn;
 }
 }

 public void Go() {
 Age++;
 if (Age > lifeSpan)
 Alive = false;
 else {
 Nectar += NectarAddedPerTurn;
 if (Nectar > MaxNectar)
 Nectar = MaxNectar;
 }
 }
}

Your	job	was	to	build	the	Flower	class	for	our	beehive	simulator. Flower
Location:	Point
Age:	int
Alive:	bool
Nectar:	double
NectarHarvested:	double
lifespan:	int

HarvestNectar():	double
Go()

Flower o

bje
ct

Flower o

bje
ct

Flower o

bje
ctMake sure the flower

stops adding nectar
after it’s dead.

Location, Age,
Alive, and Nectar
are all read-
only automatic
properties.

NectarHarvested
will need to be
accessible to other
classes.

Flowers have random
lifespans so that
the field of flowers
doesn’t all change
exactly at once.

A bee calls HarvestNectar() to get
nectar out of a flower. A bee can
only harvest a little bit of nectar
at a time, so he’ll have to sit near
the flower for several turns until
the nectar’s all gone.

As part of the
simulator’s animation,
the Go() method will be
called each frame. This
makes the flower age
just a tiny little bit per
frame—as the simulator
runs, those tiny bits will
add up over time.

where have all the flowers gone?

Point lives in the System.Drawing namespace, so make sure you
added using System.Drawing; to the top of the class file.

Download at WoweBook.Com

you are here 4 523

review and preview

Q: It doesn’t look like
NectarHarvested is used anywhere in
the class, except where we increment it.
What’s that variable for?

A:	Good	catch!	We’re	planning	ahead	a	
bit.	Eventually,	the	simulator	will	keep	an	
eye	on	flowers,	and	how	much	total	nectar	
has	been	harvested,	for	our	statistics	
monitor.	So	leave	it	in,	and	our	other	
classes	will	use	it	shortly.

Q: Why all the read-only automatic
properties?

A:	Remember	Chapter	5,	and	hiding	
our	privates?	Always	a	good	practice.	
Flowers	can	take	care	of	those	values,	so	
we’ve	made	them	read-only.	Other	objects,	
like	bees	and	the	hive,	should	be	able	
to	read	those	properties,	but	not	change	
them.

Q: My code looks different. Did I do
something wrong?

A:	You	might	have	your	code	in	each	
method	in	a	different	order,	but	as	long	
as	your	code	functions	the	same	way	as	
ours	does,	you’ll	be	okay.	That’s	another	
aspect	of	encapsulation:	the	internals	
of	each	class	aren’t	important	to	other	
classes,	as	long	as	each	class	does	what	
it’s	supposed	to	do.

Life and death of a flower
Our flower goes through a basic turn, living, adding nectar,
having nectar harvested, and eventually dying:

Flower o

bje
ct

age = 0
nectar = 1.5

Flower o

bje
ct

age = 17809
nectar = 3.2

Flower o

bje
ct

age = 30291
nectar = .83

DEAD alive = false

When a Flower is created,
it

has an age of
0, and a small

amount of necta
r.

Eventually, we’ll have other classes harvesting nectar, too. So that reduces the overall nectar the flower has.

As the flower gets
older, it produces
more nectar.

Eventually, the flower’s
age hits its lifespan, an

d
the flower dies.

If Go() increases the age of the Flower by 1, and the lifespan range is
between 15,000 and 30,000, that means Go() will get called at least 15,000
times for each flower before it dies. How would you handle calling the
method that many times? What if there are 10 flowers? 100? 1000?

Download at WoweBook.Com

524 Chapter 12

public class Bee {
 private const double HoneyConsumed = 0.5;
 private const int MoveRate = 3;
 private const double MinimumFlowerNectar = 1.5;
 private const int CareerSpan = 1000;

 public int Age { get; private set; }
 public bool InsideHive { get; private set; }
 public double NectarCollected { get; private set; }

 private Point location;
 public Point Location { get { return location; } }

 private int ID;
 private Flower destinationFlower;

 public Bee(int id, Point location) {
 this.ID = id;
 Age = 0;
 this.location = location;
 InsideHive = true;
 destinationFlower = null;
 NectarCollected = 0;
 }

 public void Go(Random random) {
 Age++;
 }

Now we need a Bee class
With flowers ready to be harvested, we need a Bee class. Below is
the basic code for Bee. The Bee knows its age, whether or not it’s
in the hive, and how much nectar it can collect. We’ve also added a
method to move the bee towards a specific destination point.

Like the Flower class, there are several bee-specific constants we need to define.

We used a backing field for location. If we’d used an automatic property, MoveTowardsLocation() wouldn’t
be able to set its members directly (“Location.X -= MoveRate”).

A bee needs an ID and an initial location.

Bees start out inside the
hive, they don’t have a
flower to go to, and they
don’t have any nectar.

We’ll have to add a lot more code to Go() before we’re done, but this will get us started.

MinimumFlowerNectar is how the bee figures out which flowers are eligible for harvesting.

Each bee will be assigned its own
unique ID number.

busy bee

Download at WoweBook.Com

you are here 4 525

review and preview

 private bool MoveTowardsLocation(Point destination) {
 if (destination != null) {
 if (Math.Abs(destination.X - location.X) <= MoveRate &&
 Math.Abs(destination.Y - location.Y) <= MoveRate)
 return true;
 if (destination.X > location.X)
 location.X += MoveRate;
 else if (destination.X < location.X)
 location.X -= MoveRate;
 if (destination.Y > location.Y)
 location.Y += MoveRate;
 else if (destination.Y < location.Y)
 location.Y -= MoveRate;
 }
 return false;
 }

This method starts by figuring out if we’re already within our MoveRate of being at the destination.
If we’re not close enough,
then we move towards the
destination by our move rate.

We return false, since we’re not yet at the destination point. We need to keep moving.

Bees	have	lots	of	things	they	can	do.	Below	is	a	list.	Create	a	new	enum	that	Bee	uses	called	
BeeState.	You	should	also	create	a	read-only	automatic	property	called	CurrentState	
for	each	Bee	to	track	that	bee’s	state.	Set	a	bee’s	initial	state	to	idle,	and	in	the	Go()	method,	
add	a	switch	statement	that	has	an	option	for	each	item	in	the	enum.

The enum item What the item means
Idle The bee isn’t doing anything
FlyingToFlower The bee’s flying to a flower
GatheringNectar The bee’s gathering nectar from a flower
ReturningToHive The bee’s heading back to the hive
MakingHoney The bee’s making honey
Retired The bee’s hung up his wings

Here we used Math.Abs() to
calculate the absolute value of the
difference between the destination
and the current location.

The MoveTowardsLocation()
destination moves the bee’s
current location by changing
the X and Y values of its
location field. It returns
true if the bee’s reached its
destination.

If the bee has
no destination,
its field will be
set to null. So
we only move
towards it if
its destination
is NOT null.

Download at WoweBook.Com

526 Chapter 12

Bees	have	lots	of	things	they	can	do.	Below	is	a	list.	Create	a	new	enum	that	Bee	uses	
called	BeeState.	You	should	also	create	a	private	currentState	field	for	each	Bee	to	
track	that	bee’s	state.	Set	a	bee’s	initial	state	to	idle,	and	in	the	Go()	method,	add	a	switch	
statement	that	has	an	option	for	each	item	in	the	enum.

 public enum BeeState {
 Idle,
 FlyingToFlower,
 GatheringNectar,
 ReturningToHive,
 MakingHoney,
 Retired
 }

public class Bee {
 // constant declarations
 // variable declarations

 public BeeState CurrentState { get; private set; }

 public Bee(int ID, Point InitialLocation) {
 this.ID = ID;
 Age = 0;
 location = InitialLocation;
 InsideHive = true;
 CurrentState = BeeState.Idle;
 destinationFlower = null;
 NectarCollected = 0;
 }

Here’s the enum with all
the different bee states.

We also need a variable to track the state of each bee.

The bee starts out idle.

bee cool

Did you remember to add using System.Drawing; to the top of the
class file (because it uses Point)?

Download at WoweBook.Com

you are here 4 527

review and preview

public void Go(Random random) {
 Age++;
 switch (CurrentState) {
 case BeeState.Idle:
 if (Age > CareerSpan) {
 CurrentState = BeeState.Retired;
 } else {
 // What do we do if we’re idle?
 }
 break;
 case BeeState.FlyingToFlower:
 // move towards the flower we’re heading to
 break;
 case BeeState.GatheringNectar:
 double nectar = destinationFlower.HarvestNectar();
 if (nectar > 0)
 NectarCollected += nectar;
 else
 CurrentState = BeeState.ReturningToHive;
 break;
 case BeeState.ReturningToHive:
 if (!InsideHive) {
 // move towards the hive
 } else {
 // what do we do if we’re inside the hive?
 } break;
 case BeeState.MakingHoney:
 if (NectarCollected < 0.5) {
 NectarCollected = 0;
 CurrentState = BeeState.Idle;
 } else {
 // once we have a Hive, we’ll turn the nectar into honey
 }
 break;
 case BeeState.Retired:
 // Do nothing! We’re retired!
 break;
 }
 }
}

Here’s the switch() statement to handle each bee’s state.

You should have
each of these
states covered.

We’ve filled out a few
of the states. It’s okay
if you didn’t come up
with this code, but go
ahead and add it in now.

If the age reaches the bee’s lifespan,
the bee retires. But he’ll finish the
current job before he does.

We’ll fill this code in a bit later.

Here, we harvest
nectar from the
flower we’re working.......and if there’s nectar left, add it to what we’ve already collected...

...but if there’s no nectar
left, head for the hive.

Returning to the hive is different based on whether we’re already in the hive or not.

The bee adds half a unit of
nectar to the honey factory
at a time. If there’s not
enough nectar to add, the
factory can’t use it so the
bee just discards it.

Download at WoweBook.Com

528 Chapter 12

P. A. H. B. (Programmers Against Homeless Bees)
We’ve got bees, and flowers full of nectar. We need to write code so
the bees can collect nectar, but before that happens, where do the
bees get created in the first place? And where do they take all that
nectar? That’s where a Hive class comes in.

The hive isn’t just a place for bees to come back to, though. It has
several locations within it, all with different points in the world.
There’s the entrance and the exit, as well as a nursery for birthing
more bees and a honey factory for turning nectar into honey.

Bees come in the entrance, and leave from the exit. It’s all very orderly.

New bees are
created and
start out in the
hive nursery.

Each location is distinct,
and bees can travel from
one to the other just like
they can go from the hive
to a flower.

The hive runs on honey
The other big part that the hive plays is keeping up with how much
honey it has stored up. It takes honey for the hive to keep running,
and if new bees need to be created, that takes honey, too. On top
of that, the honey factory has to take nectar that bees collect and
turn that into honey. For every unit of nectar that comes in, .25
units of honey can be created.

Think about this for a second... as time
passes, the hive uses honey to run, and to
create more bees. Meanwhile, other bees
are bringing in nectar, which gets turned
into honey, which keeps things going longer.

It’s up to you (with some help) to model all
of this in the simulator code.

beehive hairdo

Download at WoweBook.Com

you are here 4 529

review and preview

It’s	up	to	you	to	write	the	code	for	Hive.

Write the skeleton code for Hive
Like we did with the Flower class, you should start with
a basic skeleton for Hive. The class diagram is shown to
the right. Make the Honey a read-only automatic property,
locations should be private, and beeCount is only
used internally, so can be a private field.

11
Hive

Honey:	double
locations:	Dictionary<string,	Point>
beeCount:	int

InitializeLocations()
AddHoney(Nectar:	double):	bool
ConsumeHoney(amount:	double):	bool
AddBee(random:	Random)
Go(random:	Random)
GetLocation(location:	string):	Point

Define the constants for the Hive
You need a constant for the initial number of bees (6), the amount
of honey the hive starts with (3.2), the maximum amount of honey
the hive can store (15), and ratio of units of nectar produced from
units of honey (.25), the maximum number of bees (8), and the
minimum honey required for the hive to birth new bees (4).

22

You’ll have to figure out good names for
each, as well as the types. For types,
don’t just think about initial values, but

also the values these constants will be
used with. Doubles pair best with other
doubles, ints with other ints.

Write the code to work with Locations
First, write the GetLocation() method. It should take
in a string, look up that string in the locations dictionary,
and return the associated point. If it’s not there, throw an
ArgumentException.

Then, write the InitializeLocations() method. This
method should set up the following locations in the hive:

33

 Entrance, at (600, 100)

 Nursery, at (95, 174)

 HoneyFactory, at (157, 98)

 Exit, at (194, 213)

Build the Hive constructor
When a hive is constructed, it should set its honey to the initial
amount of honey all hives have. It should setup the locations
in the hive, and also create a new instance of Random. Then,
AddBee() should be called—passing in the Random instance you
just created—once for each bee that starts out in the hive.

44

Each of these maps to a location within the 2D space that our hive takes up. Later on, we’ll have to make sure the simulator makes the hive cover all these points.
In this simulation, we’re just

assuming one hive, with fixed

points. If you wanted multiple

hives, you might make the

points relative to t
he hive,

instead of the over
all world.

AddBee() needs a Random object because it adds
a random value to the Nursery location—that way
the bees don’t start on top of each other.

Download at WoweBook.Com

530 Chapter 12

Your	job	was	to	start	building	the	Hive	class.

public class Hive {
 private const int InitialBees = 6;
 private const double InitialHoney = 3.2;
 private const double MaximumHoney = 15.0;
 private const double NectarHoneyRatio = .25;
 private const double MinimumHoneyForCreatingBees = 4.0;
 private const int MaximumBees = 8;
 private Dictionary<string, Point> locations;
 private int beeCount = 0;
 public double Honey { get; private set; }
 private void InitializeLocations() {
 locations = new Dictionary<string, Point>();
 locations.Add(“Entrance”, new Point(600, 100));
 locations.Add(“Nursery”, new Point(95, 174));
 locations.Add(“HoneyFactory”, new Point(157, 98));
 locations.Add(“Exit”, new Point(194, 213));
 }

 public Point GetLocation(string location) {
 if (locations.Keys.Contains(location))
 return locations[location];
 else
 throw new ArgumentException(“Unknown location: ” + location);
 }

 public Hive() {
 Honey = InitialHoney;
 InitializeLocations();
 Random random = new Random();
 for (int i = 0; i < InitialBees; i++)
 AddBee(random);
 }

 public bool AddHoney(double nectar) { return true; }
 public bool ConsumeHoney(double amount) { return true; }
 private void AddBee(Random random) { }
 public void Go(Random random) { }
}

You might have different names for your constants. That’s okay, as long as you’re consistent in the rest of your code.
We made MaximumHoney
a double, since it can
range from InitialHoney
(3.2) to this value. Since
InitialHoney will need to
be a double, it’s best to
make this a double, too.Remember dictionaries? Ours stores a location, keyed with a string value.

Don’t forget to create
 a

new instance of Dictionary,

or this won’t work.
The rest of this method is pretty straightforward.

You should have calle
d

AddBee() once for each be
e

that a hive starts with.

We don’t have code
for these yet, but
you should have built
empty methods as
placeholders.

This method protects other classes from
working with our locations dictionary
and changing something they shouldn’t.
It’s an example of encapsulation.

first design then build

Make sure you add “using System.
Drawing;” because this code uses
Point.

You could also throw a NotImplementedException in any method you
haven’t implemented yet. That’s a great way to keep track of code you
still have to build.

Download at WoweBook.Com

you are here 4 531

review and preview

Isn’t this sort of a weird way
to build code? Our bees don’t know about

flowers yet, and our hive is full of empty
method declarations. Nothing actually works

yet, right?

Real code is built bit by bit
It would be nice if you could write all the code for a single
class at one time, compile it, test it, and put it away, and
then start on your next class. Unfortunately, that’s almost
never possible.

More often than not, you’ll write code just the way we are
in this chapter: piece by piece. We were able to build pretty
much the entire Flower class, but when it came to Bee,
we’ve still got some work to do (mostly telling it what to do
for each state).

And now, with Hive, we’ve got lots of empty methods to
fill in. Plus, we haven’t hooked any Bees up to the Hive.
And there’s still that nagging problem about how to call the
Go() method in all these objects thousands of times...

But we didn’t really start out
by putting the classes together! We
figured out the architecture first,

and then started building.

First you design, then you build
We started out the project knowing exactly what we
wanted to build: a beehive simulator. And we know
a lot about how the bees, flowers, hive, and world all
worked together. That’s why we started out with the
architecture, which told us how the classes would work
with each other. Then we could move onto each class,
designing them individually.

Projects always go a lot more smoothly if you have a good
idea of what you’re building before you start building it.
That seems pretty straightforward and common-sense. But
it makes all the difference in the final product.

Download at WoweBook.Com

532 Chapter 12

Filling out the Hive class
Let’s get back to the Hive class, and fill in a few of
those missing methods:

public class Hive {
 // constant declarations
 // variable declarations

 // InitializeLocations()
 // GetLocation()
 // Hive constructor

 public bool AddHoney(double nectar) {
 double honeyToAdd = nectar * NectarHoneyRatio;
 if (honeyToAdd + Honey > MaximumHoney)
 return false;
 Honey += honeyToAdd;
 return true;
 }
 public bool ConsumeHoney(double amount) {
 if (amount > Honey)
 return false;
 else {
 Honey -= amount;
 return true;
 }
 }
 private void AddBee(Random random) {
 beeCount++;
 int r1 = random.Next(100) - 50;
 int r2 = random.Next(100) - 50;
 Point startPoint = new Point(locations[“Nursery”].X + r1,
 locations[“Nursery”].Y + r2);
 Bee newBee = new Bee(beeCount, startPoint);
 // Once we have a system, we need to add this bee to the system
 }
 public void Go(Random random) { }
}

First, we figure out how
much honey this nectar

can

be converted to...
...and then see if there’s room in the hive for that much more honey.

If there’s room, we add the
honey to the hive.

This method takes an amount of
honey, and tries to consume it
from the hive’s stores.

If there’s not enough honey in the hive
to meet the demand, we return false.

If there’s enough, remove it from the
hive’s stores and return true.

This is
private...
only Hive
instances
can create
bees.

This creates a point within
50 units in both the X
and Y direction from the
nursery location.

Add a new
bee, at the
designated
location.

We’ll finish AddBee() and fill in
the Go() method soon...

make the hive Go()

Download at WoweBook.Com

you are here 4 533

review and preview

The hive’s Go() method
We’ve already written a Go() method for Flower, and a Go()
method for Bee (even though we’ve got some additional code to
add in). Here’s the Go() method for Hive:

public void Go(Random random) {

 if (Honey > MinimumHoneyForCreatingBees)

 AddBee(random);

}

Unfortunately, this isn’t very realistic. Lots of times in a busy
hive, the queen doesn’t have time to create more bees. We don’t
have a QueenBee class, but let’s assume that when there’s
enough honey to create bees, a new bee actually gets created
10% of the time. We can model that like this:

public void Go(Random random) {

 if (Honey > MinimumHoneyForCreatingBees

 && random.Next(10) == 1) {

 AddBee(random);

 }

}

This is an easy way to simulate a 1 in

10 chance of a bee getting created
.

It comes up with a random number
between 0 and 9. If the number is 1,

then create the bee.

The only constraint (at least for now) is the hive must have enough honey to create more bees.

The same instance of Random that
got passed to Go() gets sent to the
AddBee() method.

One reason to leave it out is so that you can save the Random seed—that way you can re-run a specific simulation... if you feel like doing that later!

Q: So the hive can create an infinite
number of bees?

A:	Right	now	it	can—or,	at	least,	it’s	got	
a	very	large	limit—but	you’re	right,	that’s	not	
very	realistic.	Later	on,	we’ll	come	back	to	
this,	and	add	a	constraint	that	only	lets	so	
many	bees	exist	in	our	simulator	world	at	
one	time.

Q: Couldn’t we assign that instance
of Random to a property of the class,
instead of passing it on to AddBee()?

A:	You	sure	could.	Then	AddBee	could	
use	that	property,	rather	than	a	parameter	
passed	in.	There’s	not	really	a	right	answer	
to	this	one;	it’s	up	to	you.

Q: I still don’t understand how all of
these Go() methods are getting called.

A:	That’s	okay,	we’re	just	about	to	get	to	
that.	First,	though,	we	need	one	more	object:	
the	World	class,	which	will	keep	track	of	
everything	that’s	going	on	in	the	hive,	track	
all	the	bees,	and	even	keep	up	with	flowers.

Download at WoweBook.Com

534 Chapter 12

System.Window
s.

Fo
rm

s.
Fo

rm

Main form

List of Bee o
bj

e
c

ts

Hive obje
ct

List of Flower o
b

je
c

ts

World obje
ct

We’re ready for the World
With a Hive, Bee, and Flower class in place, we can
finally build the World class. World handles coordination
between all the individual pieces of our simulaor: keeping
up with all the bees, telling the hive if there is room for
more bees, locating flowers, etc.:

We don’t have all the code for these classes written, but we’ve got the basic parts in place.

The World will
keep up with lists

of the flowers
and the bees.

Our form, when we develop it, uses the World object to keep up with what’s going on.

World is really just
a big container and
engine for all the
individual parts.

foreach (Bee bee in Bees)
 bee.Go(random);

The World object keeps everything Go()ing
One of the biggest tasks of the World object is, for each turn in
the simulator, to call Go() on every Flower, Bee, and Hive
instance. In other words, World makes sure that life continues
in the simulator world.

We still have to deal with
calling World’s Go() method,
but we’ll come back to that.

hive.Go(random);

foreach (Flower flower in Flowers)
 flower.Go(random);

Go()

Go() in World calls Go() on all the other objects in the world.

World obje
ct

take on the world

System.Window
s.

Fo
rm

s.
Fo

rm

Main form List of Bee o
bj

e
c

ts

Hive obje
ct

List of Flower o
b

je
c

ts

World obje
ct

Download at WoweBook.Com

you are here 4 535

review and preview

Bee

Bee
Bee

Bee

Bee

We’re building a turn-based system
Our Go() methods in each object are supposed to run each turn, or cycle, of our
simulator. A turn in this case just means an arbitrary amount of time... for instance, a
turn could be every 10 seconds, or every 60 seconds, or every 10 minutes.

The main thing is that a turn affects every object in the world. The hive ages by one
“turn”, checking to see if it needs to add more bees. Then each bee takes a turn, moving
a very small distance towards its destination or doing one small action, and getting older.
Then each flower takes a turn, manufacturing a little nectar and getting older too. And
that’s what World does: it makes sure that every time its Go() method is called, every
object in the world gets a turn to act.

World obje
ct

Go()

Every time Go() in World is called, every object in the world has to get a turn to Go().

Hive

Go() Go()

Go()

Each Bee and each Flower
must have Go() called, or the
simulator breaks down.

One of the big object-oriented principles we’ve been using in the simulator
is encapsulation (flip back to Chapter 5 for a refresher). See if you can look
over the code we’ve developed so far and come up with two examples of
encapsulation for each class you’ve built.

Hive Bee Flower

1.

2.

1.

2.

1.

2.

Each “turn” will be drawn
as a single frame of
animation, so the world
only needs to change a
tiny litle bit each turn.

Flower

Flower

Flower

Flower
Flower

Download at WoweBook.Com

536 Chapter 12

using System.Drawing;
public class World {
 private const double NectarHarvestedPerNewFlower = 50.0;
 private const int FieldMinX = 15;
 private const int FieldMinY = 177;
 private const int FieldMaxX = 690;
 private const int FieldMaxY = 290;

 public Hive Hive;
 public List<Bee> Bees;
 public List<Flower> Flowers;

 public World() {
 Bees = new List<Bee>();
 Flowers = new List<Flower>();
 Random random = new Random();
 for (int i = 0; i < 10; i++)
 AddFlower(random);
 }

 public void Go(Random random) {
 Hive.Go(random);

 for (int i = Bees.Count - 1; i >= 0; i--) {
 Bee bee = Bees[i];
 bee.Go(random);
 if (bee.CurrentState == BeeState.Retired)
 Bees.Remove(bee);
 }

 double totalNectarHarvested = 0;
 for (int i = Flowers.Count - 1; i >= 0; i--) {
 Flower flower = Flowers[i];
 flower.Go();
 totalNectarHarvested += flower.NectarHarvested;
 if (!flower.Alive)
 Flowers.Remove(flower);
 }

Here’s the code for World
The World class is actually one of the simpler classes in our simulator.
Here’s a starting point for the code. But if you look closely, you’ll notice
that it’s missing a few things (which you’ll add in just a minute).

These define the bounds of the
field, which is where flowers can live.

Every world has one hive, a list
of bees, and a list of flowers.

When we create a new world, we
initialize our lists, create a new

 hive,

and then add 10 initial flowers.

This is easy... we just tell the Hive to Go(), passing in a Random instance.

If a bee’s retired, we need to take

it out of the world.

We run through all the current
bees and tell them Go().

We run through each flower and tell it to Go().

We need to keep up with
how much nectar’s been
collected this turn, too.
So we get that by summing
up the nectar collected
from each flower.Just like bees, we remove any flowers that die during this turn.

what in the world are you doing?

Download at WoweBook.Com

you are here 4 537

review and preview

 if (totalNectarHarvested > NectarHarvestedPerNewFlower) {
 foreach (Flower flower in Flowers)
 flower.NectarHarvested = 0;
 AddFlower(random);
 }
 }

 private void AddFlower(Random random)
 {
 Point location = new Point(random.Next(FieldMinX, FieldMaxX),
 random.Next(FieldMinY, FieldMaxY));
 Flower newFlower = new Flower(location, random);
 Flowers.Add(newFlower);
 }
}

Bees pollinate flowers as they harvest
nectar. Once they’ve harvested enough
nectar from the flowers, they’ve
pollinated enough for the world to add a
new flower.

If there’s enough nectar in the field, true, the world adds a new flower.

This handles coming up with a random
location in the field...

...and then adding a new
flower in that location.

One of the big object-oriented principles we’ve been using in the simulator
is encapsulation (flip back to Chapter 5 for a refresher). See if you can look
over the code we’ve developed so far and come up with two examples of
encapsulation for each class you’ve built.

Hive Bee Flower

1. The hive’s Locations
dictionary is private
2. It gives the bees a
method to add honey

1. The bee’s location is
read-only
2. So is its age. So other
classes can’t write to them

1. The flower provides a
method to gather nectar
2. And it keeps its alive
boolean private

Here are the ones we came
up with. Did you come up
with any others?

Q: Why don’t you use foreach loops to
remove dead flowers and retired bees?

A:	Because	you	can’t remove items	from	
a	collection	from	inside	a	foreach	loop	that’s	
iterating	on	it.	If	you	do,	.NET	will	throw	an	
exception.	

Q: Okay, then why does each of those
for loops start at the end of the list and
count down to 0?

A:	Because	each	loop	needs	to	preserve	
the	numbering	of	the	list.	Let’s	say	you	
started	at	the	beginning	of	a	list	of	five	
flowers,	and	your	loop	discovered	that	one	
of	the	flowers	in	the	middle	was	dead.	If	it	
removes	

		
the	flower	at	index	#3,	now	the	list	only	has	
4	flowers	in	it,	and	there’s	a	new	flower	at	
index	#3—and	that	flower	will	end	up	getting	
skipped,	because	the	next	time	through	the	
loop	it’ll	look	at	index	#4.		
If	the	loop	starts	at	the	end,	then	the	flower	
that	moves	into	the	empty	slot	will	already	
have	been	looked	at	by	the	loop,	so	there’s	
no	chance	of	missing	a	flower.

Download at WoweBook.Com

538 Chapter 12

With	all	four	of	our	core	classes	in	place,	we’ve	got	some	work	to	do	to	tie	them	all	
together.	Follow	the	steps	below,	and	you	should	have	working	Bee,	Hive,	Flower,	and	
World	classes.	But	beware:	you’ll	have	to	make	changes	to	almost	every	class,	in	several	
places,	before	you’re	done.

Update Bee to take in a Hive and World reference.
Now	that	we’ve	got	a	class	for	Hive	and	a	class	for	World,	Bee	objects	need	to	
know	about	both.	Update	your	code	to	take	in	references	to	a	bee’s	hive	and	world	as	
parameters	to	its	constructor	and	save	those	references	for	later	use.

11

Update Hive to take in a World reference.
Just	as	a	Bee	needs	to	know	about	its	Hive,	a	Hive	needs	to	know	about	its	
World.	Update	Hive	to	take	in	a	World	reference	in	its	constructor,	and	save	that	
reference.	You	should	also	update	the	code	in	Hive	that	creates	new	bees	to	pass	
into	the	Bee	a	reference	to	itself	(the	Hive),	and	the	World.

22

Update World to pass itself into a new Hive.
Update	your	World	class	so	that	when	it	creates	a	new	Hive,	it	
passes	in	a	reference	to	itself.

33

Place an upper limit on the bees that Hive can create.
The	Hive	class	has	a	MaximumBees	constant	that	determines	
how	many	bees	the	Hive	can	support	(inside	and	outside	the	hive,	
combined).	Now	that	the	Hive	has	access	to	the	World,	you	should	be	
able	to	enforce	that	constraint.

44

Hint: Look at code near where you create or add bees. There are two places where code related to this occurs in Hive, so be careful.
When the Hive creates bees, let the World know.
The	World	class	uses	a	List	of	bee	objects	to	keep	up	with	all	the	bees	
that	exist.	When	the	Hive	creates	a	new	Bee,	make	sure	that	Bee	gets	
added	to	the	overall	list	that	the	World	is	keeping	up	with.

55

put it all together

STOP! At this point, you should be able to compile all of
your code. If you can’t, check through it and correct any

mistakes before continuing on.

Download at WoweBook.Com

you are here 4 539

review and preview

Q: Why did you throw an exception in the Hive class’s
GetLocation() method?

A:	Because	we	needed	a	way	to	deal	with	bad	data	passed	into	
the	parameter.	The	hive	has	a	few	locations,	but	the	parameter	to	
GetLocations()	can	pass	any	string.	What	happens	if	there’s	a	bug	in	
the	program	that	causes	an	invalid	string	(like	an	empty	string,	or	the	
name	of	a	location	that’s	not	in	the	locations	dictionary)	to	be	sent	as	
the	parameter?	What	should	the	method	return?	
	
When	you’ve	got	an	invalid	parameter	and	it’s	not	clear	what	to	do	
with	it,	it’s	always	a	good	idea	to	throw	a	new	ArgumentException.	
Here’s	how	the	GetLocation()	method	does	it:	
	
 throw new ArgumentException(
 “Unknown location: ” + location);

This	statement	causes	the	Hive	class	to	throw	an	ArgumentException	
with	the	message	“Unknown	location:”	that	contains	the	location	that	
it	couldn’t	find.	
	
The	reason	this	is	useful	is	that	it	immediately	alerts	you	if	a	bad	
location	parameter	is	passed	to	the	method.	And	by	including	the	
parameter	in	the	exception	message,	you’re	giving	yourself	a	some	
valuable	information	that	will	help	you	debug	the	problem.

Q: What’s the point of storing all the locations in a Point if
we’re not drawing anything?

A:	Every	bee	has	a	location,	whether	or	not	you	draw	it	on	the	
screen	in	that	location.	The	job	of	the	Bee	object	is	to	keep	track	
of	where	it	is	in	the	world.	Each	time	its	Go()	method	is	called,	it	
needs	to	move	a	very	small	distance	towards	its	destination.		
Now,	even	though	we	may	not	be	drawing	a	picture	of	the	bee	yet,	
the	bee	still	needs	to	keep	track	of	where	it	is	inside	the	hive	or	in	the	
field,	because	it	needs	to	know	if	it’s	arrived	at	its	destination.

Q: Then why use Point to store the location, and not
something else? Aren’t Points specifically for drawing?

A:	Yes,	a	Point	is	what	all	of	the	visual	controls	use	for	
their	Location	properties.	Plus,	it’ll	come	in	handy	when	we	do	the	
animation.	However,	just	because	.NET	uses	them	that	way,	that	
doesn’t	mean	it’s	not	also	useful	for	us	to	keep	track	of	locations.	Yes,	
we	could	have	created	our	own	BeeLocation	class	with	integer	
fields	called	X	and	Y.	No	reason	reinvent	the	wheel	when	C#	and	
.NET	give	us	Point	for	free!

It’s almost always easier to
repurpose or extend an existing
class that does MOSTLY what you
want it to do, rather than creating
an all new class from scratch.

Download at WoweBook.Com

540 Chapter 12

With	all	four	of	our	core	classes	in	place,	we’ve	got	some	work	to	do	to	tie	them	all	
together.	Follow	the	steps	below,	and	you	should	have	working	Bee,	Hive,	Flower,	and	
World	classes.	Here’s	how	we	made	the	changes	to	put	this	into	place.

Update Bee to take in a Hive and World reference.
Now	that	we’ve	got	a	class	for	Hive	and	a	class	for	World,	Bee	objects	need	to	
know	about	both.	Update	your	code	to	take	in	references	to	a	bee’s	hive	and	world	in	
the	constructor	and	save	those	references	for	later	use.

11

public class Bee {
 // existing constant declarations
 // existing variable declarations
 private World world;
 private Hive hive;

 public Bee(int ID, Point InitialLocation, World world, Hive hive) {
 // existing code
 this.world = world;
 this.hive = hive;
 }
}

Update Hive to take in a World reference.
Just	as	a	Bee	needs	to	know	about	its	Hive,	a	Hive	needs	to	know	about	its	
World.	Update	Hive	to	take	in	a	World	reference	in	its	constructor,	and	save	that	
reference.	You	should	also	update	the	code	in	Hive	that	creates	new	bees	to	pass	
into	the	Bee	a	reference	to	itself	(the	Hive),	and	the	World.

22

public class Hive {
 private World world;

 public Hive(World world) {
 this.world = world;
 // existing code
 }
 public void AddBee(Random random) {
 // other bee creation code
 Bee newBee = new Bee(beeCount, startPoint, world, this);
 }
}

This is pretty straightforward…take
these in, assign them to private fields.

More basic code... get the reference, set a private field. You want to assign the world FIRST because the rest of the constructor needs to use it.
New bees need a
reference to the world,
and to the hive, now.

exercise solution

Download at WoweBook.Com

you are here 4 541

review and preview

private void AddBee(Random random) {
 beeCount++;
 // Calculate the starting point
 Point startPoint = // start the near the nursery
 Bee newBee = new Bee(beeCount, startPoint, world, this);
 world.Bees.Add(newBee);
}

Place an upper limit on the bees that Hive can create.
The	Hive	class	has	a	MaximumBees	constant	that	determines	
how	many	bees	the	Hive	can	support	(inside	and	outside	the	hive,	
combined).	Now	that	the	Hive	has	access	to	the	World,	you	should	be	
able	to	enforce	that	constraint.

44

public void Go(Random random) {
 if (world.Bees.Count < MaximumBees
 && Honey > MinimumHoneyForCreatingBees
 && random.Next(10) == 1) {
 AddBee(random);
 }
}

public World() {
 Bees = new List<Bee>();
 Flowers = new List<Flower>();
 Hive = new Hive(this);
 Random random = new Random();
 for (int i = 0; i < 10; i++)
 AddFlower(random);
}

Update World to pass itself into a new Hive.
Update	your	World	class	so	that	when	it	creates	a	new	Hive,	it	
passes	in	a	reference	to	itself.

33

this passes in the reference
to the Hive.

We can use the World object to see how many total bees there are, and compare that to the maximum bees for this hive.

We put that comparison first. If there’s no

room for bees, no sense in seeing if t
here’s

enough honey to create bees.

When the Hive creates bees, let the World know.
The	World	class	keeps	up	with	all	the	bees	that	exist.	When	the	Hive	
creates	a	new	Bee,	make	sure	that	Bee	gets	added	to	the	overall	list	
that	the	World	is	keeping	up	with.

55

We add the new bee to the world’s overall bee list.

This demonstrates one of
the reasons we need a world
reference in the Hive class.

If you’re having trouble getting this running, you can download the
code for this exercise (and all the others, too) from:
http://www.headfirstlabs.com/books/hfcsharp/

Download at WoweBook.Com

542 Chapter 12

public void Go(Random random) {
 Age++;
 switch (CurrentState) {
 case BeeState.Idle:
 if (Age > CareerSpan)
 CurrentState = BeeState.Retired;
 else if (world.Flowers.Count > 0
 && hive.ConsumeHoney(HoneyConsumed)) {
 Flower flower =
 world.Flowers[random.Next(world.Flowers.Count)];
 if (flower.Nectar >= MinimumFlowerNectar && flower.Alive) {
 destinationFlower = flower;
 CurrentState = BeeState.FlyingToFlower;
 }
 }
 break;
 case BeeState.FlyingToFlower:
 if (!world.Flowers.Contains(destinationFlower))
 CurrentState = BeeState.ReturningToHive;
 else if (InsideHive) {
 if (MoveTowardsLocation(hive.GetLocation(“Exit”))) {
 InsideHive = false;
 location = hive.GetLocation(“Entrance”);
 }
 }
 else
 if (MoveTowardsLocation(destinationFlower.Location))
 CurrentState = BeeState.GatheringNectar;
 break;
 case BeeState.GatheringNectar:
 double nectar = destinationFlower.HarvestNectar();
 if (nectar > 0)
 NectarCollected += nectar;
 else
 CurrentState = BeeState.ReturningToHive;
 break;

Giving the bees behavior
The one big piece of code that’s missing in our current classes
is the Bee’s Go() method. We were able to code a few of
the states earlier, but there are plenty left (Idle is incomplete,
FlyingToFlower, and part of MakingHoney).

Let’s finish up those remaining states now:

If we’re idle, we want to go find

another flower to harvest from.

See if there are flowers left, and then consume enough honey to keep on going. Otherwise, we’re stuck.
We need another
living flower with
nectar.

Assuming that all works out, go to the new flower.

If we can get to the exit, then we’re out of the hive.

Update our location. Since we’re now on the field form,

we should fly out near the entrance.

Make sure the flower hasn’t
died as we’re heading toward it.

If we’re out of the hive, and the flower is alive, get to it and start gathering nectar.

That’s why we passed a
reference to the hive
to the Bee constructor.

make the bees behave themselves

Download at WoweBook.Com

you are here 4 543

review and preview

 case BeeState.ReturningToHive:
 if (!InsideHive) {
 if (MoveTowardsLocation(hive.GetLocation(“Entrance”))) {
 InsideHive = true;
 location = hive.GetLocation(“Exit”);
 }
 }
 else
 if (MoveTowardsLocation(hive.GetLocation(“HoneyFactory”)))
 CurrentState = BeeState.MakingHoney;
 break;
 case BeeState.MakingHoney:
 if (NectarCollected < 0.5) {
 NectarCollected = 0;
 CurrentState = BeeState.Idle;
 }
 else
 if (hive.AddHoney(0.5))
 NectarCollected -= 0.5;
 else
 NectarCollected = 0;
 break;
 case BeeState.Retired:
 // Do nothing! We’re retired!
 break;
 }
}

Try and give this nectar to the hive.
If the hive could use the
nectar to make honey...

...remove it from the bee.

If the hive’s full, AddHoney() will

return false, so the bee
 just dumps the

rest of the nectar so h
e can fly out

on another mission.

If we’ve made it to the hive,
update our location and the
insideHive status.

If we’re already in the hive, head to the honey factory.

Suppose you wanted to change the simulator so it took two turns to reach
a flower, and two turns to go from a flower back to the hive. Without writing
any code, which methods of which classes would you have to change to
put this new behavior into place?

This is the exit. When
the hive stores its “Exit”
location, it corresponds to
the point on the Hive form
that shows the picture of
the exit.

This is the entrance. When
the bees fly back to the
hive, they fly towards the
entrance of the hive on
the field form.

That’s why the location dictionary stores two
separate “Exit” and “Entrance” locations.

Once the bee’s retired, he just has to wait around until the Hive removes him from the list. Then he’s off to Miami!

Download at WoweBook.Com

544 Chapter 12

The main form tells the world to Go()
Okay, so you know that the world advances by one frame
every turn its Go() method is called. But what calls that Go()
method? Why, the main form, of course! Time to lay it out.

Go ahead and add a new form to your project. Make it look like
the form below. We’re using some new controls, but we’ll explain
them all over the next several pages.

Each of these labels
lives in one cell of a
TableLayoutPanel control.
You lay it out just like a
table in Microsoft Word.
Click on the little black
arrow to add, remove, and
resize columns and rows.

The ToolStrip control puts
a toolstrip at the top of
your form. You can add
the two buttons using the
dropdown that appears on
the ToolStrip when you’re
in the form designer. Set
each button’s DisplayStyle
to Text.

Add a StatusStrip to
put a status bar on
the bottom. Use the
dropdown that appears
on the StatusStrip in
the designer to add a
StatusLabel to it.

Add a Timer control to the form. It
doesn’t show up at all—it’s a non-visual component that the form designer displays as an icon in the space below the form.

We’re finally getting
 to the

code that moves the World

object along.

The ToolStrip control adds a toolbar to the top of
your form, and StatusStrip adds a status bar to the
bottom. But they also appear as icons in the area
below the form, so you can edit their properties.

pop goes the world

hive.Go(random);

foreach (Bee bee in Bees)
 bee.Go(random);

foreach (Flower flower in Flowers)
 flower.Go(random);

Go()

System.Window
s.

Fo
rm

s.
Fo

rm

Main form List of Bee o
bj

e
c

ts

Hive obje
ct

List of Flower o
b

je
c

ts

World obje
ct

The labels in the right-hand column will show the stats. Name them “Bees”, “Flowers”, “HoneyInHive”, etc.

Download at WoweBook.Com

you are here 4 545

review and preview

private void UpdateStats(TimeSpan frameDuration) {
 Bees.Text = world.Bees.Count.ToString();
 Flowers.Text = world.Flowers.Count.ToString();
 HoneyInHive.Text = String.Format(“{0:f3}”, world.Hive.Honey);
 double nectar = 0;
 foreach (Flower flower in world.Flowers)
 nectar += flower.Nectar;
 NectarInFlowers.Text = String.Format(“{0:f3}”, nectar);
 FramesRun.Text = framesRun.ToString();
 double milliSeconds = frameDuration.TotalMilliseconds;
 if (milliSeconds != 0.0)
 FrameRate.Text = string.Format(“{0:f0} ({1:f1}ms)”,
 1000 / milliSeconds, milliSeconds);
 else
 FrameRate.Text = “N/A”;
}

Most of this just
involves getting
data from
the world and
updating labels.

Print the first parameter
as a number with no
decimals, then a space, then
print the second parameter
with one decimal followed
by the letters “ms” (in
parentheses)

This indicates how long passes for a turn... we’ll have to send this parameter in from somwhere else, in just a few pages.

We can use World to get statistics
Now we want to update all these controls. But we don’t need click
handlers for each one; instead, let’s use a single method that will
update the different statistics in the simulator window:

Be sure
you match
your label
names on
the form
with your
code.

Whoa! Where did that World object
come from... we haven’t created that yet,
have we? And what’s all that time and frame
stuff?

Let’s create a World
You’re right, we need to create the World object. Add this
line to your form’s constructor:

 public Form1() {
 InitializeComponent();
 world = new World();
 }

Go ahead and add a private World field to your form
called world.

That just leaves all the time-related code. We’ve always said
we needed a way to run Go() in World over and over...
sounds like we need some sort of timer.

Add this method
into Form1.

This code uses the same
String.Format() method you
used in the hex dump. But
instead of printing in hex
using “x2”, you use “f3” to
display a number with three
decimal places.

We’ll talk more
about this
when we create
that TimeSpan
object.

The frame rate is the number of frames run per second. We’re using a TimeSpan object to store how long it took to run the frame. We divide 1000 by the number of milliseconds it took to run the frame—that gives us the total number of milliseconds it took to run the last frame.

Download at WoweBook.Com

546 Chapter 12

Timers fire events over and over again
Remember how you used a loop to animate the greyhounds? Well, there’s
a better way to do it. A Timer is an especially useful component that
triggers an event over and over again, up to a thousand times a second.

Do this
Create a new project with a timer and three buttons
You don’t have to close your current project—just pop open a new Visual Studio and
start up a new project. Drag a timer and three buttons onto the form. Click on the timer
icon at the bottom of the designer and set its Interval property to 1000. That number is
measured in milliseconds—it tells the timer to fire its tick event once a second.

11

Open the IDE’s Properties window and click on the Events button.
(Remember, the Events button looks like a lightning bolt, and it lets you manage the
events for any of your form’s controls.) The timer control has exactly one event, Tick.
Click on the Timer icon in the designer, then double-click on its row in the
Events page,, and the IDE will create a new event handler method for you and hook it
up to the property automatically.

22

The Events button in the
Properties window lets you
work with all the events
for each of your controls.

The Timer control has one event called Tick. If you double-click here, the IDE creates an event handler method for you automatically.The bottom of the window has a description of the event.

Add code to the Tick event and to your buttons.
Here’s some code that will help you get a sense of how the timer works:
 private void timer1_Tick(object sender, EventArgs e) {
 Console.WriteLine(DateTime.Now.ToString());
}
private void toggleEnabled_Click(object sender, EventArgs e) {
 if (timer1.Enabled)
 timer1.Enabled = false;
 else
 timer1.Enabled = true;
}
private void startTimer_Click(object sender, EventArgs e){
 timer1.Start();
 Console.WriteLine(“Enabled = ” + timer1.Enabled);
}
private void stopTimer_Click(object sender, EventArgs e) {
 timer1.Stop();
 Console.WriteLine(“Enabled = ” + timer1.Enabled);
}

33
This statement writes the
current date and time to the

output. Check the output
window to make sure the tick

event is fired once a secon
d

(every 1000 milliseconds).

The timer’s Enabled property
starts and stops the timer.

The timer’s Start() method
starts the timer and sets
Enabled to true. The Stop()
method stops the timer and
sets Enabled to false.

Take a minute and create a new project
so you can see how timers work. Then we’ll
get back to the simulator and put your
new knowledge to work.

These buttons let
you play with the
Enabled property
and the Start()
and Stop()
methods. The
first one switches
Enabled between
true and false, and the other two call
the Start() and
Stop() methods.

play it again

Download at WoweBook.Com

you are here 4 547

review and preview

How do C# and .NET tell the timer what to do every tick? How
does the timer1_Tick() method get run every time your
timer ticks? Well, we’re back to events and delegates, just
like we talked about in the last chapter. Use the IDE’s “Go To
Definition” feature to remind yourself how the Event Handler
delegate works:

Right-click on your timer1 variable and select “Go To Definition”
The “Go To Definition” feature will cause the IDE to automatically jump to the location in the code
where the timer1 variable is defined. The IDE will jump you to the code it created to add timer1
as a property in the Form1 object in Form1.Designer.cs. Scroll up in the file until you find this line:

this.timer1.Tick += new System.EventHandler(this.timer1_Tick);

44

Now right-click on EventHandler and select “Go To Definition”
The IDE will automatically jump to the code that defines EventHandler. Take a look at the name
of new tab that it opened to show you the code: “EventHandler [from metadata]”. This means that
the code to define EventHandler isn’t in your code. It’s built into the .NET framework, and the IDE
generated a “fake” line of code to show you how it’s represented:

public delegate void EventHandler(object sender, EventArgs e);

55

The timer’s using a delegate
behind the scenes

This is the Tick event
of your timer control.
You’ve set this to occur
every 1000 milliseconds.

Here’s one of the System’s delegates: the basic event handler. It’s a delegate... a pointer to one or more methods.

Here’s the method you
just wrote, timer1_Tick().

You’re telling the deleg
ate

to point to that method.

Here’s why every event in C# generally takes
an Object and EventArgs parameter-that’s
the form of the delegate that C# defines
for event handling.

Each event is of type E
ventHandler.

So our Tick event now points to the

timer1_Tick() method.

What code would you write to run the World’s Go() method
every 500 milliseconds in our beehive simulator?

The timer’s Tick event
is an average, everyday
event handler, just
like the ones to handle
button clicks. Behind

the Scenes

Download at WoweBook.Com

548 Chapter 12

Add a Timer to the simulator
Let’s add a timer to the simulator. You’ve already got a timer control,
probably called timer1. Instead of using the IDE to generate a
timer1_Tick() method, though, we can wire the timer to an event
handler method called RunFrame() manually:

public partial class Form1 : Form {
 World world;
 private Random random = new Random();
 private DateTime start = DateTime.Now;
 private DateTime end;
 private int framesRun = 0;

 public Form1() {
 InitializeComponent();
 world = new World();

 timer1.Interval = 50;
 timer1.Tick += new EventHandler(RunFrame);
 timer1.Enabled = false;
 UpdateStats(new TimeSpan());
 }

 private void UpdateStats(TimeSpan frameDuration) {
 // Code from earlier to update the statistics
 }

 public void RunFrame(object sender, EventArgs e) {
 framesRun++;
 world.Go(random);
 end = DateTime.Now;
 TimeSpan frameDuration = end - start;
 start = end;
 UpdateStats(frameDuration);
 }
}

You should have a World
property from earlier.

These will be used to figure out how long the simulator’s been running at any given point.

Run every 50 milliseconds.

We set the handler to our own
method, RunFrame().

Timer starts off.

We also start out by updating stats, with a new TimeSpan (0 time elapsed).

A second
is 1000
milliseconds, so
our timer will
tick 20 times a
second.

We want to keep up with
how many frames-or
turns-have passed.

Increase the frame count, and
tell the world to Go().

Next, we figure out the
time elapsed since the last
frame was run.

Finally, update the stats again,
with the new time duration.

DateTime &TimeSpan
.NET uses the DateTime class to
store information about a time, and
its Now property returns the current
date and time. If you want to find
the difference between two times, use
a TimeSpan object: just subtract one
DateTime object from another, and
that’ll return a TimeSpan object that
holds the difference between them.

TimeSpan has properties like Days, Hours,
Seconds, and Milliseconds that let you
measure the span in different units.

good timing

Download at WoweBook.Com

you are here 4 549

review and preview

Your job is to write the event handlers for the startSimulation and
reset buttons in the ToolStrip. Here’s what each button should do:

1. Initially, the first button should read “Start Simulation.”
Pressing it causes the simulation to start, and the
label to change to “Pause
Simulation.” If the simulation
is paused, the button should
read, “Resume simulation.”

2. The second button should
say “Reset.” When it’s
pressed, the world should
be recreated. If the timer is
paused, the text of the first
button should change from

“Resume simulation” to “Start
Simulation.”

What do you think is left to be done in this phase
of the simulator? Try running the program. Write
down everything you think we still need to take
care of before moving on to the graphical stuff.

There’s no single answer to this question—we just
want you to think about what’s left to do.

Q: We’ve been using the term
“turn,” but now you’re talking about
frames. What’s the difference?

A:	Semantics,	really.	We’re	still	
dealing	in	turns:	little	chunks	of	time	
where	every	object	in	the	world	gets	
to	act.	But	since	we’ll	soon	be	putting	
some	heavy-duty	graphics	in	place,	
we’ve	started	using	“frame”,	as	in	a	
graphical	game’s	frame-rate.

If you haven’t
dragged a ToolStrip
and StatusStrip out
of the toolbox and
onto your form, do
it now.

Just double-click on a ToolStrip button
in the designer to make the IDE add its
event handler, just like a normal button.

Download at WoweBook.Com

550 Chapter 12

Your job was to write the event handlers for the Start
Simulation and Reset buttons.

public partial class Form1 : Form {
 // variable declarations

 public Form1() {
 InitializeComponent();
 world = new World();
 }
 private void Form1_Load(object sender, tArgs e) {
 // code to start simulator
 }
 private void UpdateStats(TimeSpan frameDuration) {
 // Code from earlier to update the statistics
 }
 public void RunFrame(object sender, EventArgs e) {
 // event handler for timer
 }

 private void startSimulation_Click(object sender, EventArgs e) {
 if (timer1.Enabled) {
 toolStrip1.Items[0].Text = “Resume simulation”;
 timer1.Stop();
 } else {
 toolStrip1.Items[0].Text = “Pause simulation”;
 timer1.Start();
 }
 }

 private void reset_Click(object sender, EventArgs e) {
 framesRun = 0;
 world = new World();
 if (!timer1.Enabled)
 toolStrip1.Items[0].Text = “Start simulation”;
 }
}

Toggle the t
imer,

and update
the

message.

Resetting the simulator is
just a matter of recreating
the World instance and
resetting framesRun.

The only time we need to change the first button’s label is if it says, “Resume simulation.” If it says, “Pause simuation,” it doesn’t need to change.

Be sure
your
form’s
control
names
match up
with what
you use in
your code.

get it going

Download at WoweBook.Com

you are here 4 551

review and preview

Test drive
You’ve done a ton of work. Compile your
code, fix any typos, and run the simulator.
How’s it look?

Looks pretty good! All these numbers should update as the world moves along.

Your start/pause and
reset buttons should
all work.

Hmmm... our status strip seems to be the only thing not working.

Here’s your chance to put together everything you’ve learned. We need to
allow bees to tell our simulator what they’re doing. When they do, we want
our simulator to update the status message in the simulator.

This time, it’s up to you to not only write most of the code, but figure out
what code you need to write. How can you have a method in your simulator
that gets called everytime a bee changes its state?

To give you a little help, we’ve written the method to add to the form. The
Bee class should call this method any time its state changes:

private void SendMessage(int ID, string Message) {
 statusStrip1.Items[0].Text = “Bee #” + ID + “: ” + Message;
}

* Okay, one more
hint. You’ll need to
make changes to
all but one of your
classes to make
this work.

Download at WoweBook.Com

552 Chapter 12

Your	job	was	to	come	up	with	a	way	for	Bees	to	let	the	simulator	know	
about	what	they’re	doing.

Here’s what we added to the Bee class.

public class Bee {
 // all our existing code
 public delegate void BeeMessage(int ID, string Message);
 public BeeMessage MessageSender;

 public void Go(Random random) {
 Age++;
 BeeState oldState = CurrentState;
 switch (currentState) {
 // the rest of the switch statement is the same
 }
 if (oldState != CurrentState
 && MessageSender != null)
 MessageSender(ID, CurrentState.ToString());
 }
}

We used a callback to hook each individual bee object up to the form’s SendMessage() method.

BeeMessage is our delegate.
It’s also a match with the
SendMessage() method we
wrote in the form.

If the status of the Bee changed, we
call back the method our BeeMessage
delegate points to, and let that method
know about the status change.

public class Hive {
 // all our existing code
 public Bee.BeeMessage MessageSender;

 public Hive(World world, Bee.BeeMessage MessageSender) {
 this.MessageSender = MessageSender;
 // existing constructor code
 }

 public void AddBee(Random random) {
 // existing AddBee() code
 Bee newBee = new Bee(beeCount, startPoint, world, this);
 newBee.MessageSender += this.MessageSender;
 world.Bees.Add(newBee);
}

Here are the changes
we made to the Hive.

Hive needs a delegate too, so
it can pass on the methods for
each bee to call when they’re
created in AddBee().

AddBee() now has to make sure that each new bee gets the method to point at.

exercise solution

Download at WoweBook.Com

you are here 4 553

review and preview

public class World {
 // all our existing code

 public World(Bee.BeeMessage messageSender) {
 Bees = new List<Bee>();
 Flowers = new List<Flower>();
 Hive = new Hive(this, messageSender);
 Random random = new Random();
 for (int i = 0; i < 10; i++)
 AddFlower(random);
 }
}

World doesn’t need to have a delegate of its own. It just passes on the method to call to the Hive instance.

The World class required some changes as well.

public partial class Form1 : Form {
 // variable declarations
 public Form1() {
 InitializeComponent();
 world = new World(new Bee.BeeMessage(SendMessage));
 // the rest of the Form1 constructor
 }

 private void reset_Click(object sender, EventArgs e) {
 framesRun = 0;
 world = new World(new Bee.BeeMessage(SendMessage));
 if (!timer1.Enabled)
 toolStrip1.Items[0].Text = “Start simulation”;
 }

 private void SendMessage(int ID, string Message) {
 statusStrip1.Items[0].Text = “Bee #” + ID + “: ” + Message;
 }
}

Last but not least, here’s the updated form. Anything not shown stayed the same.

We create a new delegate from the
Bee class (make sure you declared
BeeMessage public), and point it at
our SendMessage() method.

Same thing here... create the world with the method for bees to call back.

This is the method we gave
you... be sure to add it in, too.

Download at WoweBook.Com

554 Chapter 12

Let’s work with groups of bees
Your bees should be buzzing around the hive and the field,
and your simulation should be running! How cool is that? But
since we don’t have the visual part of the simulator working
yet—that’s what we’re doing in the next chapter—all the
information we have so far is the messages that the bees are
sending back to the main form with their callback. So let’s
add more information about what the bees are doing.

You know enough to gather the information you’d need to populate that
ListBox—take a minute and think through how that would work. But it’s a
little more complex than it seems at first. What would you need to do to
figure out how many bees are in each of the various Bee.State states?

You already have the form
updating these stats and
displaying the messages
that the bees send as
they do their jobs.

At any time, there are a bunch of b
ees flying around.

The new ListBox will display how many bees are doing

each job. In this case, two bees are flying to flowers,

one is at a flower gathering nectar, one i
s returning

to the hive, and two are in the honey factor
y

turning nectar into honey
.

Go ahead and add a
ListBox to your form.
We’ll use it to display
some extra stats about
the bees in the world.

List of Bee o
bj

e
c

ts

group the bees

Download at WoweBook.Com

you are here 4 555

review and preview

A collection collects... DATA
Our bees are stored in a List, which is one of C#’s collection
types. And collection types really just store data... a lot like
a database does. So each bee is like a row of data, complete
with a state, and ID, and so on. Here’s how our bees look as a
collection of objects:

Database

ID = 987

Bee
currentState = MakingHoney

ID = 12

Bee
currentState = FlyingToFlower

ID = 1982

Bee
currentState = GatheringNectar

List of Bee o
bj

e
c

tsBees

There’s a lot of data in the Bee objects’ fields. You can almost
think of a collection of objects the same way you think of
rows in a database. Each object holds data in its fields, the
same way each row in a database holds data in its columns.

Bees table ID = 987 currentState = MakingHoney
ID = 12 currentState = FlyingToFlower

ID = 1982 currentState = GatheringNectar

Suppose we had a Bees table, and each row in the table had an ID column and a currentState column.
Most collections‑especially
when they hold objects‑
can be thought of as data
stores, just like a database.

Download at WoweBook.Com

556 Chapter 12

Who cares if you can think
about a collection as a database if you

can’t use a collection like a database?
What a total waste of time...

What if you could query collections,
databases, and even XML documents
with the same basic syntax?
C# has a really useful feature called LINQ (which
stands for Language INtegrated Query). The idea
behind LINQ is that it gives you a way to take an array,
list, stack, queue, or other collection and work with all
the data inside it all at once in a single operation.

But what’s really great about LINQ is that you can use
the same syntax that works with collections as you can
for working with databases. We’ll spend most of Chapter 15 working with LINQ.

ID = 987

Bee
currentState = MakingHoney

ID = 12

Bee
currentState = FlyingToFlower

ID = 1982

Bee
currentState = GatheringNectar

List of Bee o
bj

e
c

tsBees

Database

Bees table ID = 987 currentState = MakingHoney
ID = 12 currentState = FlyingToFlower

ID = 1982 currentState = GatheringNectar

XML
<bee id=”987” currentState=”MakingHoney” />
<bee id=”12” currentState=”FlyingToFlower” />
<bee id=”1982” currentState=”GatheringNectar” />

var beeGroups =
 from bee in world.Bees
 group bee by bee.CurrentState
 into beeGroup
 orderby beeGroup.Key
 select beeGroup;

LINQ

This LINQ query works essentially

the same with data in a collection

or a database.

If we had our bee data in a database—
or even an XML file—LINQ could work
with them in exactly the same way.

missing LINQ

 LINQ
is a new

feature
that’s
part of

C# 3.0 and
Visual Studio 2008.

If you’re using an earlier
version of C#, take a few
minutes to download
and install Visual C#
2008 Express Edition.
It’s free from Microsoft,
and it can be installed
alongside previous
versions.

Download at WoweBook.Com

you are here 4 557

review and preview

LINQ makes working with data in
collections and databases easy
We’re going to spend an entire chapter on LINQ before long, but we can
use LINQ and some Ready Bake Code to add some extra features to our
simulator. Ready Bake Code is code you should type in, and it’s okay if
you don’t understand it all. You’ll learn how it all works in Chapter 15.

private void SendMessage(int ID, string Message) {
 statusStrip1.Items[0].Text = “Bee #” + ID + “: “ + Message;
 var beeGroups =
 from bee in world.Bees
 group bee by bee.CurrentState into beeGroup
 orderby beeGroup.Key
 select beeGroup;
 listBox1.Items.Clear();
 foreach (var group in beeGroups) {
 string s;
 if (group.Count() == 1)
 s = “”;
 else
 s = “s”;
 listBox1.Items.Add(group.Key.ToString() + “: “
 + group.Count() + “ bee” + s);
 if (group.Key == BeeState.Idle
 && group.Count() == world.Bees.Count()
 && framesRun > 0) {
 listBox1.Items.Add(“Simulation ended: all bees are idle”);
 toolStrip1.Items[0].Text = “Simulation ended”;
 statusStrip1.Items[0].Text = “Simulation ended”;
 timer1.Enabled = false;
 }
 }
}

The group’s Key is the bee’s
CurrentState, so that’s the order the
states will be displayed on the form.

This bit of code makes sure it says, “1 bee”
and “3 bees”, keeping the plural right.

Ready Bake
Code

This is a LINQ query. It takes all the bees in the Bees collection, and groups them by their CurrentState property.

Make sure
this matches
the list box
control’s
name on
your form.

beeGroups is from the LINQ query. We can count the members, and iterate over them.

Finally, add the group
status (its key) and
count to the list box.Here’s another nice feature. Since we know how many bees are idle...

...we can see if ALL
bees are idle. If so,
the hive’s out of honey,
so let’s stop the
simulation.

 We’ll learn a lot more about LINQ in
upcoming chapters.

You don’t need to memorize LINQ syntax or
try to drill all of this into your head right now.

You’ll get a lot more practice working with LINQ in Chapter 15.

Download at WoweBook.Com

558 Chapter 12

Test drive (Part 2)
Go ahead and compile your code and run your project. If
you get any errors, double-check your syntax, especially
with the new LINQ code. Then, fire up your simulator!

These stats come from
the form querying the
World object.

The timer on your form

controls the running
of

the simulation.

LINQ queries
your collections
to feed you this
data every turn.

Bees call back your simulator
form to update the form every
time their status changes.

save the world

Download at WoweBook.Com

you are here 4 559

review and preview

Add	code	to	make	the	save	and	open	buttons	work.	

Add the button event handlers
The new standard buttons are named openToolStripButton, saveToolStripButton and
printToolStripButton. Just double-click on them to add their event handlers.

22

Add the Open, Save, and Print icons
The ToolStrip control has a really useful feature—it can automatically insert
picture buttons for standard icons: new, open, save, print, cut, copy, paste, and help.
Just right-click on the ToolStrip icon at the bottom of the Form Designer window
and select “Insert Standard Items”. Then click on the first item—that’s the “new”
icon—and delete it. Keep the next three items, because they’re the ones we need
(open, save and print). After that comes a separator; you can either delete it or
move it between the Reset button and the save buton. Then delete the rest of the
buttons.

11

One final challenge: Open and Save
We’re almost ready to take on graphics, and add some visual eye candy to
our simulator. First, though, let’s do one more thing to this version: allow
loading, saving, and printing of bee statistics.

1. Make the save button serialize the world to a file.	Stop	the	timer	(you	can	restart	it	after	saving).	Set	
MessageSender	to	null	for	the	hive	and	all	the	bees,	so	.NET	doesn’t	try	and	serialize	the	code	your	delegates	
point	to:	the	form	itself.	Display	a	Save	dialog	box,	and	then	serialize	the	World	object,	and	the	number	of	frames	
that	have	been	run.	Don’t	forget	to	reattach	the	SendMessage()	when	you’re	done	saving.

2. Make the open button deserialize the world from a file.	Take	care	of	the	timer	just	like	in	the	save	button,	pop	up	
an	Open	dialog	box,	and	deserialize	the	world	and	the	number	of	frames	run	from	the	selected	file.	Then	you	can	hook	
up	the	MessageSender	delegates	again	and	restart	the	timer	(if	necessary).

3. Don’t forget about exception handling!	Make	sure	the	world	is	intact	if	there’s	a	problem	reading	or	writing	the	
file.	Consider	popping	up	a	human-readable	error	message	indicating	what	went	wrong.

You’ll add the Print
button now—we’ll make
it print a status page
for the hive in the
next chapter.

Download at WoweBook.Com

560 Chapter 12

private void saveToolStripButton_Click(object sender, EventArgs e) {
 bool enabled = timer1.Enabled;

 if (enabled)

 timer1.Stop();

 world.Hive.MessageSender = null;

 foreach (Bee bee in world.Bees)

 bee.MessageSender = null;

 SaveFileDialog saveDialog = new SaveFileDialog();

 saveDialog.Filter = “Simulator File (*.bees)|*.bees”;

 saveDialog.CheckPathExists = true;

 saveDialog.Title = “Choose a file to save the current simulation”;

 if (saveDialog.ShowDialog() == DialogResult.OK) {

 try {

 BinaryFormatter bf = new BinaryFormatter();

 using (Stream output = File.OpenWrite(saveDialog.FileName)) {

 bf.Serialize(output, world);

 bf.Serialize(output, framesRun);

 }

 }

 catch (Exception ex) {

 MessageBox.Show(“Unable to save the simulator file\r\n” + ex.Message,

 “Bee Simulator Error”, MessageBoxButtons.OK, MessageBoxIcon.Error);

 }

 }

 world.Hive.MessageSender = new Bee.BeeMessage(SendMessage);

 foreach (Bee bee in world.Bees)

 bee.MessageSender = new Bee.BeeMessage(SendMessage);

 if (enabled)

 timer1.Start();

}

Your	job	was	to	make	the	Save	and	Open	buttons	work.
Don’t forget the extra using statements.

[Serializable]
public class World {
 [Serializable]
public class Hive {
 [Serializable]
public class Flower {
 [Serializable]
public class Bee {

You’ll need to make the World, Hive, Flower,
and Bee classes serializable. When you
serialize the world, .NET will find its
references to Hive, Flower and Bee objects
and serialize them too.

If we don’t set all the MessageSender delegates
to null, then when we try to serialize the world
they’ll act as a reference to Form1, and the
BinaryFormatter will try to write out our form.

Here’s the code for the Save button.

Here’s where
the world is
written out
to a file.

We decided to use “.bees”
as the extension for
simulator save files.

After we save the
file, we need to hook up the MessageSender delegates again, and then restart the timer (if we stopped it).

Remember, when we serialize World, everything it references gets serialized... all the bees, flowers, and the hive.

using System.IO;
using System.Runtime.Serialization.Formatters.Binary;

exrecise solution

Download at WoweBook.Com

you are here 4 561

review and preview

private void openToolStripButton_Click(object sender, EventArgs e) {
 World currentWorld = world;
 int currentFramesRun = framesRun;

 bool enabled = timer1.Enabled;
 if (enabled)
 timer1.Stop();

 OpenFileDialog openDialog = new OpenFileDialog();
 openDialog.Filter = “Simulator File (*.bees)|*.bees”;
 openDialog.CheckPathExists = true;
 openDialog.CheckFileExists = true;
 openDialog.Title = “Choose a file with a simulation to load”;
 if (openDialog.ShowDialog() == DialogResult.OK) {
 try {
 BinaryFormatter bf = new BinaryFormatter();
 using (Stream input = File.OpenRead(openDialog.FileName)) {
 world = (World)bf.Deserialize(input);
 framesRun = (int)bf.Deserialize(input);
 }
 }
 catch (Exception ex) {
 MessageBox.Show(“Unable to read the simulator file\r\n” + ex.Message,
 “Bee Simulator Error”, MessageBoxButtons.OK, MessageBoxIcon.Error);
 world = currentWorld;
 framesRun = currentFramesRun;
 }
 }

 world.Hive.MessageSender = new Bee.BeeMessage(SendMessage);
 foreach (Bee bee in world.Bees)
 bee.MessageSender = new Bee.BeeMessage(SendMessage);
 if (enabled)
 timer1.Start();
}

Before opening the file and reading from it,
save a reference to the current world and
framesRun. If there’s a problem, you can revert
to these and keep running.

Here’s the code for the Open button.

Set up the Open
File dialog box
and pop it up.

Here’s where we deserialize
the world and the number
of frames run to the file.

If the file operations throw an exception, we restore the current world and framesRun.

using ensures
the stream
gets closed.

Once everything is loaded, we
hook back up the delegates and
restart the timer.

You’ll need to get your simulator up and running before you move on
to the next chapter. You can download a working version from the
Head First Labs website: www.headfirstlabs.com/books/hfcsharp/

Download at WoweBook.Com

Download at WoweBook.Com

this is a new chapter 563

controls and graphics13

Make it pretty

Sometimes you have to take graphics into your own hands.
We’ve spent a lot of time on relying on controls to handle everything visual in our

applications. But sometimes that’s not enough—like when you want to animate a picture.

And once you get into animation, you’ll end up creating your own controls for your .NET

programs, maybe adding a little double buffering, and even drawing directly onto your

forms. It all begins with the Graphics object, Bitmaps, and a determination to not accept

the graphics status quo.

Sometimes you have to take graphics into your own hands.
We’ve spent a lot of time on relying on controls to handle everything visual in our

applications. But sometimes that’s not enough—like when you want to animate a picture.

And once you get into animation, you’ll end up creating your own controls for your .NET

programs, maybe adding a little double buffering, and even drawing directly onto your

forms. It all begins with the Graphics object, Bitmaps, and a determination to not accept

the graphics status quo.

Download at WoweBook.Com

564 Chapter 13

System.Window
s.

Fo
rm

s.
Fo

rm

You’ve been using controls all along
to interact with your programs
TextBoxes, PictureBoxes, Labels... you’ve got a pretty good
handle by now on how you can use the controls in the IDE’s toolbox.
But what do you really know about them? There’s a lot more to a
control than just dragging an icon onto your form.

You can create your own controls
The controls in the toolbox are really useful for building forms and
applications, but there’s nothing magical about them. They’re just
classes, like the classes that you’ve been writing on your own. In fact,
C# makes it really easy for you to create controls yourself, just by
inheriting from the right base class.

≥≥

Your custom controls show up in the IDE’s toolbox
There’s also nothing mysterious about the toolbox in the IDE. It
just looks in your project’s classes and the built-in .NET classes for
any controls. If it finds a control—a class that implements the right
interface—then it displays an icon for the class. If you add your own
custom controls, they’ll show up in the toolbox, too.

≥≥

You can write code to add controls to your form, and even
remove controls, while your program’s running
Just because you lay out a form in the IDE’s form designer, that doesn’t mean
that it has to stay like that. You’ve already moved plenty of PictureBox
controls around (like when you built the greyhound race). But you can also
add or remove controls, too. In fact, when you build a form in the IDE, all it’s
doing is writing the code that adds the controls to the form... which means
you can write similar code, and run that code whenever you want.

≥≥

You can create a class
that inherits from any
of the existing control
classes—even if it
doesn’t have any other
code in it—and it’ll
automatically show up in
the toolbox.

objects everywhere

TextBox
ob

je
c

t

TrackBar o
bj

ec
t

Label obje
ct

Label obje
ct

Controls obje
ct

Download at WoweBook.Com

you are here 4 565

controls and graphics

System.Window
s.

Fo
rm

s.
Fo

rm

Form controls are just objects
You already know how important controls are to your forms. You’ve been
using buttons, text boxes, picture boxes, check boxes, group boxes, labels, and
other forms since chapter 1. Well, it turns out that those controls are just
objects, just like everything else you’ve been working with.

A control is just an object, like any other object—it just happens to know how
to draw itself. The Form object form keeps track of its controls using a special
collection called Controls, which you can use to add or remove controls in
your own code.

Here’s the form for a
simple application. Its
Controls collection keeps a
reference to each of the
control objects on the
form.

There are 10 controls on this form, so the Controls collection contains 10
references to individual
control objects.

Since there are
 three

labels on the fo
rm,

the Controls collectio
n

will contain thre
e

Label objects.

Each control in the form
is just an instance of a
particular object.

RadioButto

n o
b

je
c

t

Button obj
ec

t

TextBox
ob

je
c

t

RadioButto

n o
b

je
c

t

RadioButto

n o
b

je
c

t
TrackBar o

bj
ec

t

Label obje
ct

Label obje
ct

Label obje
ct

StatusStrip

 o
b

je
c

t
Controls obje

ct

Download at WoweBook.Com

566 Chapter 13

Use controls to animate the beehive simulator
You’ve built a cool simulator, but it’s not much to look at. It’s time to create a
really stunning visualization that shows those bees in action. You’re about to
build a renderer that animates the beehive…and controls are the key.

The user interface shows you everything that’s going on
Your simulator will have three different windows. You’ve already built the main “heads-up display”
stats window that shows stats about the current simulation and updates from the bees. Now you’ll
add a window that shows you what’s going in inside the hive, and a window that shows the field of
flowers where the bees gather nectar.

11

We’ll make the Print button in the stats window work
The stats window has working Open and Save buttons, but the Print button
doesn’t work yet. We’ll be able to reuse a lot of the graphics code to get the Print
button on the ToolStrip to print an info page about what’s going on.

22

These two windows are child windows—when
you minimize the main window, the other two disappear along with it. And when you move the main window around, the other two follow it.

The form you built
in the last chapter
becomes the heads-
up display for the
simulator.

This window shows what’s
going on in the hive.

This window displays the field of flowers and the bees
gathering nectar.

how cute!

Download at WoweBook.Com

you are here 4 567

controls and graphics

The hive window shows you what’s going on inside the hive
As the bees fly around the world, you’ll need to animate each one. Sometimes they’re
inside the hive, and when they are, they show up in this window.

33

The hive has three
important locations in it.
The bees are born in the
nursery, they have to fly
to the exit to leave the
hive to gather nectar from the flowers, and when they come back they need to go to the honey factory to
make honey.

The field window is where the bees collect the nectar
Bees have one big job: collect nectar from the flowers, and bring it
back to the hive to make honey. Then they eat honey to give them
energy to fly out and get more nectar.

44

Here’s the entrance to the
hive. When bees fly into it,
they disappear from the
field form and reappear near
the Exit in the hive form.

The hive exit is on the hive form, and
the entrance is on the field form.
(That’s why we put both of them in
the Hive’s locations dictionary.)

Download at WoweBook.Com

568 Chapter 13

Add a renderer to your architecture

World obje
ct

Hive fo

rm

Renderer obje
ct

Field fo

rm

List of Flower o
b

je
c

ts

List of Bee o
bj

e
c

ts

Hive obje
ctSystem.Window

s.
Fo

rm
s.

Fo
rm

Main form

We need another class that reads the information in the
world and uses it to draw the hive, bees and flowers on
the two new forms. We’ll add a class called Renderer
to do exactly that. And since your other classes are
well-encapsulated, that won’t require a lot of changes to
your existing code.

This is the object for the main
window that you’ve already built.

The Hive and
Field objects are
forms, tied to
your main form.

The World object keeps track of everything in the simulator: the state of the hive, every bee and every flower.

Each bee knows its location—and we can use that location to draw the bee on the form.

Renderer o
bj

ec
t

World obje
ct

Renderer o
bj

ec
t

System.Window
s.

Fo
rm

s.
Fo

rm

Main form

Because Bee,
Hive, Flower, and
World are well‑
encapsulated, a
class that renders
those objects can
be added without
lots of changes to
existing code.

The renderer reads the
information from the
World object and uses
that information to
update the two forms. It
keeps a reference to the
World object, as well as
the Hive form object and
the Field form object.

ren-der, verb.
to represent or depict artistically.
Sally’s art teacher asked the class to look
at all of the shadows and lines in the
model and render them on the page.

You’ve already built these object
s.

a sweet rendition

Download at WoweBook.Com

you are here 4 569

controls and graphics

The renderer draws everything in
the World on the two forms
The World object keeps track of everything in the simulation: the
hive, the bees, and the flowers. But it doesn’t actually draw anything
or produce any output. That’s the job of the Renderer object. It
reads all of the information in the World, Hive, Bee, and Flower
objects and draws them on the forms.

Renderer o
bj

ec
t

World obje
ct

checks fields for state

draws the bees

and flowers in
the field

Renderer o
bj

ec
t

draws the bees in the hive

returns the state of the objects

The simulator renders the world after each frame
After the main form calls the world’s Go() method, it should call the
renderer’s Render() method to redraw the display windows. For example,
each flower will be displayed using a PictureBox control. But let’s go
further with bees and create an animated control. You’ll create this new
control, called BeeControl, and define its behavior yourself.

Field fo

rm
Hive fo

rm

System.Window
s.

Fo
rm

s.
Fo

rm

Main form

renderer.Render()

moves each

bee’s BeeControl

moves each

BeeControl and

flower PictureBoxThe renderer keeps track of which visual control is used to represent a particular bee or flower using Dictionary objects, where the Bee or Flower object is the key.

The World is encapsulated, so Renderer only
needs to use the properties on World and
its related objects to get the information
it needs, and render the information on the
display windows.

Download at WoweBook.Com

570 Chapter 13

Controls are well-suited for
visual display elements
When a new bee is added to the hive, we’ll want our simulator to add a new
BeeControl to the Hive form and change its location as it moves around the
world. When that bee flies out of the hive, our simulator will need to remove the
control from the Hive form and add it to the Field form. And when it flies back to
the hive with its load of nectar, its control needs to be removed from the Field form
and added back to the Hive form. And all the while, we’ll want the animated bee
picture to flap its wings... and controls will make it easy to do all of that.

Field fo

rm

Hive fo

rm

Hive fo

rm

Renderer o
bj

e
c

t

Renderer o
bj

ec
t

Hive fo

rm

Renderer o
bj

e
c

t

Controls.Add(new BeeControl());

The world adds a new bee, and the renderer creates a new BeeControl
and adds it to the Hive form’s Controls collection.

11

When the bee flies out of the hive and enters the field, the renderer
removes the BeeControl from the hive’s Controls collection and adds
it to the field form’s Controls collection.

22

Cont
rols

.Rem
ove(

theB
ee);

Controls.Add(theBee);

A bee will retire if it’s idle and it’s gotten too old. If the renderer checks
the world’s Bees list and finds that the bee is no longer there, it removes the
control from the Hive form.

33

Controls.Remove(theBee);

taking control of graphics

Download at WoweBook.Com

you are here 4 571

controls and graphics

Can you figure out what each of these code snippets does? Assume
each snippet is inside a form, and write down your best guess.

this.Controls.Add(new Button());

Form2 childWindow = new Form2();

childWindow.BackgroundImage =

 Properties.Resources.Mosaic;

childWindow.BackgroundImageLayout =

 ImageLayout.Tile;

childWindow.Show();

Label myLabel = new Label();

myLabel.Text = “What animal do you like?”;

myLabel.Location = new Point(10, 10);

ListBox myList = new ListBox();

myList.Items.AddRange(new object[]

 { “Cat”, “Dog”, “Fish”, “None” });

myList.Location = new Point(10, 40);

Controls.Add(myLabel);

Controls.Add(myList);

Label controlToRemove = null;

foreach (Control control in Controls) {

 if (control is Label

 && control.Text == “Bobby”)

 controlToRemove = control as Label;

}

Controls.Remove(controlToRemove);

controlToRemove.Dispose();

Bonus question: Why do you think
we didn’t put the Controls.Remove()
statement inside the foreach loop?

You don’t need to write down each line, as much as summarize what’s going on in the code block.

Try it out if you want, and
write why you think you got the result that .NET gave you.

If you’ve got a ListBox on your form, you can use its AddRange() method to add list items.

Download at WoweBook.Com

572 Chapter 13

Can you figure out what each of these code snippets does? Assume
each snippet is inside a form, and write down what you think it does.

this.Controls.Add(new Button());

Form2 childWindow = new Form2();

childWindow.BackgroundImage =

 Properties.Resources.Mosaic;

childWindow.BackgroundImageLayout =

 ImageLayout.Tile;

childWindow.Show();

Label myLabel = new Label();

myLabel.Text = “What animal do you like?”;

myLabel.Location = new Point(10, 10);

ListBox myList = new ListBox();

myList.Items.AddRange(new object[]

 { “Cat”, “Dog”, “Fish”, “None” });

myList.Location = new Point(10, 40);

Controls.Add(myLabel);

Controls.Add(myList);

Label controlToRemove = null;

foreach (Control control in Controls) {

 if (control is Label

 && control.Text == “Bobby”)

 controlToRemove = control as Label;

}

Controls.Remove(controlToRemove);

controlToRemove.Dispose();

Bonus question: Why do you think
we didn’t put the Controls.Remove()
statement inside the foreach loop?

Create a new button and add it to the
form. It’ll have default values (e.g., the Text
property will be empty).

There’s a second Form in the application
called Form2, so this creates it, sets its
background image to a resource image called
“Mosaic”, makes the background image so it’s
tiled instead of stretched, and then displays
the window to the user.

This code creates a new label, sets its text,
and moves it to a new position. Then it
creates a new listbox, adds four items to the
list, and moves it just underneath the label.
It adds the label and listbox to the form, so
they both get displayed immediately.

This loop searches through all the controls on
the form until it finds a label with the text
“Bobby”. Once it finds the label, it removes it
from the form.

You can’t modify the Controls collection
(or any other colllection) in the middle of a
foreach loop that’s iterating through it.

If you try, .NET will throw an exception. It

needs the collection intact, otherwise it’ll lose its

place and give you unpredictable result
s. That’s

why you’d use a for loop for this instea
d.

buzz buzz buzz

What happens there’s no control named “Bobby”
in the Controls collection?

Download at WoweBook.Com

you are here 4 573

controls and graphics

Build your first animated control
You’re going to build your own control that draws an animated bee
picture. If you’ve never done animation, it’s not as hard as it sounds: you
draw a sequence of pictures one after another, and produce the illusion of
movement. Lucky for us, the way C# and .NET handle resources makes it
really easy for us to do animation.

1
2

3

4

Once you download the four bee animation pictures (Bee animation 1.png through Bee animation 4.png) from Head First Labs, you’ll add them to your project’s resources. When you flash these four bees quickly one after another, it’ll look like their wings are flapping.

We want a control in the toolbox
If you build BeeControl right, it’ll appear as a control
that you can drag out of your toolbox and onto your form.
It’ll look just like a PictureBox showing a picture of a
bee, except that it’ll have animated flapping wings.

As long as we extend the right cla
sses,

.NET takes care of showing our

control in the IDE toolbox.

This is like a PictureBox, but the image is set, and there’s animation that we’ll build in. Any guesses as to what class BeeControl subclasses?

Download the images for this chapter
from the Head First Labs website:
www.headfirstlabs.com/books/
hfcsharp/

Download at WoweBook.Com

574 Chapter 13

BeeControl is LIKE a PictureBox... so let’s
start by INHERITING from PictureBox
Since every control in the Toolbox is just an object, it’s easy to make a new
control. All you need to do is add a new class to your project that inherits from an
existing control, and add any new behavior you want your control to perform.

We want a control—let’s call it a BeeControl—that shows an animated
picture of a bee flapping its wings, but we’ll start with a control that shows
a non-animated picture, and then just add animation. So we’ll start with a
PictureBox, and then we’ll add code to draw an animated bee on it.

Create a new project and add the four animation cells to the project’s resources, just
like you added the Objectville Paper Company logo to your project way back in Chapter
1. But instead of adding them to the form resources, add them to the project’s resources.

11

In Chapter 1, we added the logo
graphic to the form’s Resources
file. This time we’re adding the
resources to the project’s global
collection of resources, which
makes them available to every
class in the project (through the
Properties.Resources collection).

We’ve drawn a four-cell bee animation that you can import into your resources that you
can download from http://www.headfirstlabs.com/books/hfcsharp/. Then, go
to the Resources page, select “Images” from the first dropdown at the top of the screen,
and select “Add Existing File...” from the “Add Resource” dropdown.

22

Animate this!

Bee animation 1.png Bee animation 2.png Bee animation 3.png Bee animation 4.png

These appear under your project, not a particular form.

Import each of these images into
your project’s resources.

Take a minute and flip back
to Chapter 1 to remind
yourself how you did this.

DIY control

Double-click on Resources.resx to
bring up the Resources page.

Download at WoweBook.Com

you are here 4 575

controls and graphics

pictureBox1.Image =
 Properties.Resources.Bee_animation_1;

When you add images or other resources to the project’s Resources file, you can access
them using the Properties.Resources class. Just go to any line in your code and
type Properties.Resources.—as soon as you do, the IntelliSense pops up a
dropdown list that shows all of the pictures you’ve imported.

33

This sets the image used for a
particular PictureBox’s image (and
for our starting image).

Note that “.” at the end... that’s what tells the IDE to pop up the properties and methods of the class you typed in.

These images are stored a
s

public properties
of the

Properties.Resources class.

Now add your BeeControl! Just add this BeeControl class to your project:

public class BeeControl : PictureBox {

 private Timer animationTimer = new Timer();

 public BeeControl() {
 animationTimer.Tick += new EventHandler(animationTimer_Tick);
 animationTimer.Interval = 150;
 animationTimer.Start();
 BackColor = System.Drawing.Color.Transparent;
 BackgroundImageLayout = ImageLayout.Stretch;
 }

 private int cell = 0;
 void animationTimer_Tick(object sender, EventArgs e) {
 cell++;
 switch (cell) {
 case 1: BackgroundImage = Properties.Resources.Bee_animation_1; break;
 case 2: BackgroundImage = Properties.Resources.Bee_animation_2; break;
 case 3: BackgroundImage = Properties.Resources.Bee_animation_3; break;
 case 4: BackgroundImage = Properties.Resources.Bee_animation_4; break;
 case 5: BackgroundImage = Properties.Resources.Bee_animation_3; break;
 default: BackgroundImage = Properties.Resources.Bee_animation_2;
 cell = 0; break;
 }
 }
}

Then rebuild your program. Go back to the form designer and look in the toolbox, the BeeControl
is there. Drag it onto your form—you get an animated bee!

44

When you change the code for a control, you need to rebuild
your program to make your changes show up in the designer.

Here’s where you
initialize the timer
by instantiating it,
setting its Interval
property, and then
adding its tick
event handler.

Each time the timer’s
tick event fires, it
increments cell, and
then does a switch
based on it to assign
the right picture to
the Image property
(inherited from
PictureBox).

Once we get back to frame #1,
well reset cell back to 0.

You’ll need to add a “using System.Windows.Forms” line for the PictureBox and Timer.

When the
program’s running,
each picture is
stored in memory
as a Bitmap object.

Download at WoweBook.Com

576 Chapter 13

Create a button to add the BeeControl to your form
It’s easy to add a control to a form—just add it to the Controls collection. And it’s just
as easy to remove from the form by removing it from Controls. But controls implement
IDisposable, so make sure you always dispose your control after you remove it.

Every visual control in your toolbox
inherits from System.Windows.
Forms.Control. That class has
members which should be pretty
familiar by now: Visible, Width,
Height, Text, Location, BackColor,
BackgroundImage…all of those
familiar properties you see in the
Properties window for any control.

Behind
the Scenes

You can add your own
control to the toolbox just
by creating a class that
inherits from Control.

Remove the BeeControl from your form, and then add a button
Go to the form designer and delete the BeeControl from the form. Then add a
button. We’ll make the button add and remove a BeeControl.

11

When you add
a control to
the Controls
collection, it
appears on
the form
immediately.

You can use an
object initializer to
set the BeeControl
properties after
it’s instantiated.

Add a button to add and remove the bee control
Here’s the event handler for it:

BeeControl control = null;
private void button1_Click(object sender, EventArgs e) {
 if (control == null) {
 control = new BeeControl() { Location = new Point(100, 100) };
 Controls.Add(control);
 } else {
 Controls.Remove(control);
 control.Dispose();
 control = null;
 }
}

Now when you run your program, if you click the button once it’ll add a new BeeControl to the
form. Click it again and it’ll delete it. It uses the private control field to hold the reference to
the control. (It sets the reference to null when there’s no control on the form.)

22

All you need to do to remove the
control is remove it from the
Controls collection. But make sure
you dispose it—otherwise it’ll keep
taking up resources!

Now do this

controls are disposable

Download at WoweBook.Com

you are here 4 577

controls and graphics

Add the code to dispose the timer
Change the new Dispose() method that the IDE added for you so that it calls
animationTimer.Dispose().

 protected override void Dispose(bool disposing) {
 animationTimer.Dispose();
 base.Dispose(disposing);
 }

Now the BeeControl will dispose of its timer as part
of its own Dispose() method. It cleans up after itself !

33

Your controls need to dispose their controls, too!
There’s a problem with the BeeControl. Controls need to be disposed after
they’re done. But the BeeControl creates a new instance of Timer, which is
a control that shows up in the toolbox... and it never gets disposed! That’s a
problem. Luckily, it’s easy to fix—just override the Dispose() method.

Override the Dispose() method and dispose of the timer
Since BeeControl inherits from a control, then that control must have a Dispose() method. So we can just
override and extend that method to dispose our timer. Just go into the control and type override:

 public class BeeControl : PictureBox {
 override

As soon as you click on Dispose(), the IDE will fill in the method with a call to base.Dispose():

 protected override void Dispose(bool disposing) {
 base.Dispose(disposing);
 }

33

When you type “override”
inside a class, the IDE
pops up an IntelliSense
window with all of the
methods you can override.
Select the Dispose()
method and it’ll fill one in
for you!

Now your BeeControl will
dispose of the timer that it
created in its constructor.
The IDE filled in a call to
the PictureBox base class’s
Dispose() method—leave it in
so the PictureBox can dispose
itself, too.

Any control
that you write
from scratch
is responsible
for disposing
any other
controls (or
disposable
objects) that it
creates.

The control class implements
IDisposable, so you need to make
sure every control you use gets
disposed.

Download at WoweBook.Com

578 Chapter 13

A UserControl is an easy way to build a control
There’s an easier way to build your own Toolbox controls. Instead of creating a class
that inherits from an existing control, all you need to do is use the IDE to add a
UserControl to your project. You work with a UserControl just like a form. You
can drag other controls out of the toolbox and onto it—it uses the normal form
designer in the IDE. And you can use its events just like you do with a form. So let’s
rebuild the BeeControl using a UserControl.

A UserControl is
an easy way to
add a control to
the toolbox. Edit
a UserControl just
like a form—you
can drag other
controls out of the
toolbox onto it,
and you can use its
events exactly like
a form’s events.

Right-click on BeeControl.cs in the IDE and rename it to OldBeeControl.cs. The IDE will pop
up a Yes/No window: “You are renaming a file. Would you also like to perform a rename in this project
of all references to the code element ‘BeeControl’?”—this window is asking if you want to rename the
BeeControl class to OldBeeControl, and then change all of the code in the project to reflect this
change. Click the “Yes” button to rename your BeeControl to OldBeeControl.

11

Do this

Right-click on the project in the Solution Explorer and select “Add >> User Control...” Have the
IDE add a user control called BeeControl. The IDE will open up the new control in the
form designer.

22

Drag a Timer control onto your user control. It’ll show up at the bottom of the designer, just like
with a form. Use the Properties window to set its Interval to 150 and its Enabled to true.
Then double-click on it—the IDE will add its Tick event handler. Just use the same Tick event
handler that you used earlier to animate the first bee control.

33

Now update the BeeControl’s constructor:

 public BeeControl() {

 InitializeComponent();

 BackColor = System.Drawing.Color.Transparent;

 BackgroundImageLayout = ImageLayout.Stretch;

 }

44

Go back to the button event handler on the form. When you renamed
the first BeeControl to OldBeeControl, it changed the form code as
well. So change the two lines back to BeeControl so it uses your new
UserControl instead of the PictureBox:

 BeeControl control = null;
 private void button1_Click(...) {
 if (control == null) {
 control = new BeeControl() { ...

Now run your program—it should work exactly the same as before.
The button now adds and removes your UserControl-based BeeControl.

55

You can also do this from the Properties
page in the IDE, instead of using code.

Use the animationTimer_Tick() method (you’ll need to rename it) and
the cell field from the old bee control—but don’t copy anything else.

user controls make it easy

Download at WoweBook.Com

you are here 4 579

controls and graphics

But I’ve been using
controls all this time, and I’ve

never disposed a single one of
them! Why should I start now?

You didn’t dispose your controls because your
forms did it for you.
But don’t take our word for it. Use the IDE’s search function to
search your project for the word “Dispose”, and you’ll find that
the IDE added a method in Form1.Designer.cs to override the
Dispose() method that calls its own base.Dispose(). When the
form is disposed, it automatically disposes everything in its
Controls collection so you don’t have to worry about it. But once
you start removing controls from that collection or creating new
instances of controls (like the Timer in the BeeControl) outside of
the Controls collection, then you need to do the disposal yourself.

Q: Why does the form code for the
PictureBox-based BeeControl work
exactly the same with the UserControl-
based BeeControl?

A:	Because	the	code	doesn’t	care	how	
the	BeeControl	object	is	implemented.	It	just	
cares	that	it	can	add	the	object	to	the	form’s	
Controls	method.

Q: I double-clicked on my
OldBeeControl class in the Solution
Explorer, and it had a message about
adding components to my class. What’s
that about?

A:	When	you	create	a	control	by	adding	
a	class	to	your	project	that	inherits	from	
PictureBox	or	another	control,	the	IDE	does	
some	clever	things.	One	of	the	things	it	does	
is	let	you	work	with	components,	those	
non-visual	controls	like	Timer	and	
		

		
OpenFileDialog	that	show	up	in	the	space	
beneath	your	form	when	you	work	with	them.		
Give	it	a	try—create	an	empty	class	that	
inherits	from	PictureBox.	Then	rebuild	your	
project	and	double-click	on	it	in	the	IDE.	
You’ll	get	this	message:		
To add components to your class, drag
them from the Toolbox and use the
Properties window to set their properties. 	
Drag	an	OpenFileDialog	out	of	the	Toolbox	
and	onto	your	new	class.	It’ll	appear	as	
an	icon.	You	can	click	on	it	and	set	its	
properties.	Set	a	few	of	them.	Now	go	
back	to	the	code	for	your	class.	Check	out	
the	constructor—the	IDE	added	code	to	
instantiate	the	OpenFileDialog	object	and	set	
its	properties.

Q: When I changed the properties in
the OpenFileDialog, I noticed an error
message in the IDE: “You must rebuild
your project for the changes to show up
in any open designers.” Why did I get this
error?

A:	Because	the	desginer	runs	your	
control,	and	until	you	rebuild	your	code	it’s	
not	running	the	latest	version	of	the	control.		
Remember	how	the	wings	of	the	bee	
were	flapping	when	you	first	created	your	
BeeControl,	even	when	you	dragged	it	out	
of	the	toolbox	and	into	the	designer?	You	
weren’t	running	your	program	yet,	but	the	
code	that	you	wrote	was	being	executed.	
The	timer	was	firing	its	Tick	event,	and	your	
event	handler	was	changing	the	picture.	The	
only	way	the	IDE	can	make	that	happen	is	if	
the	code	were	actually	compiled	and	running	
in	memory	somewhere.	So	it’s	reminding	you	
to	update	your	code	so	it	can	display	your	
controls	properly.

Download at WoweBook.Com

580 Chapter 13

The renderer uses your BeeControl to
draw animated bees on your forms
With a BeeControl class and two forms, you just need a way to position
bees, move them from one form to the other, and keep up with the bees.
You’ll also need to position flowers on the FieldForm, although since
flowers don’t move, that’s pretty simple. All of this is code that we can
put into a new class, Renderer. Here’s what that class does:

The renderer keeps a reference to the world and each child form
At the very top of the Renderer class you’ll need a few important fields. The
class has to know the location of each bee and flower, so it needs a reference to the
World. And it’ll need to add, move, and remove controls in the two forms, so it
needs a reference to each of those forms:

public class Renderer {

 private World world;

 private HiveForm hiveForm;

 private FieldForm fieldForm;

22

The renderer uses dictionaries to keep track of the controls
World keeps track of its Bee objects using a List<Bee> and a List<Flower> to store
its flowers. The renderer needs to be able to look at each of those Bee and Flower objects
and figure out what BeeControl and PictureBox they correspond to—or, if it can’t
find a corresponding control, it needs to create one. So here’s a perfect opportunity to use
dictionaries. So we’ll need two more private fields in Renderer:

 private Dictionary<Flower, PictureBox> flowerLookup =

 new Dictionary<Flower, PictureBox>();

 private Dictionary<Bee, BeeControl> beeLookup =

 new Dictionary<Bee, BeeControl>();

33

These two dictionary collections
let the renderer store exactly
one control for each bee or
flower in the world.

Start your Renderer
class with these lines.
We’ll add to this class
throughout the chapter.

These dictionaries become one-to-one mappings between a bee or flower and the control for that bee or flower.

The stats form will be the parent of the hive and field forms
The first step in adding graphics to the Beehive Simulator will be adding two
forms to the project. You’ll add one called HiveForm (to show the inside of
the hive) and one called FieldForm (which will show the field of flowers). Then
you’ll add lines to the main form’s constructor to show its two child forms to tell
Windows that the stats form is their owner:

public Form1() {

 // other code in the Form1 constructor

 hiveForm.Show(this);

 fieldForm.Show(this);

11

Every form object has a Show()
method. If you want to set another
form as its owner, just pass a
reference to that form to Show().

You’ll want the hive and
field forms “linked” to
the stats form—that does
useful things like minimizing
the hive and field forms
when you minimize the stats
form. You can do this by
telling Windows that the
stats form is their owner.

here’s what you’ll do...

Renderer obje
ct

Download at WoweBook.Com

you are here 4 581

controls and graphics

The bees and flowers already know their locations
There’s a reason we stored each bee and flower location using a Point. Once we have a
Bee object, we can easily look up its BeeControl and set its location.

 beeControl = beeLookup[bee];

 beeControl.Location = bee.Location;

44

For each bee or flower, we can look up the matching control. Then, set that control’s location to match the location of the bee or flower object.

If a bee doesn’t have a control, the renderer adds it to the hive form
It’s easy enough for the renderer to figure out if a particular bee or flower has a control. If the
dictionary’s ContainsKey() method returns false for a particular Bee object, that means
there’s no control on the form for that bee. So Renderer needs to create a BeeControl, add it to
the dictionary, and then add the control to the form. (It also calls the control’s BringToFront()
method, to make sure the control doesn’t get hidden behind the flower PictureBoxes):

 if (!beeLookup.ContainsKey(bee)) {
 beeControl = new BeeControl() { Width = 40, Height = 40 };
 beeLookup.Add(bee, beeControl);
 hiveForm.Controls.Add(beeControl);
 beeControl.BringToFront();

 } else

 beeControl = beeLookup[bee];

55

ContainsKey() tells us if the bee exists in the dictionary. If not, then we need to add that bee, along with a corresponding control.

BringToFront() ensures the bee
appears “on top of” any flowers on
the FieldForm, and on top of the
background of the HiveForm.

The Renderer is acting on the two forms, as well as all the objects you built in the last chapter for the simulator.

Remember how a dictionary can use anything as a key? Well, this one uses a Bee object as a key. The renderer needs to know which BeeControl on the form belongs to a particular bee. So it looks up that bee’s object in the dictionary, which spits out the correct control. Now the renderer can move it around.

Hive fo

rm

Renderer obje
ct

System.Window
s.

Fo
rm

s.
Fo

rmMain form

Field fo

rm

Download at WoweBook.Com

582 Chapter 13

Add the hive and field forms to the project

Figure out where your locations are
You need to figure out where the hive is on your FieldForm. Using the Properties window,
create a handler for the MouseClick event, and add this code:

 private void FieldForm_MouseClick(object sender, MouseEventArgs e)
{
 MessageBox.Show(e.Location.ToString());
 }

Once you’ve added the MouseClick event handler to the form, you can run the program.
Once it’s running, click on the exit of the hive in the picture. The event handler will pop up
a message box that shows you the exact coordinates of the spot that you clicked!

Add the same handler to HiveForm, and run it. Then, by clicking, get the coordinates of
the exit, the nursery, and the honey factory. Using all these locations, you can update the
InitializeLocations() method you wrote in the Hive class in the last chapter:

Now you need forms to put bees on. So start with your existing Beehive Simulator project,
and use “Add >> Existing Item...” to add your new BeeControl user control. The UserControl
has a .cs file, a .designer.cs file and a .resx file—you’ll need to add all three. Then open up the code for
both the .cs and .designer.cs files, and change the namespace lines so they match the namespace of
your new project. Rebuild your project; the BeeControl should now show up in the toolbox. You’ll also
need to add the graphics to the new project’s resources. Then add two more Windows forms to the
project by right-clicking on the project in the Solution Explorer and choosing “Windows Form...”
from the Add menu. If you name the files HiveForm.cs and FieldForm.cs, the IDE will automatically
set their Name properties to HiveForm and FieldForm. You already know that forms are just
objects, so HiveForm and FieldForm are really just two more classes.

This is a PictureBox
control with its
BackgroundImage set
to the outside hive
picture. When you load
the hive pictures into the
Resource Designer, they’ll
show up in the list of
resources when you click
the “...” button next to
BackgroundImage in the
Properties window.

Set the form’s BackgroundImage property to the inside hive picture, and its BackgroundImageLayout property to Stretch.

private void InitializeLocations()
{
 locations = new Dictionary<string, Point>();
 locations.Add(“Entrance”, new Point(600, 100));
 locations.Add(“Nursery”, new Point(95, 174));
 locations.Add(“HoneyFactory”, new Point(157, 98));
 locations.Add(“Exit”, new Point(194, 213));
}

You’ll need the inside and outside hive images—“Hive (inside).png” and “Hive (outide).png”—loaded into your resources. Then add these two forms. Set each form’s FormBorderStyle property to FixedSingle (so the user can’t resize it), the ControlBox property to false (to take away its minimize and maximize controls), and StartPosition to Manual (so its Location property is settable).

Remove the mouse click handler when you’re done... you just needed it to get the locations on your forms.These are the coordinates that worked for us, but if you’re
forms a little bigger or smaller, your coordinates will be different.

Remember, go to the Properties window, click on the lightning-bolt
icon to bring up the Events window, scroll down to the MouseClick row
and double-click on it. The IDE will add the event handler for you.

Make sure
you resize
both forms
so they look
like these
screenshots.

let’s get started!

Download at WoweBook.Com

you are here 4 583

controls and graphics

Renderer

Render()
Reset()

Here’s the complete Renderer class. The main form calls this
class’s Render() method right after it calls World.Go() to draw
the bees and flowers on the forms. You’ll need to make sure that the
flower graphic (Flower.png) is loaded into the project, just like
the animated bee images.

Build the Renderer
All fields in the renderer
are private because no
other class needs to update
any of its properties. It’s
fully encapsulated. The
world just calls Render()
to draw the world to the
forms, and Reset() to clear
the controls on the forms
if it needs to reset.

public class Renderer {
 private World world;
 private HiveForm hiveForm;
 private FieldForm fieldForm;

 private Dictionary<Flower, PictureBox> flowerLookup =
 new Dictionary<Flower, PictureBox>();
 private List<Flower> deadFlowers = new List<Flower>();

 private Dictionary<Bee, BeeControl> beeLookup =
 new Dictionary<Bee, BeeControl>();
 private List<Bee> retiredBees = new List<Bee>();

 public Renderer(World world, HiveForm hiveForm, FieldForm fieldForm) {
 this.world = world;
 this.hiveForm = hiveForm;
 this.fieldForm = fieldForm;
 }

 public void Render() {
 DrawBees();
 DrawFlowers();
 RemoveRetiredBeesAndDeadFlowers();
 }

 public void Reset() {
 foreach (PictureBox flower in flowerLookup.Values) {
 fieldForm.Controls.Remove(flower);
 flower.Dispose();
 }
 foreach (BeeControl bee in beeLookup.Values) {
 hiveForm.Controls.Remove(bee);
 fieldForm.Controls.Remove(bee);
 bee.Dispose();
 }
 flowerLookup.Clear();
 beeLookup.Clear();
 }

The renderer keeps references t
o

the world and the two forms it
draws the bees on. The world uses Bee and Flower objects to keep track of every bee and flower in the world. The forms use a PictureBox to display each flower and a BeeControl to display each bee. The renderer uses these dictionaries to connect each bee and flower to its own BeeControl or PictureBox.

When a flower dies or a bee retires, it uses the deadFlowers and retiredBees lists to clean out the dictionaries.
The timer on the main form that runs the
animation calls the Render() method, which
updates the bees and the flowers, and then
cleans out its dictionaries.

If the simulator is reset, it calls each form’s Controls.Remove() method to completely clear out the controls on the two forms. It finds all of the controls in each of its two dictionaries and removes them from the forms, calling Dispose() on each of them. Then it clears the two dictionaries.

Download at WoweBook.Com

584 Chapter 13

 private void DrawFlowers() {
 foreach (Flower flower in world.Flowers)
 if (!flowerLookup.ContainsKey(flower)) {
 PictureBox flowerControl = new PictureBox() {
 Width = 45,
 Height = 55,
 Image = Properties.Resources.Flower,
 SizeMode = PictureBoxSizeMode.StretchImage,
 Location = flower.Location
 };
 flowerLookup.Add(flower, flowerControl);
 fieldForm.Controls.Add(flowerControl);
 }

 foreach (Flower flower in flowerLookup.Keys) {
 if (!world.Flowers.Contains(flower)) {
 PictureBox flowerControlToRemove = flowerLookup[flower];
 fieldForm.Controls.Remove(flowerControlToRemove);
 flowerControlToRemove.Dispose();
 deadFlowers.Add(flower);
 }
 }
 }

 private void DrawBees() {
 BeeControl beeControl;
 foreach (Bee bee in world.Bees) {
 beeControl = GetBeeControl(bee);
 if (bee.InsideHive) {
 if (fieldForm.Controls.Contains(beeControl))
 MoveBeeFromFieldToHive(beeControl);
 } else if (hiveForm.Controls.Contains(beeControl))
 MoveBeeFromHiveToField(beeControl, bee);
 beeControl.Location = bee.Location;
 }

 foreach (Bee bee in beeLookup.Keys) {
 if (!world.Bees.Contains(bee)) {
 beeControl = beeLookup[bee];
 if (fieldForm.Controls.Contains(beeControl))
 fieldForm.Controls.Remove(beeControl);
 if (hiveForm.Controls.Contains(beeControl))
 hiveForm.Controls.Remove(beeControl);
 beeControl.Dispose();
 retiredBees.Add(bee);
 }
 }
 }

The first foreach loop uses
the flowerLookup dictionary
to check each flower to
see if it’s got a control on
the form. If it doesn’t, it
creates a new PictureBox
using an object initializer,
adds it to the form, and
then adds it to the
flowerLookup dictionary.

It takes two foreach loops to draw the flowers. The first looks
for new flowers and adds their PictureBoxes. The second looks
for dead flowers and removes their PictureBoxes.

DrawFlowers() uses the
Location property in
the Flower object to
set the PictureBox’s
location on the form.

The second foreach loop
looks for any PictureBox in
the flowerLookup dictionary
that’s no longer on the form
and removes it.

After it removes the PictureBox, it calls its
Dispose() method. Then it adds the Flower
object to deadFlowers so it’ll get cleared later.

DrawBees() also uses two foreach loops, and it does the same basic things as DrawFlowers(). But it’s a little more complex, so we split some of its behavior out into separate methods to make it easier to understand.

DrawBees() checks if a bee is in
the hive but its control is on the
FieldForm, or vice versa. It uses
two extra methds to move the
BeeControls between the forms.

The second foreach loop works
just like in DrawFlowers(),
except it needs to remove the
BeeControl from the right
form.

Once the BeeControl
is removed, we need
to call its Dispose()
method—the user
control will dispose of
its timer for us.

here’s the renderer class

Download at WoweBook.Com

you are here 4 585

controls and graphics

 private BeeControl GetBeeControl(Bee bee) {
 BeeControl beeControl;
 if (!beeLookup.ContainsKey(bee)) {
 beeControl = new BeeControl() { Width = 40, Height = 40 };
 beeLookup.Add(bee, beeControl);
 hiveForm.Controls.Add(beeControl);
 beeControl.BringToFront();
 }
 else
 beeControl = beeLookup[bee];
 return beeControl;
 }

 private void MoveBeeFromHiveToField(BeeControl beeControl) {
 hiveForm.Controls.Remove(beeControl);
 beeControl.Size = new Size(20, 20);
 fieldForm.Controls.Add(beeControl);
 beeControl.BringToFront();
 }

 private void MoveBeeFromFieldToHive(BeeControl beeControl) {
 fieldForm.Controls.Remove(beeControl);
 beeControl.Size = new Size(40, 40);
 hiveForm.Controls.Add(beeControl);
 beeControl.BringToFront();
 }

 private void RemoveRetiredBeesAndDeadFlowers() {
 foreach (Bee bee in retiredBees)
 beeLookup.Remove(bee);
 retiredBees.Clear();
 foreach (Flower flower in deadFlowers)
 flowerLookup.Remove(flower);
 deadFlowers.Clear();
 }
}

GetBeeControl() looks up a bee in the
beeLookup dictionary and returns it. If
it’s not there, it creates a new 40 x 40
BeeControl and adds it to the hive form
(since that’s where bees are born).

Don’t forget that
the ! means NOT.

MoveBeeFromHiveToField() takes a specific
BeeControl out of the hive form’s Controls
collection and adds it to the field form’s
Controls collection.

MoveBeeFromFieldToHive() moves a
BeeControl back to the hive form.
It has to make it bigger again.

The bees on the field form are smaller than
the ones on the hive form, so the method
needs to change BeeControl’s Size property.

After all the controls are moved around,
the renderer calls this method to clear
any dead flowers and retired bees out of
the two dictionaries.

Whenever DrawBees() and DrawFlowers()
found that a flower or bee was no longer
in the world, it added them to the
deadFlowers and retiredBees lists to be
removed at the end of the frame.

You’ll need to make sure you’ve got using System.Drawing
and using System.Windows.Forms at the top of the
Renderer class file.

Download at WoweBook.Com

586 Chapter 13

public partial class Form1 : Form {
 HiveForm hiveForm = new HiveForm();
 FieldForm fieldForm = new FieldForm();
 Renderer renderer;

 // the rest of the fields

 public Form1() {
 InitializeComponent();

 MoveChildForms();
 hiveForm.Show(this);
 fieldForm.Show(this);
 ResetSimulator();

 // The rest of the code stays the same

 }

 private void MoveChildForms() {
 hiveForm.Location = new Point(Location.X + Width + 10, Location.Y);
 fieldForm.Location = new Point(Location.X,
 Location.Y + Math.Max(Height, hiveForm.Height) + 10);
 }

 public void RunFrame(object sender, EventArgs e) {
 framesRun++;
 world.Go(random);
 renderer.Render();
 // previous code
 }

 private void Form1_Move(object sender, EventArgs e) {
 MoveChildForms();
 }

The main form’s constructor
moves the two child forms
in place, then displays them.
Then it calls ResetSimulator(),
which instantiates Renderer.

The form passes a reference
to itself into Form.Show() so
it becomes the parent form.

When the main form loads, it creates an instance of each of the other two forms. They’re just objects in the heap for now—they won’t be displayed until their Show() methods are called.

This code moves the two
forms so that the hive
form is next to the main
stats form and the field
form is below both of them.

Adding this one line to RunFrame makes the simulator update the graphics after each time the world’s Go() method is called.
The Move event is fired
every time the main
form is moved. Calling
MoveChildForms() makes
sure the child forms
always move along with
the main form.

Use the Events button in the Properties
window to add the Move event.handler.

Now connect the main form to your
two new forms, HiveForm and FieldForm
It’s great to have a Renderer, but so far, there aren’t any forms to render
onto. We can fix that by going back to the main Form class (probably
called Form1), and making some code changes:

Move the code to instantiate the World
into the ResetSimulator() method.

Everything else that used to be in the constructor will be moved to the ResetSimulator() method.

hook it up

Make sure you’ve set the field and
hive forms’ StartPosition property to
Manual, or else MoveChildForms() won’t
work.

Download at WoweBook.Com

you are here 4 587

controls and graphics

 private void ResetSimulator() {
 framesRun = 0;
 world = new World(new Bee.BeeMessage(SendMessage));
 renderer = new Renderer(world, hiveForm, fieldForm);
 }

 private void reset_Click(object sender, EventArgs e) {
 renderer.Reset();
 ResetSimulator();
 if (!timer1.Enabled)
 toolStrip1.Items[0].Text = “Start simulation”;
 }

 private void openToolStripButton_Click(object sender, EventArgs e) {
 // The rest of the code in this button stays exactly the same.

 renderer.Reset();
 renderer = new Renderer(world, hiveForm, fieldForm);
 }
}

Finally, you’ll need to add code to the Open button on the ToolStrip to use the Reset() method to remove the bees and flowers from the two forms’ Controls collections. and then create a new renderer using the newly loaded world.

The Reset button needs to
call Reset() to clear out all
the BeeControls and flower
PictureBoxes, and then reset
the simulator.

Here’s where we create new instances of the World and Renderer classes, which
resets the simulator.

Q: I saw that you showed the form using a Show() method,
but I don’t quite get what was going on with passing this as a
parameter.

A:	This	all	comes	down	to	the	idea	that	a	form	is	just	another	
class.	When	you	display	a	form	you’re	just	instantiating	that	class	
and	calling	its	Show()	method.	There’s	an	overloaded	version	of	
Show()	that	takes	one	parameter,	a	parent	window.	When	one	
form	is	a	parent	of	another,	it	causes	Windows	to	set	up	a	special	
relationship	between	them—for	example,	when	you	minimize	the	
parent	window,	it	automatically	minimizes	all	of	that	form’s	child	
windows,	too.

Q:Can you alter the preexisting controls and muck around
with their code?

A:No,	you	can’t	actually	access	the	code	inside	the	controls	
that	ship	with	Visual	Studio.	However,	every	single	one	of	those	
controls	is	a	class	that	you	can	inherit,	just	like	you	inherited	from	
PictureBox	to	create	your	BeeControl.	If	you	want	to	
add	or	change	behavior	in	any	of	those	controls,	you	add	your	own	
methods	and	properties	that	manipulate	the	ones	in	the	base	class.	
	

Download at WoweBook.Com

588 Chapter 13

Test drive... ahem... buzz
Compile all your code, chase down any errors you’re
getting, and run your simulator.

Your bees should be happily
flapping their wings now.

Try changing the
constants on your
simulator, and seeing how
the Renderer handles
more bees or flowers.

something’s wrong

Download at WoweBook.Com

you are here 4 589

controls and graphics

Looks great, but something’s not quite right...
Look closely at the bees buzzing around the hive and the flowers, and you’ll
notice some problems with the way they’re being rendered. Remember how you
set each BeeControl’s BackColor property to Color.Transparent?
Unfortunately, that wasn’t enough to keep the simulator from having some
problems which are actually pretty typical of graphics programs.

The flowers’ backgrounds aren’t really transparent
And there’s another, completely separate problem. When we saved the graphics files for
the flowers, we gave them transparent backgrounds. But while that made sure that each
flower’s background matched the background of the form, it doesn’t look so nice when
flowers overlap each other.

22

The bees’ backgrounds aren’t transparent, either
It turns out that Color.Transparent really does have some limitations. When the
bees are hovering over the flowers, the same “cut-out” glitch happens. Transparency
works a little better with the hive form, where the form’s background image does show
through the transparent areas of the bee graphics. But when the bees overlap, the same
problems occur. And if you watch closely as the bees move around the hive, you’ll see
some glitches where the bee images are sometimes distorted when they move.

33

When you set a PictureBox’s
background color to Transparent, it
draws any transparent pixels in the
image so they match the background
of the form... which isn’t always the
right thing to do.

When one PictureBox overlaps
another, C# draws the
transparent pixels so they match the form, not the other control that it overlaps, causing weird
rectangular “cut-outs” any time two flowers overlap.

There are some serious performance issues
Did you notice how the whole simulator slows down when all the bees are inside the hive?
If not, try adding more bees by increasing the constants in the Hive class. Keep your eye
on the frame rate—add more bees, and it starts to drop significantly.

11

Download at WoweBook.Com

590 Chapter 13

Let’s take a closer look at those performance issues
Each bee picture you downloaded is big. Really big. Pop one of them open in Windows
Picture Viewer and see for yourself. That means the PictureBox needs to shrink it down
every time it changes the image, and scaling an image up or down takes time. The reason
the bees move a lot slower when there’s a lot of them flying around inside the hive is
because the inside hive picture is HUGE. And when you made the background for the
BeeControl transparent, it needs to do double work: first it has to shrink the bee picture
down, and then it needs to shrink a portion of the form’s background down so that it can
draw it in the transparent area behind the bee.

...so all we need to do to speed up the simulator’s performance
is to shrink down all the pictures before we try to display them.

Bee animation 1.png

Hive (Inside).png

The graphics files for the
bees are really BIG. When the
PictureBox needs to scale the
picture down to size every time it
displays a new animation frame.
That takes a lot of time...

The bee picture is
really big, and the
PictureBox needs
time to shrink it
down every time
it displays a new
animation frame.

The inside hive picture is huge.
Every time a bee flies in front
of it, its PictureBox needs to
scale it down to the size of the
control. It needs to do that
to show part of the picture
any place the bee picture’s
transparent background lets it
show through.

we bit off more than the program could chew

Download at WoweBook.Com

you are here 4 591

controls and graphics
All we need to do to speed up the graphics performance is add a method
to the renderer that scales any image to a different size. Then we can
resize each picture once when it’s loaded, and only use the scaled
down version in the bee control and for the hive form’s background.

public static Bitmap ResizeImage(Bitmap picture, int width, int height) {
 Bitmap resizedPicture = new Bitmap(width, height);
 using (Graphics graphics = Graphics.FromImage(resizedPicture)) {
 graphics.DrawImage(picture, 0, 0, width, height);
 }
 return resizedPicture;
}

Add the ResizeImage method to the renderer
All of the pictures in your project (like Properties.Resources.Flower) are stored as
Bitmap objects. Here’s a static method that resizes bitmaps—add it to the Renderer class:

11

We’ll take a closer look at what this Graphics object is
and how this method works in the next few pages

Add this ResizeCells method to your BeeControl
Your BeeControl can store its own Bitmap objects—in this case, an array of four of them. Here’s a
control that’ll populate that array, resizing each one so that it’s exactly the right size for the control:

22

 Do this

Set the form’s background image manually
Go to the Properties window and set the hive form’s background image to (none). Then go to its
constructor and set the image to one that’s sized properly.

55

public partial class HiveForm : Form {
 public HiveForm() {
 InitializeComponent();
 BackgroundImage = Renderer.ResizeImage(
 Properties.Resources.Hive__inside_,
 ClientRectangle.Width, ClientRectangle.Height);
 }
}

Your form has a ClientRectangle property that contains a Rectangle which has the dimensions of its display area.

Now run the simulator—it’s much faster!

private Bitmap[] cells = new Bitmap[4];
private void ResizeCells() {
 cells[0] = Renderer.ResizeImage(Properties.Resources.Bee_animation_1, Width, Height);
 cells[1] = Renderer.ResizeImage(Properties.Resources.Bee_animation_2, Width, Height);
 cells[2] = Renderer.ResizeImage(Properties.Resources.Bee_animation_3, Width, Height);
 cells[3] = Renderer.ResizeImage(Properties.Resources.Bee_animation_4, Width, Height);
}

Change the switch statement so that it uses the cells array, not the resources
The BeeControl’s Tick event handler has a switch statement that sets its BackgroundImage:

 BackgroundImage = Properties.Resources.Bee_animation_1;

Replace Properties.Resources.Bee_animation_1 with cells[0]. Now replace the rest of the
case lines, so that case 2 one uses cells[1], case 3 uses cells[2], case 4 uses cells[3], case 5
uses cells[2], and the default case uses cells[1]. That way only the resized image is displayed.

33

Add calls to ResizeCells() to the BeeControl
You’ll need to add two calls to the new ResizeCells() method. First, add it to the bottom of the
constructor. Then go back to the IDE designer by double-clicking on the BeeControl in the Properites
window. Go over to the Events page in the Properties window (by clicking on the lightning bolt icon),
scroll down to Resize, and double-click on it to add a Resize event handler. Make the new Resize
event handler call ResizeCells() too—that way it’ll resize its animation pictures every time the form is
resized.

44

These lines take each of the Bitmap objects that store the bee pictures
and shrink them down using the ResizeImage() method we wrote.

Download at WoweBook.Com

592 Chapter 13

You resized your Bitmaps using a Graphics object
Let’s take a closer look at that ResizeImage() method you added to the
renderer. The first thing it does is create a new Bitmap object that’s the size that
the picture will be resized to. Then it uses Graphics.FromImage() to create
a new Graphics object. It uses that Graphics object’s DrawImage() method
to draw the picture onto the Bitmap. Notice how you passed the width and
height parameters to DrawImage()—that’s how you tell it to scale the image
down to the new size. Finally you returned the new Bitmap you created, so it can
be used as the form’s background image or one of the four animation cells.

public static Bitmap ResizeImage(Bitmap picture, int width, int height) {

 Bitmap resizedPicture = new Bitmap(width, height);

 using (Graphics graphics = Graphics.FromImage(resizedPicture)) {

 graphics.DrawImage(picture, 0, 0, width, height);

 }

 return resizedPicture;

}

private void button1_Click(object sender, EventArgs e)
{
 PictureBox beePicture = new PictureBox();
 beePicture.Location = new Point(10, 10);
 beePicture.Size = new Size(100, 100);
 beePicture.BorderStyle = BorderStyle.FixedSingle;
 beePicture.Image = Renderer.ResizeImage(
 Properties.Resources.Bee_animation_1, 80, 40);
 Controls.Add(beePicture);
}

Let’s see image resizing in action
Drag a button onto the Field form and add this code. It creates a new PictureBox
control that’s 100 x100 pixels, setting its border to a black line so you can see how
big it is. Then it uses ResizeImage() to make a bee picture that’s squished
down to 80 x 40 pixels and assigns that new picture to its Image property. Once
the PictureBox is added to the form, the bee is displayed.

You can see the image resizing in
action—the squished bee image is
much smaller than the PictureBox.
ResizeImage() squished it down.

Just do this temporarily.
Delete the button and
code when you’re done.

You pass a picture into the
method, along with a new
width and height that it’ll
be resized to.

The FromImage() method returns a new Graphics object. that lets

you draw graphics onto that image. Take a minute and use the IDE’s

IntelliSense to look at the methods in the Graphics class. When you call

DrawImage(), it copies the image into the resizedPicture bitmap at the

location (0, 0) and scaled to the width and height parameters..

Forms and controls have a
CreateGraphics() method
that returns a new Graphics
object. You’ll see a lot more
about that shortly.

The ResizeImage()
method creates a
Graphics object to
draw on an invisible
Bitmap object.
It returns that
Bitmap so it can be
displayed on a form
or in PictureBox.

digging deeper into graphics

Download at WoweBook.Com

you are here 4 593

controls and graphics

Your image resources are stored in Bitmap objects
When you import graphics files into your project’s resources,
what happens to them? You already know that you can access
them using Properties.Resources. But what, exactly, is
your program doing with them once they’re imported?

.NET turns your image into a new Bitmap object:

Bitmap bee = new Bitmap(“Bee animation 1.png”)

Bee animation 1.png

Bitmap obje
ct

The Bitmap class has several overloaded constructors. This one loads a graphics file from disk. You can also pass it integers for width and height—that’ll create a new Bitmap with no picture.

Then each Bitmap is drawn to the screen
Once your images are in Bitmap objects, your form
draws them to the screen, with a call like this:

using (Graphics g = CreateGraphics()) {

 g.DrawImage(myBitmap, 30, 30, 150, 150);

}

This call gets a Graphics object

to draw on the form. We use a

using statment to make sure the

Graphics object is disposed.

DrawImage() takes a Bitmap, the image to draw...
...a starting X, Y coordinate...

...and a size, 150x150 pixels.

The bigger they are...
Did you notice those last two parameters to DrawImage()?
What if the image in the Bitmap is 175 by 175? The
graphics library must then resize the image to fit 150 by 150.
What if the Bitmap contains an image that’s 1,500 by 2,025?
Then the scaling becomes even slower...

This image, which is
300x300 pixels...

...gets shrunk to this size, which is (for example) 150x150 pixels. And that slows your simulator down!

150

150

Resizing images takes a
lot of processing power! If
you do it once, it’s no big
deal. But if you do it EVERY
FRAME, your program will
slow down. We gave you
REALLY BIG images for the
bees and the hive. When
the renderer moves the
bees around (especially
in front of the inside hive
picture), it has to resize
them over and over again.
And that was causing the
performance problems!

Download at WoweBook.Com

594 Chapter 13

Use System.Drawing to TAKE CONTROL
of graphics yourself
The Graphics object is part of the System.Drawing namespace. The
.NET Framework comes with some pretty powerful graphics tools
that go a lot further than the simple PictureBox control that’s in the
toolbox. You can draw shapes, use fonts, and do all sorts of complex
graphics... and it all starts with a Graphics object. Any time you want
to add or modify any object’s graphics or images, you’ll create a
Graphics object that’s linked to the object you want to draw on,
and then use the Graphics object’s methods to draw on your target.

System.Drawing
The graphics methods in the System.Drawing namespace are sometimes referred to as GDI+, which stands for Graphics Device Interface. When you draw graphics with GDI+, you start with a Graphics object that’s hooked up to a Bitmap, form, control, or another object that you want to draw on using the Graphics object’s methods.

System.Window
s.

Fo
rm

s.
Fo

rm

Graphics obj
ec

t

this.CreateGraphics()

The form can call its own CreateGraphics() method, or another object can call it. Either way, the method returns a reference to a Graphics object whose methods will draw on it.

Graphics obj
ec

t

System.Window
s.

Fo
rm

s.
Fo

rm

 g.DrawLi
nes()

The DrawLines() method, for example, draws a bunch of lines on whatever object created the Graphics instance.

Use the Graphics object’s methods to draw on your object
Every Graphics object has methods that let you draw on the object that
created it. When you call methods in the Graphics object to draw lines, circles,
rectangles, text, and images, they appear on the form.

22

Start with the object you want to draw on
For instance, think about a form. When you call the form’s
CreateGraphics() method, it returns an instance of
Graphics that’s set up to draw on itself.

11

Even though you’re
calling methods in
this Graphics object,
the actual graphics
appear on the object
that created it.

Calls on this instance of
Graphics affect the form that
created the Graphics object.

You don’t draw on the graphics object itself. You only use it to draw on other objects.

you’re in control when you don’t use controls

Download at WoweBook.Com

you are here 4 595

controls and graphics

A 30-second tour of GDI+ graphics
There are all sorts of shapes and pictures that you can draw once you’ve
created a Graphics object. All you need to do is call its methods, and it’ll
draw directly onto the object that created it.

The first step is always to grab yourself a Graphics object. Use a form’s CreateGraphics()
method, or have a Graphics object passed in. Remember, Graphics implements the
IDisposable() interface, so if you create a new one use a using statement:

 using (Graphics g = this.CreateGraphics()) {

11

If you want to draw a line, call DrawLine() with starting point and ending point, each
represented by X and Y coordinates:

 g.DrawLine(Pens.Blue, 30, 10, 100, 45);

or you can do it using a couple of Points:

 g.DrawLine(Pens.Blue, new Point(30, 45), new Point(100, 10));

22

Here’s code that draws a filled slate gray rectangle, and then gives it a sky blue border. It uses a
Rectangle to define the dimensions—in this case, the upper left hand corner is at (150, 15),
and it’s 140 pixels wide and 90 pixels high.

 g.FillRectangle(Brushes.SlateGray, new Rectangle(150, 15, 140, 90));

 g.DrawRectangle(Pens.SkyBlue, new Rectangle(150, 15, 140, 90));

33

You can draw an ellipse or a circle using the DrawCircle() or FillCircle() methods,
which also use a Rectangle to specify how big the shape should be. This code draws two
ellipses that are slightly offset to give a shadow effect:

 g.FillEllipse(Brushes.DarkGray, new Rectangle(45, 65, 200, 100));

 g.FillEllipse(Brushes.Silver, new Rectangle(40, 60, 200, 100));

44

Use the DrawString() method to draw text in any font and color. To do that, you’ll need to
create a Font object. It implements IDisposable, so use a using statement:

 using (Font arial24Bold = new Font(“Arial”, 24, FontStyle.Bold)) {

 g.DrawString(“Hi there!”, arial24Bold, Brushes.Red, 50, 75);

 }

55

You’ll need to make sure you’ve got a using System.Drawing; line at the top of your class to use these methods. Or, when you add a form to your project, the IDE adds that line to your form class automatically.

2 3

4

5

If the above statements are
executed in order, this is what will
end up on the form. Each of the
statements above matches up with
the numbers here. The upper left-
hand corner is coordinate (0, 0).

Remember, this draws on the object
that created this instance.

There’s no step 1 on this picture, since that was creating the actual Graphics object.

The start coordinate...

...and the end coordinate.

There are a whole
lot of colors you
can use—just type

“Color”, “Pens” or
“Brushes” followed
by a dot and the
IntelliSense window
will display them.

Download at WoweBook.Com

596 Chapter 13

Use graphics to draw a picture on a form
Let’s create a new Windows application that draws a
picture on a form when you click on it. Draw this

Start by adding a Click event to the form
Go to the Events page in the Properties window (by clicking on the lightning-bolt icon),
scroll down to the Click event and double-click on it.

11

Pay attention to the order you draw things on our form
We want a sky blue background for this picture, so you’ll draw a big blue rectangle first—then
anything else you draw afterwards will be drawn on top of it. You’ll take advantage of one of
the form’s properties called ClientRectangle. It’s a Rectangle that defines the boundaries
of the form’s drawing area. Rectangles are really useful—you can create a new rectangle
by specifying a Point for its upper left-hand corner, its width and its height. Once you do that,
it’ll automatically calculate its Top, Left, Right and Bottom properties for you. And it’s got
useful methods like Contains(), which will return true if a given point is inside it.

 g.FillRectangle(Brushes.SkyBlue, ClientRectangle);

22

Draw the bee and the flower
You already know how the DrawImage() method works.

 g.DrawImage(Properties.Resources.Bee_animation_1, 50, 20, 75, 75);
 g.DrawImage(Properties.Resources.Flower, 10, 130, 100, 150);

33

Add a pen that you can draw with
Every time you draw a line, you use a Pen object to determine its color and thickness. There’s a
built-in Pens class that gives you plenty of pens (Pens.Red is a thin red pen, for example). But
you can create your own pen using the Pen class constructor, which takes a Brush object and a
thickness (it’s a float, so make sure it ends with F). Brushes are how you draw filled graphics (like
filled rectangles and ellipses), and there’s a Brushes class that gives you brushes in various colors.

 using (Pen thickBlackPen = new Pen(Brushes.Black, 3.0F)) {

44

Here’s the first line in your Form1_Click()
event handler method. We’ll give you all
the lines for the event handler—put them
together to draw the picture.

Pens are for drawing lines, and they have a
width. If you want to draw a filled shape or
some text, you’ll need a Brush.

This will come in really
handy later on in the
book! What do you
think you’ll be doing
with Contains()?

Start the event handler with a using line to create
the Graphics object. When you work with GDI+, you
use a lot of objects that implement IDisposable. If
you don’t dispose of them, they’ll slowly suck up your
computer’s resources until you quit the program. So
you’ll end up using a lot of using statements:

using (Graphics g = CreateGraphics()) {

draw a picture

Download at WoweBook.Com

you are here 4 597

controls and graphics

Add an arrow that points to the flower
There are some Graphics methods that take an array of Points, and connect them using a
series of lines or curves. We’ll use the DrawLines() method to draw the arrow head, and the
DrawCurve() method to draw its shaft. There are other methods that take point arrays, too (like
DrawPolygon(), which draws a closed shape, and FillPolygon(), which fills it in.)

 g.DrawLines(thickBlackPen, new Point[] {
 new Point(130, 110), new Point(120, 160), new Point(155, 163)});
 g.DrawCurve(thickBlackPen, new Point[] {
 new Point(120, 160), new Point(175, 120), new Point(215, 70) });
}

55

This goes inside the inner using
statement that created the Pen.

Here’s where the using block ends—we don’t need the thickBlackPen any more, so it’ll get disposed.
Add a font to draw the text
Whenever you work with drawing text, the first thing you need to do is create a Font object. Again,
use a using statement because Font implements IDisposable. Creating a font is straightforward.
There are several overloaded constructors—the simplest one takes a font name, font size, and
FontStyle enum.

 using (Font font = new Font(“Arial”, 16, FontStyle.Italic)) {

66

Add some text that says “Nectar here”
Now that you’ve got a font, you can figure out where to put the string by measuring how big it will be
when it’s drawn. The MeasureString() method returns a SizeF that defines its size. (SizeF is
just the float version of Size—and both of them just define a width and height.) Since we know
where the arrow ends, we’ll use the string measurements to position its center just above the arrow.

 SizeF size = g.MeasureString(“Nectar here”, font);
 g.DrawString(“Nectar here”, font, Brushes.Red, new Point(
 215 - (int)size.Width / 2, 70 - (int)size.Height));
 }
}

77

Make sure you close out both using blocks.

You can create a Rectangle by giving it a point
and a Size (or width and height). Once you’ve
got it, you can find its boundaries and check its
Contains() method to see if it contains a Point.

When you pass an array of
points to DrawCurve(), it
draws a smooth curve that
connects them all in order.

Download at WoweBook.Com

598 Chapter 13

using (Graphics g = this.CreateGraphics())

using (Font f = new Font(“Arial”, 6, FontStyle.Regular)) {

 for (int x = 0; x < this.Width; x += 20) {

 }

 for (int y = 0; y < this.Height; y += 20) {

 }

}

2. Can you figure out what happens when you run the code
below? Draw the output onto the form, using the grid you
just rendered for locating specific points.

using (Pen pen =
 new Pen(Brushes.Black, 3.0F)) {
 g.DrawCurve(pen, new Point[] {
 new Point(80, 60),
 new Point(200,40),
 new Point(180, 60),
 new Point(300,40),
 });
 g.DrawCurve(pen, new Point[] {
 new Point(300,180), new Point(180, 200),
 new Point(200,180), new Point(80, 200),
 });
 g.DrawLine(pen, 300, 40, 300, 180);
 g.DrawLine(pen, 80, 60, 80, 200);
 g.DrawEllipse(pen, 40, 40, 20, 20);
 g.DrawRectangle(pen, 40, 60, 20, 300);
 g.DrawLine(pen, 60, 60, 80, 60);
 g.DrawLine(pen, 60, 200, 80, 200);
}

1. Most of your work with Graphics will involve thinking
about your forms as a grid of X, Y coordinates. Here’s the
code to build the grid shown below; your job is to fill in
the missing parts.

what’s it look like?

Download at WoweBook.Com

you are here 4 599

controls and graphics

g.FillPolygon(Brushes.Black, new Point[] {
 new Point(60,40), new Point(140,80), new Point(200,40),
 new Point(300,80), new Point(380,60), new Point(340,140),
 new Point(320,180), new Point(380,240), new Point(320,300),
 new Point(340,340), new Point(240,320), new Point(180,340),
 new Point(20,320), new Point(60, 280), new Point(100, 240),
 new Point(40, 220), new Point(80,160),
 });

using (Font big = new Font(“Times New Roman”, 24, FontStyle.Italic)) {
 g.DrawString(“Pow!”, big, Brushes.White, new Point(80, 80));
 g.DrawString(“Pow!”, big, Brushes.White, new Point(120, 120));
 g.DrawString(“Pow!”, big, Brushes.White, new Point(160, 160));
 g.DrawString(“Pow!”, big, Brushes.White, new Point(200, 200));
 g.DrawString(“Pow!”, big, Brushes.White, new Point(240, 240));
}

3. Here’s some more graphics code, dealing with irregular
shapes. Figure out what’s drawn using the grid we’ve given
you below.

FillPolygon(), DrawLines(), and a few other graphics methods have a constructor that takes an array of Points that define the vertices of a series of connected lines.

Download at WoweBook.Com

600 Chapter 13

Your job was to fill in the missing code to draw a grid, and plot
two chunks of code on the grids.

using (Graphics g = this.CreateGraphics())

using (Font f = new Font(“Arial”, 6, FontStyle.Regular)) {

 for (int x = 0; x < this.Width; x += 20) {

 g.DrawLine(Pens.Black, x, 0, x, this.Height);
 g.DrawString(x.ToString(), f, Brushes.Black, x, 0);
 }

 for (int y = 0; y < this.Height; y += 20) {

 g.DrawLine(Pens.Black, 0, y, this.Width, y);
 g.DrawString(y.ToString(), f, Brushes.Black, 0, y);
 }

}

Next we draw the horizontal
lines and X axis numbers. To
draw a horizontal line, you
choose a Y value and draw a
line from (0, y) on the left
of the form to (0, this.Width)
on the right-hand side of the
form.

First we draw the vertical lines and the numbers along the y axis. There’s a vertical line every 20 pixels along the X axis.

We used using
statements to
make sure the
Graphics and
Font object get
disposed after the
form’s drawn.

looks good, except...

Download at WoweBook.Com

you are here 4 601

controls and graphics

private void Form1_Click(object sender, EventArgs e) {

 using (Graphics g = CreateGraphics()) {

 g.DrawImage(Properties.Resources.Hive__inside_,

 -Width, -Height, Width * 2, Height * 2);

 Size size = new Size(Width / 5, Height / 5);

 DrawBee(g, new Rectangle(

 new Point(Width / 2 - 50, Height / 2 - 40), size));

 DrawBee(g, new Rectangle(

 new Point(Width / 2 - 20, Height / 2 - 60), size));

 DrawBee(g, new Rectangle(

 new Point(Width / 2 - 80, Height / 2 - 30), size));

 DrawBee(g, new Rectangle(

 new Point(Width / 2 - 90, Height / 2 - 80), size));
 }
 }
}

Graphics can fix our transparency problem...
Remember those pesky graphics glitches? Well, DrawImage() is
the key to fixing the problem in the renderer where the images were
drawing those boxes around the bees and flowers that caused the
overlap issues. So let’s tackle them! We’ll start out by going back to
your Windows application with the picture and changing it to draw a
bunch of bees that overlap each other without any graphics glitches.

public void DrawBee(Graphics g, Rectangle rect) {

 g.DrawImage(Properties.Resources.Bee_animation_1, rect);

}

Add a DrawBee() method that draws a bee on any Graphics object. It uses the
overloaded DrawImage() constructor that takes a Rectangle to determine where
to draw the image, and how big to draw it.

11

Here’s the new Click event handler for the form. Take a close look at
how it works—it draws the hive so that its upper left-hand corner is way off
the form, at location (-Width, -Height), and it draws it at twice the
width and height of the form—so you can resize the form and it’ll still draw
okay. Then it draws four bees using the DrawBee() method.

22

Do this

The renderer drew the bees so
that they looked weird when they
overlapped.

Run your program and click on the form, and watch it draw the bees! But
something’s wrong. When you drag the form off the side of the screen and
back again, the picture disappears! Now go back and check the “Nectar
here” program you wrote a few pages ago—it’s got the same problem!

What do you think happened?

33

Much better—click on the form
and the bees overlap just fine.

But look what happens if you
drag it off the side of the
screen and back! Oh no!

First we’ll draw the
hive backround, with its
corner far off the page
so we only see a small
piece of it. Then we’ll
draw four bees so that
they overlap—if they
don’t, make your form
bigger and then click on
it again so they do.

...but there’s a catch

Download at WoweBook.Com

602 Chapter 13

Use the Paint event to make your graphics stick
What good are graphics if they disappear from your form as soon as part of your
form gets covered up? They’re no good at all. Luckily, there’s an easy way to make
sure your graphics stay on your form: just write a Paint event handler. Your
form fires a Paint event every time it needs to redraw itself—like when it’s dragged
off the screen. One of the properties of its PaintEventArgs parameter is a
Graphics object called Graphics, and anything that you draw with it will “stick”.

Forms and controls redraw themselves all the timeIt may not look like it, but your forms have to redraw themselves all the time. Any time you have controls on a form, they’re displaying graphics—labels display text, buttons display a picture of a button, checkboxes draw a little box with an X in it. You work with them as controls that you drag around, but each control actually draws its own image. Any time you drag a form off the screen or under another form and then drag it back or uncover it, the part of the form that was covered up is now invalid, which means that it no longer shows the image that it’s supposed to. That’s when .NET sends a message to the form telling it to redraw itself. The form fires off a Paint event any time it’s “dirty” and needs to be redrawn. If you ever want your form or user control to redraw itself, you can tell .NET to make it “dirty” by calling its Invalidate() method.

Add a Paint event handler
Double-click on “Paint” in the Events page in the Properties window to add a Paint event handler.
The Paint event is fired any time the image on your form gets “dirty”. So drawing your graphics
inside of it will make your image will stick around.

11

Use the Graphics object from the Paint event’s EventArgs
Instead of starting with a using statement, make your event handler start like this:

private void Form1_Paint(object sender, PaintEventArgs e) {
 Graphics g = e.Graphics;

You don’t have to use a using statement—since you didn’t create it, you don’t have to dispose it.

22

Forms and controls
have a Paint event
that gives you a
Graphics object.
Anything you draw
on it is repainted
automatically.

Copy the code that draws the overlapping bees and hive
Add the new DrawBee() method from the previous page into your new user control. Then
copy the code from the Click event into your new Paint event—except for the first line with
the using statement, since you already have a Graphics object called g. (Since you don’t have
the using statement any more, make sure you take out its closing curly bracket.) Now run your
program. The graphics stick!

33

Double-click on Paint to add a Paint event handler. Its
PaintEventArgs has a property called Graphics—and
anything you draw with it will stick to your form.

Do the same with your “Nectar here”
drawing to make it stick, too.

back to events

Download at WoweBook.Com

you are here 4 603

controls and graphics

See	if	you	can	combine	your	knowledge	of	forms	and	user	controls—and	get	a	little	more	
practice	using	Bitmap	objects	and	and	the	DrawImage()	method—by	building	a	user	
control	that	uses	TrackBars	to	zoom	an	image	in	and	out.

Add two TrackBar controls to a new user control
Create a new Windows Application project. Add a User Control—call it Zoomer—and set its
Size property to (300, 300). Drag two TrackBar controls out of the toolbox and onto it. Drag
trackBar1 to the bottom of the control. Then drag trackBar2 to the right-hand side of
the control and set its Orientation property to Vertical. Both should have the Minimum
property set to 1, Maximum set to 175, Value set to 175, and TickStyle set to None. Set
each TrackBar’s background color to white. Finally, double-click on each trackbar to add a
Scroll event handler. Make both event handlers call the control’s Invalidate() method.

11

Load a picture into a Bitmap object and draw it on the control
Add a private Bitmap field called photo to your Zoomer user control. When you create the instance
of Bitmap, use its constructor to load your favorite image file—we used a picture of a fluffy dog.
Then add a Paint event to the control. The event handler should create a graphics object to draw
on the control, draw a white filled rectangle over the entire control, and then use DrawImage() to
draw the contents of your photo field onto your control so its upper left-hand corner is at (10, 10), its
width is trackBar1.Value, and its height is trackBar2.Value. Then drag your control onto
the form—make sure to resize the form so the trackbars are at the edges.

22

Give the two trackbars
white backgrounds
because you’ll be drawing
a white rectangle behind
everything, and you want
them to blend in.

When you move the
trackbars, the picture
will shrink and grow!

Whenever the user scrolls one of the
TrackBars, they call the user control’s
Invalidate() method. That will cause the user
control to fire its Paint event and resize the
photo. Remember, since you didn’t create
the Graphics object—it was passed to you
in PaintEventArgs—you don’t need to
dispose it. So you don’t have to use a using
statement with it. Just draw the image inside
the Paint event handler.

You user control has a Paint
event, and it works just like the
one you just used in the form.
Just use its PaintEventArgs
parameter e. It has a property
called Graphics, and anything
that you draw with that Graphics
object will be painted onto any
instance of the user control you
drag out of the Toolbox.

Download at WoweBook.Com

604 Chapter 13

v

Each drag here is causing another image
resize from DrawImage().

???

???

g.DrawImage(myBitmap, 30, 30, 150, 150);

Get	a	little	more	practice	using	Bitmap	objects	
and	and	the	DrawImage()	method	by	building	
a	form	that	uses	them	to	load	a	picture	from	a	file	
and	zoom	it	in	and	out.

public partial class Zoomer : UserControl {

 Bitmap photo = new Bitmap(@”c:\Graphics\fluffy_dog.jpg”);

 public Zoomer() {
 InitializeComponent();
 }

 private void Zoomer_Paint(object sender, PaintEventArgs e) {
 Graphics g = e.Graphics;
 g.FillRectangle(Brushes.White, 0, 0, Width, Height);
 g.DrawImage(photo, 10, 10, trackBar1.Value, trackBar2.Value);
 }
 }

 private void trackBar1_Scroll(object sender, EventArgs e) {
 Invalidate();
 }
 private void trackBar2_Scroll(object sender, EventArgs e) {
 Invalidate();
 }
}

First we draw a big white rectangle so it fills up the whole control, then we
draw the photo on top of it. The last two parameters determine the size of
the image being drawn—trackBar1 sets the width, trackBar2 sets the height.

Every time the user slides one of the trackbar controls, it fires off a Scroll event. By making the event handlers call the control’s
Invalidate() method, we cause the form to repaint itself... and when it does, it draws a new copy of the image with a different size.

This particular Bitmap constructor loads its picture from a file. It’s got other overloaded constructors, including one that lets you specify a width and height—that one creates an empty bitmap.

how the paint event works

Download at WoweBook.Com

you are here 4 605

controls and graphics

Behind
the Scenes

Invalidate() essentially
says, some part of the
form might be “invalid,”
so redraw that part to
make sure it’s got the
right things showing.

The form’s Refresh() method is Invalidate() plus Update()
Forms and controls give you a shortcut. They have a Refresh() method that first calls
Invalidate() to invalidate the whole client area, and then calls Update() to make sure
that message moves to the top of the list.

44

A closer look at how forms and controls
repaint themselves
Remember earlier, we said that when you start working with Graphics objects, you’re really taking
control of graphics. It’s like you tell .NET, “Hey, I know what I’m doing, I can handle the extra
responsibility.” In the case of drawing and redrawing, you may not want to redraw when a form
is minimized and maximized... or you may want to redraw more often. Once you know what’s
going on behind the scenes with your form or control, you can take control of redrawing yourself:

Invalidate() controls when to redraw, and WHAT to redraw
.NET fires the Paint event when something on a form is interfered with, covered up,
or moved offscreen, and then shown again. It calls Invalidate(), and passes the
method a Rectangle. The Rectangle tells the Invalidate() method what
part of the form needs to be redrawn... what part of the form is “dirty.” Then .NET
calls OnPaint to tell your form to fire a Paint event and repaint the dirty area.

22

Every form has a Paint event that draws the graphics on the form
Go to the event list for any form and find the event called Paint. Whenever the form has to repaint itself,
this event is fired. Every form and control uses a Paint event internally to decide when to redraw itself. But
what fires that event? It’s called by a method called OnPaint that the form or user control inherits from the
Control class. (That method follows the pattern you saw in Chapter 11, where methods that fire an event are
named “On” followed by the event name.) Go to any form and override OnPaint:

 protected override void OnPaint(PaintEventArgs e) {
 Console.WriteLine(“OnPaint {0} {1}”, DateTime.Now, e.ClipRectangle);
 base.OnPaint(e);
 }

Drag your form around—drag it halfway off the screen, minimize it, hide it behind other windows. Watch
closely at the output that it writes. You’ll see that your OnPaint method fires off a Paint event any time part
of it is “dirty”—or invalid—and needs to be redrawn. And if you look closely at the ClipRectangle, you’ll
see that it’s a rectangle that describes the part of the form that needs to be repainted. That gets passed to the
Paint event’s PaintEventArgs so it can improve performance by only redrawing the portion that’s invalid.

11

Override OnPaint
on any form and
add this line.

The Update() method gives your Invalidate request top priority
You may not realize it, but your form is getting messages all the time. The same
system that tells it that it’s been covered up and calls OnPaint has all sorts of other
messages it needs to send. See for yourself: type override and scroll through all the
methods that start with “On”—every one of them is a message your form responds to.
The Update() method moves the Invalidate message to the top of the message list.

33
So when you call it
yourself, you’re telling
.NET that your whole form
or control is invalid, and
the whole thing needs to
be redrawn. You can pass
it your own clip rectangle
if you want—that’ll get
passed along to the Paint
event’s PaintEventArgs.

Do this just like you did earlier with Dispose()

Download at WoweBook.Com

606 Chapter 13

Q: It still seems like just resizing
the graphics in a program like Paint or
PhotoShop would be better. Why can’t I
do that?

A:You	can,	if	you’re	in	control	of	the	
images	you	work	with	in	your	applications,	
and	if	they’ll	always	stay	the	same	size.	But	
that’s	not	often	the	case.	Lots	of	times,	you’ll	
get	images	from	another	source,	whether	it’s	
online	or	a	co-worker	in	the	design	group.	
Or,	you	may	be	pulling	an	image	from	a	read-
only	source,	and	you	have	to	size	it	in	code.

Q: But if I can resize it outside of .NET,
that’s better, right?

A:If	you’re	sure	you’ll	never	need	a	larger	
size,	it	could	be.	But	if	your	program	might	
need	to	display	the	image	in	multiple	sizes	
during	the	program,	you’ll	have	to	resize	at	
some	point	anyway.	Plus,	if	your	image	ever	
needs	to	be	displayed	larger	than	the	resize,	
you’ll	end	up	in	real	trouble.	It’s	much	easier	
to	size	down	than	it	is	to	size	up.	
More	often	than	not,	it’s	better	to	be	able	to	
resize	an	image	programmatically,	than	to	be	
limited	by	an	external	program	or	constraints	
like	read-only	files.

Q:I get that CreateGraphics() gets the
Graphics object for drawing on a form,
but what was that FromImage() call in the
ResizeImage() method about?

A:FromImage()	retrieves	the	
Graphics	object	for	a	Bitmap	object.	
And	just	as	CreateGraphics()	
called	on	a	form	returns	the	Graphics	
object	for	drawing	on	that	form,	
FromImage()	retrieves	a	Graphics	
object	for	drawing	on	the	Bitmap	the	
method	was	called	on.

Q: So a Graphics object isn’t just for
drawing on a form?

A:	Actually,	a	Graphics	object	is	for	
drawing	on,	well,	anything	that	gives	you	
a	Graphics	object.	The	Bitmap	gives	you	a	
Graphics	object	that	you	can	use	to	draw	
onto	an	invisible	image	that	you	can	use	
later.	And	you’ll	find	Graphics	objects	on	a	
lot	more	than	forms.	Drag	a	button	onto	a	
form,	then	go	into	your	code	and	type	its	
name	followed	by	a	period.	Check	out	the	
IntelliSense	window	that	popped	up—it’s	got	
a	CreateGraphics()	method	that	returns	a	
Graphics	object.	Anything	you	draw	on	it	will	
show	up	on	the	button!	Same	goes	for	Label,	
PictureBox,	StatusStrip...	almost	every	
toolbox	control	has	a	Graphics	object.	

Q: Wait, I thought using was just
something I used with streams. Why am I
using using with graphics?

A:The	using	keyword	comes	in	
handy	with	streams,	but	it’s	something	that	
you	use	with	any	class	that	implements	
the	IDisposable	interface.	When	
you	instantiate	a	class	that	implements	
IDisposable,	you	should	always	call	
its	Dispose()	method	when	you’re	
done	with	the	object.	That	way	it	knows	
to	clean	up	after	itself.	With	streams,	the	
Dispose()	method	makes	sure	that	any	
file	that	was	opened	gets	closed.	
Graphics,	Pen,	and	Brush	objects	
are	also	disposable.	When	you	create	any	
of	them,	they	take	up	some	small	amount	
of	memory	and	other	resources,	and	they	
don’t	always	give	them	back	immediately.	
If	you’re	just	drawing	something	once,	you	
won’t	notice	a	difference.	But	most	of	the	
time,	your	graphics	code	will	be	called	over	
and	over	and	over	again—like	in	a	Paint	
event	handler,	which	could	get		

	
called	many	times	a	second	for	a	particularly	
busy	form.	That’s	why	you	should	always	
Dispose()	of	your	graphics-related	
objects.	And	the	easiest	way	to	make	sure	
that	you	do	is	to	use	a	using	line,	and	let	
.NET	worry	about	disposal.	Any	object	you	
create	with	using	will	automatically	have	
its	Dispose()	method	called	at	the	end	
of	the	block	following	the	using	statement.	
That	will	guarantee	that	your	program	won’t	
slowly	take	up	more	and	more	memory	if	it	
runs	for	a	long	time.

Q:If I’m creating a new control, should
I use a UserControl or should I create a
class that inherits from one of the toolbox
controls?

A:That	depends	on	what	you	want	your	
new	control	to	do.	If	you’re	building	a	control	
that’s	really	similar	to	one	that’s	already	
in	the	toolbox,	then	you’ll	probably	find	it	
easiest	to	inherit	from	that	control.	But	most	
of	the	time,	when	programmers	create	new	
controls	in	C#,	they	use	user	controls.	One	
useful	advantage	of	a	user	control	is	that	you	
can	drag toolbox controls onto it.	It	works	
a	lot	like	a	GroupBox	or	other	container	
control—you	can	drag	a	button	or	checkbox	
onto	your	user	control,	and	work	with	them	
just	like	you’d	work	with	controls	on	a	form.	
The	IDE’s	form	designer	becomes	a	powerful	
tool	to	help	you	design	user	controls.

A user control can
host other controls.
The IDE’s form
designer lets you
drag controls out of
the toolbox and onto
your new user control.

what’s with the flickering?

Download at WoweBook.Com

you are here 4 607

controls and graphics

Even without resizing, it takes time
to draw an image to a form.
Suppose you’ve got every image in the simulator
resized. It still takes time to draw all those bees and
flowers and the hive. And right now, we’re drawing
right to the Graphics object on the form. So if
your eye catches the tail end of a render, you’re
going to perceive it as a little flicker.

The problem is that a lot of drawing is happening,
so there’s a good chance that some flickering will
occur, even with our resizing. And that’s why you
run into problems with some amateur computer
games, for example: the human eye catches the
end of a rendering cycle, and perceives it as a little
bit of flickering on the screen.

I noticed a whole lot of flickering in my Zoomer
control. With all this talk of taking control of
graphics, I’ll bet there’s something we can do

about that! But why does it happen?

How could you get rid of this flicker? If drawing lots
of images to the form causes flickering, and you
have to draw lots of images, how do you think you
might be able to avoid all the flickering?

Download at WoweBook.Com

608 Chapter 13

Double buffering makes animation look a lot smoother
Go back to your image zoomer and fiddle with the trackbars. Notice how there’s a
whole lot of flickering when you move the bars? That’s because the Paint event
handler first has to draw the white rectangle and then draw the image every time
the trackbar moves a tiny little bit. When your eyes see alternating white rectangles
and images many times a second, they interpret that as flicker. It’s irritating... and it’s
avoidable using a technique called double buffering.That means drawing each
frame or cell of animation to an invisible bitmap (a “buffer”), and only displaying the
new frame once it’s been drawn entirely. Here’s how it would work with a Bitmap:

Graphics obj
ec

t

using (graphics g =
 Graphics.FromImage(bitmap)) {
 DrawOneFrame(g); }

By drawing each frame to an invisible bitmap, the users won’t see the flicker any more. They’ll only see the finished frame when we copy it from the bitmap back to the form.

To do double buffering, we can add a Bitmap object to the program to act as a buffer.
Every time our form or control needs to be repainted, instead of drawing the graphics
directly on the form, we draw on the buffer instead.

22

Now that the frame is completely drawn out to the invisible Bitmap object, we can
use DrawImageUnscaled() to copy the object back to the form’s Graphics. It
all gets copied at once, and that eliminates the flicker.

33

Renderer o
bj

ec
t

System.Window
s.

Fo
rm

s.
Fo

rm

Renderer o
bj

ec
t

Renderer o
bj

ec
t

System.Window
s.

Fo
rm

s.
Fo

rm

Here’s a typical program that draws some graphics on a form using its Graphics object.11

The users saw a lot of flickering because each frame was drawn in pieces.

using (g
raphics

g =

 Form.Cr
eateGrap

hics())
{

 Draw
OneFrame

(g); }

using (g
raphics

g =

 Form.Cr
eateGrap

hics())
{

 g.Dr
awImageU

nscaled(
bitmap,

0, 0); }

Graphics obj
ec

t

make your animation smoother

Download at WoweBook.Com

you are here 4 609

controls and graphics

Double buffering is built into forms and controls
You can do double buffering yourself using a Bitmap, but C# and .NET make it
even easier with built-in support for double buffering. All you need to do is set
its DoubleBuffered property to true. Try it out on your Zoomer user control—
go to its Properties window, set DoubleBuffered to true, and your control will stop
flickering! Now go back to your BeeControl and do the same. That won’t fix all
of the graphics problems—we’ll do that in a minute—but it will make a difference.

Now you’re ready to fix the graphics problems in the simulator!

When you use
the Paint event
for all your
graphics, you
can turn on
double buffered
painting simply
by changing one
property.

Overhaul the Beehive Simulator
In the next exercise, you’ll take your Beehive Simulator and completely overhaul
it. You’ll probably want to create a whole new project and use “Add >> Existing
Item...” to add the current files to it so you have a backup of your current
simulator. (Don’t forget to change their namespace to match your new project.)

Here’s what you’re going to do:

You’ll start by removing the BeeControl user control
There won’t be any controls on the hive and field at all. No BeeControls, no PictureBoxes,
nothing. The bees, flowers, and hive pictures will all be drawn using GDI+ graphics. So right-
click on BeeControl.cs (and OldBeeControl.cs) in the Solution Explorer and click Delete—they’ll
be removed from the project and permanently deleted.

11

You’ll need a timer to handle the bee wing flapping
The bees flap their wings much more slowly than the simulator’s frame rate, so you’ll need a
second, slower timer. This shouldn’t be too surprising, since the BeeControl had its own timer to
do the same thing.

22

The big step: overhaul the renderer
You’ll need to throw out the current renderer entirely, because it does everything with
controls. You won’t need those lookup dictionaries, because there won’t be any PictureBoxes or
BeeControls to look up. Instead, it’ll have two important methods: DrawHive(g) will draw a Hive
form on a graphics object, and DrawField(g) will draw a Field form.

33

Last of all, you’ll hook up the new renderer
The Hive and Field forms will need Paint event handlers. Each of them will call the Renderer
object’s DrawField(g) or DrawHive(g) methods. The two timers—one for telling the simulator to
draw the next frame, and the other to flap the bees’ wings—will call the two forms’ Invalidate()
methods to repaint themselves. When they do, their Paint event handlers will render the frame.

44

Let’s get started!

Download at WoweBook.Com

610 Chapter 13

Change the main form’s RunFrame() method
You’ll need to remove the call to Renderer.Render() and add two Invalidate()
statements.

public void RunFrame(object sender, EventArgs e) {
 framesRun++;
 world.Go(random);
 end = DateTime.Now;
 TimeSpan frameDuration = end - start;
 start = end;
 UpdateStats(frameDuration);
 hiveForm.Invalidate();
 fieldForm.Invalidate();
}

11

It’s	time	to	get	rid	of	the	graphics	glitches	in	the	beehive	simulator.	Use	graphics	and	double	
buffering	to	make	the	simulator	look	polished.

Add a second timer to the main form to make the bees’ wings flap
Drag a new timer onto the main form, set its Interval to 150ms and Enabled to true.
Then double-click on it and add this event handler:

private void timer2_Tick(object sender, EventArgs e) {
 renderer.AnimateBees();
}

Then add this AnimateBees() method to the renderer to make the bees’ wings flap:

private int Cell = 0;
private int Frame = 0;
private void AnimateBees() {
 Frame++;
 if (Frame >= 6)
 Frame = 0;
 switch (Frame) {
 case 0: Cell = 0; break;
 case 1: Cell = 1; break;
 case 2: Cell = 2; break;
 case 3: Cell = 3; break;
 case 4: Cell = 2; break;
 case 5: Cell = 1; break;
 default: Cell = 0; break;
 }
 hiveForm.Invalidate();
 fieldForm.Invalidate();
}

22

The whole idea here is to set a field called
Cell that you can use when you’re drawing
the bees in the renderer. Make sure you’re
always drawing BeeAnimationLarge[Cell] in
the hive form and BeeAnimationSmall[Cell] in
the field form. The timer will constantly call
the AnimateBees() method, which will cause
the Cell field to keep changing, which will
cause your bees to flap their wings.

As long as you keep the world up to date and both forms have a reference to the renderer object, all you need to do to animate them is call their Invalidate() methods. Their Paint event handlers will take care of the rest.

You’ll need to remove the call to renderer.Render(),
since that method will go away.

rebuild the renderer

Download at WoweBook.Com

you are here 4 611

controls and graphics

Set up the hive and field forms for double-buffered animation
Remove the code from the hive form’s constructor that sets the background image. Then remove all
controls from both forms and set their DoubleBuffered properties to true. Finally, add a Paint
event handler to each of them. Here’s the handler for the hive form—the field form’s Paint event handler
is identical, except that it calls renderer.PaintField() instead of renderer.PaintHive():

private void HiveForm_Paint(object sender, PaintEventArgs e) {
 renderer.PaintHive(e.Graphics);
}

33

The hive form and field form both need a public renderer property
Add a public field to the hive form and the field form:

public Renderer renderer;

There are two places where you create a new Renderer(): in the open button (underneath a call to
renderer.Reset() and in the ResetSimulator() method. Remove all calls to renderer.Reset(), and replace each
of the new renderer statements with a call to this new CreateRenderer() method that you’ll add:

private void CreateRenderer() {
 renderer = new Renderer(world, hiveForm, fieldForm);
 hiveForm.renderer = renderer;
 fieldForm.renderer = renderer;
}

44

Overhaul the renderer by removing control-based code and adding graphics
Here’s what you need to do to fix the renderer:

Remove the two dictionaries, since there aren’t any more controls. And while you’re at it, you
don’t need the BeeControl any more, or the Render(), DrawBees(), or DrawFlowers()
methods..

Add some Bitmap fields called HiveInside, HiveOutside, and Flower to store the images.
Then create two Bitmap[] arrays called BeeAnimationLarge and BeeAnimationSmall.
Each of them will hold four bee pictures—the large ones are 40x40 and the small are 20x20. Create
a method called InitializeImages() to resize the resources and store them in these fields, and
call it from the Renderer class constructor.

Add the PaintHive() method that takes a Graphics object as a parameter and paints the hive
form onto it. First draw a sky blue rectangle, then use DrawImageUnscaled() to draw the inside
hive picture, then use DrawImageUnscaled() to draw each of the bees that are inside the hive.

Finally, add the PaintField() method. It should draw a sky blue rectangle on the top half
of the form, and a green rectangle on the bottom half. You’ll find two form properties helpful
for this: ClientSize and ClientRectangle tell you how big the drawing area is, so you can find
half of its height using ClientSize.Height / 2. Then use FillEllipse() to draw a
yellow sun in the sky, DrawLine() to draw a thick line for a branch the hive can hang from, and
DrawImageUnscaled() to draw the outside hive picture. Then draw each flower onto the form.
Finally, draw each bee (using the small bee pictures)—draw them last so they’re in front of the flowers.

When you’re drawing the bees, remember that AnimateBees() sets the Cell field.

≥

≥

≥

≥

≥

55

Make sure you turn on double buffering, or your forms will flicker!

You won’t need a Reset() method in the renderer any more. All it did was remove the controls from the forms, and there won’t be
any controls to remove.

Download at WoweBook.Com

612 Chapter 13

using System.Drawing;

public class Renderer {
 private World world;
 private HiveForm hiveForm;
 private FieldForm fieldForm;

 public Renderer(World TheWorld, HiveForm hiveForm, FieldForm fieldForm) {
 this.world = TheWorld;
 this.hiveForm = hiveForm;
 this.fieldForm = fieldForm;
 InitializeImages();
 }

 public static Bitmap ResizeImage(Image ImageToResize, int Width, int Height) {
 Bitmap bitmap = new Bitmap(Width, Height);
 using (Graphics graphics = Graphics.FromImage(bitmap)) {
 graphics.DrawImage(ImageToResize, 0, 0, Width, Height);
 }
 return bitmap;
 }

 Bitmap HiveInside;
 Bitmap HiveOutside;
 Bitmap Flower;
 Bitmap[] BeeAnimationSmall;
 Bitmap[] BeeAnimationLarge;
 private void InitializeImages() {
 HiveOutside = ResizeImage(Properties.Resources.Hive__outside_, 85, 100);
 Flower = ResizeImage(Properties.Resources.Flower, 75, 75);
 HiveInside = ResizeImage(Properties.Resources.Hive__inside_,
 hiveForm.ClientRectangle.Width, hiveForm.ClientRectangle.Height);
 BeeAnimationLarge = new Bitmap[4];
 BeeAnimationLarge[0] = ResizeImage(Properties.Resources.Bee_animation_1, 40, 40);
 BeeAnimationLarge[1] = ResizeImage(Properties.Resources.Bee_animation_2, 40, 40);
 BeeAnimationLarge[2] = ResizeImage(Properties.Resources.Bee_animation_3, 40, 40);
 BeeAnimationLarge[3] = ResizeImage(Properties.Resources.Bee_animation_4, 40, 40);
 BeeAnimationSmall = new Bitmap[4];
 BeeAnimationSmall[0] = ResizeImage(Properties.Resources.Bee_animation_1, 20, 20);
 BeeAnimationSmall[1] = ResizeImage(Properties.Resources.Bee_animation_2, 20, 20);
 BeeAnimationSmall[2] = ResizeImage(Properties.Resources.Bee_animation_3, 20, 20);
 BeeAnimationSmall[3] = ResizeImage(Properties.Resources.Bee_animation_4, 20, 20);
 }

It’s	time	to	get	rid	of	the	graphics	glitches	in	the	beehive	simulator.	Use	graphics	and	double	
buffering	to	make	the	simulator	look	polished.

Here’s the complete Renderer class, including the
AnimateBees() method that we gave you. Make
sure you make all the modifications to the three
forms—especially the Paint event handlers in
the hive and field forms. Those event handlers
call the renderer’s PaintHive() and PaintField()
methods, which do all of the animation.

The InitializeImages() method resizes all of the image resources and stores them in Bitmap fields inside the Renderer object. That way the PaintHive() and PaintForm() methods can draw the images unscaled using the forms’ Graphics objects’ DrawImageUnscaled() methods.

exercise solution

Download at WoweBook.Com

you are here 4 613

controls and graphics

 public void PaintHive(Graphics g) {
 g.FillRectangle(Brushes.SkyBlue, hiveForm.ClientRectangle);
 g.DrawImageUnscaled(HiveInside, 0, 0);
 foreach (Bee bee in world.Bees) {
 if (bee.InsideHive)
 g.DrawImageUnscaled(BeeAnimationLarge[Cell],
 bee.Location.X, bee.Location.Y);
 }
 }

 public void PaintField(Graphics g) {
 using (Pen brownPen = new Pen(Color.Brown, 6.0F)) {
 g.FillRectangle(Brushes.SkyBlue, 0, 0,
 fieldForm.ClientSize.Width, fieldForm.ClientSize.Height / 2);
 g.FillEllipse(Brushes.Yellow, new RectangleF(50, 15, 70, 70));
 g.FillRectangle(Brushes.Green, 0, fieldForm.ClientSize.Height / 2,
 fieldForm.ClientSize.Width, fieldForm.ClientSize.Height / 2);
 g.DrawLine(brownPen, new Point(643, 0), new Point(643, 30));
 g.DrawImageUnscaled(HiveOutside, 600, 20);
 foreach (Flower flower in world.Flowers) {
 g.DrawImageUnscaled(Flower, flower.Location.X, flower.Location.Y);
 }
 foreach (Bee bee in world.Bees) {
 if (!bee.InsideHive)
 g.DrawImageUnscaled(BeeAnimationSmall[Cell],
 bee.Location.X, bee.Location.Y);
 }
 }
 }

 private int Cell = 0;
 private int Frame = 0;
 public void AnimateBees()
 {
 Frame++;
 if (Frame >= 6)
 Frame = 0;
 switch (Frame) {
 case 0: Cell = 0; break;
 case 1: Cell = 1; break;
 case 2: Cell = 2; break;
 case 3: Cell = 3; break;
 case 4: Cell = 2; break;
 case 5: Cell = 1; break;
 default: Cell = 0; break;
 }
 hiveForm.Invalidate();
 fieldForm.Invalidate();
 }
}

The PaintField() method looks at the bees and

flowers in the world and draws a field using

their locations. First it draws the sky and the

ground, then it draws the sun, and then the

beehive. After that, it draws the flowers and the

bees. It’s important that everything is drawn in

the right order—if it were to draw the flowers

before the bees, then the bees would look like

they were flying behind the flowers.

Here’s the same AnimateBees() method from the exercise. It cycles through the animations using the
Frame field—first it shows cell 0, then cell 1, then
2, then 3, and then back to 2, then 1 again. That
way the bee flapping animation is smooth.

A form’s ClientSize property is a Rectangle
that tells you how big its drawing area is.

Download at WoweBook.Com

614 Chapter 13

Use a Graphics object and an event handler for printing
The Graphics methods you’ve been using to draw on your forms are the same
ones you use to print. .NET’s printing objects in System.Drawing.Printing
make it really easy to add printing and print preview to your applications. All
you need to do is create a PrintDocument object. It’s got an event called
PrintPage, which you can use exactly like you use a timer’s Tick event. Then call
the PrintDocument object’s Print() method and it prints the document. And
remember, the IDE makes it especially easy to add the event handler. Here’s how:

Start a new Windows application and add a button to the form. Go to the form code
and add a using System.Drawing.Printing; line to the top. Double-click on the button
and add the event handler. Watch what happens as soon as you type +=:

private void button1_Click(object sender, EventArgs e) {
 PrintDocument document = new PrintDocument();
 document.PrintPage +=

11

Press Tab and the IDE automatically fills in the rest of the line. This is just like how you added
event handlers in Chapter 11:

private void button1_Click(object sender, EventArgs e) {
 PrintDocument document = new PrintDocument();
 document.PrintPage += new PrintPageEventHandler(document_PrintPage);

22

As soon as you press Tab, the IDE generates an event handler method and adds it to the form.

void document_PrintPage(object sender, PrintPageEventArgs e) {
 throw new NotImplementedException();
}

The PrintPageEventArgs parameter e has a Graphics property. Just replace the throw
statement with code that calls the e.Graphics object’s drawing methods.

33

Now finish off the button1_Click event handler by calling document.Print(). When that
method is called, the PrintDocument object creates a Graphics object and then fires off a
PrintPage event with the Graphics object as a parameter. Anything that the event handler draws
onto the Graphics object will get sent to the printer.

private void button1_Click(object sender, EventArgs e) {
 PrintDocument document = new PrintDocument();
 document.PrintPage += new PrintPageEventHandler(document_PrintPage);
 document.Print();
}

44

Now you can put ANY graphics code here—just
replace the throw line and use e.Graphics for all of
the drawing. We’ll show you how in a minute...

Print this

printing uses graphics too

Download at WoweBook.Com

you are here 4 615

controls and graphics

PrintDocument works with the print dialog
and print preview window objects
Adding a print preview window or a print dialog box is a lot like adding an open or save
dialog box. All you need to do is create a PrintDialog or PrintPreviewDialog
object, set its Document property to your Document object, and then call the dialog’s
Show() method. The dialog will take care of sending the document to the printer—no
need to call its Print() method. So let’s add this to the button you created in step 1:

Use e.HasMorePages to print multi-page documents
If you need to print more than one page, all you need to do is have your
PrintPage event handler set e.HasMorePages to true. That tells
the Document that you’ve got another page to print. It’ll call the event
handler over and over again, once per page, as long as the event handler
keeps setting e.HasMorePages to true. So modify your Document’s
event handler to print two pages:

private void button1_Click(object sender, EventArgs e) {

 PrintDocument document = new PrintDocument();

 document.PrintPage += new PrintPageEventHandler(document_PrintPage);

 PrintPreviewDialog preview = new PrintPreviewDialog();

 preview.Document = document;

 preview.ShowDialog(this);

}

void document_PrintPage(object sender,
 PrintPageEventArgs e) {

 DrawBee(e.Graphics, new Rectangle(0, 0, 300, 300));

}

Once you’ve got a
PrintDocument and an
event handler to print
the page, you can pop up
a print preview window
just by creating a new
PrintPreviewDialog object.

bool firstPage = true;
void document_PrintPage(object sender, PrintPageEventArgs e) {
 DrawBee(e.Graphics, new Rectangle(0, 0, 300, 300));
 using (Font font = new Font(“Arial”, 36, FontStyle.Bold)) {
 if (firstPage) {
 e.Graphics.DrawString(“First page”, Font, Brushes.Black, 0, 0);
 e.HasMorePages = true;
 firstPage = false;
 } else {
 e.Graphics.DrawString(“Second page”, Font, Brushes.Black, 0, 0);
 firstPage = true;
 }
 }
}

If you set e.HasMorePages to true, the Document object will call the event handler again to print the next page.

5

6

Now run your program again, and make sure it’s
displaying two pages in the print preview.

We’ll reuse our DrawBee() method from a few pages ago.

Download at WoweBook.Com

616 Chapter 13

vz

private int PrintTableRow(Graphics printGraphics, int tableX,
 int tableWidth, int firstColumnX, int secondColumnX,
 int tableY, string firstColumn, string secondColumn) {
 Font arial12 = new Font(“Arial”, 12);
 Size stringSize = Size.Ceiling(printGraphics.MeasureString(firstColumn, arial12));
 tableY += 2;
 printGraphics.DrawString(firstColumn, arial12, Brushes.Black,
 firstColumnX, tableY);
 printGraphics.DrawString(secondColumn, arial12, Brushes.Black,
 secondColumnX, tableY);
 tableY += (int)stringSize.Height + 2;
 printGraphics.DrawLine(Pens.Black, tableX, tableY, tableX + tableWidth, tableY);
 arial12.Dispose();
 return tableY;
}

private void document_PrintPage(object sender, PrintPageEventArgs e) {
 Graphics g = e.Graphics;
 Size stringSize;
 using (Font arial24bold = new Font(“Arial”, 24, FontStyle.Bold)) {
 stringSize = Size.Ceiling(
 g.MeasureString(“Bee Simulator”, arial24bold));
 g.FillEllipse(Brushes.Gray,
 new Rectangle(e.MarginBounds.X + 2, e.MarginBounds.Y + 2,
 stringSize.Width + 30, stringSize.Height + 30));
 g.FillEllipse(Brushes.Black,
 new Rectangle(e.MarginBounds.X, e.MarginBounds.Y,
 stringSize.Width + 30, stringSize.Height + 30));
 g.DrawString(“Bee Simulator”, arial24bold,
 Brushes.Gray, e.MarginBounds.X + 17, e.MarginBounds.Y + 17);
 g.DrawString(“Bee Simulator”, arial24bold,
 Brushes.White, e.MarginBounds.X + 15, e.MarginBounds.Y + 15);
 }
 int tableX = e.MarginBounds.X + (int)stringSize.Width + 50;
 int tableWidth = e.MarginBounds.X + e.MarginBounds.Width - tableX - 20;
 int firstColumnX = tableX + 2;
 int secondColumnX = tableX + (tableWidth / 2) + 5;
 int tableY = e.MarginBounds.Y;
 // Your job: fill in the rest of the method to make it print this

Write	the	code	for	the	Print	button	in	the	simulator	so	that	it	pops	up	a	print	preview	window	
showing	the	bee	stats	and	pictures	of	the	hive	and	the	field.

Make the button pop up a print preview window
Add an event handler for the button’s click event that pauses the simulator, pops up the print
preview dialog, and then resumes the simulator when it’s done. (If the simulator is paused when
the button is clicked, make sure it stays paused after the preview is shown.)

11

Create the document’s PrintPage event handler
It should create a page that looks exactly like the one on the facing page. We’ll start you off:

22

This PrintTableRow() method will come in handy
You’ll find this method useful when you create the table of bee stats at the top of the page.

33

We created the oval
with text in it using
the MeasureString()
method, which
returns a Size that
contains the size of
a string. We drew
the oval and text
twice to give it a
shadow effect.

You’ll need
these to build
the table.

Each time you call PrintTableRow(), it adds the height of
the row it printed to tableY and returns the new value.

print the world

Download at WoweBook.Com

you are here 4 617

controls and graphics

vz

We used e.MarginBounds to keep
a left margin. This ellipse starts
at e.MarginBounds.X + 2.

Use the PrintTableRow() method
to print the rows of the table.

Use the renderer
to draw the hive
form. Draw a black
rectangle around
it with a width
of 2. Use the
Width property in
e.MarginBounds to
make it half the
width of the page.

Then use the
renderer to do
the same for the
field form—make
it the full page
width using the
X and Y fields in
e.MarginBounds.
See if you can give
them the same
proportions as the
two forms.

Once you figure out how tall to make the hive
picture, align it to the bottom of the page.

Here’s a hint: To find the height of each form, find the ratio of its height divided by its width and multiply that by the final width. You can locate the top of the field form by subtracting its height from the bottom margin of the page: (e.MarginBounds.Y + e.MarginBounds.Height - fieldHeight).

Take a close look at the notes we wrote on the printout. This is a little complex—take your time!

Download at WoweBook.Com

618 Chapter 13

 using System.Drawing.Printing;

 private void document_PrintPage(object sender, PrintPageEventArgs e) {
 Graphics g = e.Graphics;

 Size stringSize;
 using (Font arial24bold = new Font(“Arial”, 24, FontStyle.Bold)) {
 stringSize = Size.Ceiling(
 g.MeasureString(“Bee Simulator”, arial24bold));
 g.FillEllipse(Brushes.Gray,
 new Rectangle(e.MarginBounds.X + 2, e.MarginBounds.Y + 2,
 stringSize.Width + 30, stringSize.Height + 30));
 g.FillEllipse(Brushes.Black,
 new Rectangle(e.MarginBounds.X, e.MarginBounds.Y,
 stringSize.Width + 30, stringSize.Height + 30));
 g.DrawString(“Bee Simulator”, arial24bold,
 Brushes.Gray, e.MarginBounds.X + 17, e.MarginBounds.Y + 17);
 g.DrawString(“Bee Simulator”, arial24bold,
 Brushes.White, e.MarginBounds.X + 15, e.MarginBounds.Y + 15);
 }

 int tableX = e.MarginBounds.X + (int)stringSize.Width + 50;
 int tableWidth = e.MarginBounds.X + e.MarginBounds.Width - tableX - 20;
 int firstColumnX = tableX + 2;
 int secondColumnX = tableX + (tableWidth / 2) + 5;
 int tableY = e.MarginBounds.Y;

 tableY = PrintTableRow(g, tableX, tableWidth, firstColumnX,
 secondColumnX, tableY, “Bees”, Bees.Text);
 tableY = PrintTableRow(g, tableX, tableWidth, firstColumnX,
 secondColumnX, tableY, “Flowers”, Flowers.Text);
 tableY = PrintTableRow(g, tableX, tableWidth, firstColumnX,
 secondColumnX, tableY, “Honey in Hive”, HoneyInHive.Text);
 tableY = PrintTableRow(g, tableX, tableWidth, firstColumnX,
 secondColumnX, tableY, “Nectar in Flowers”, NectarInFlowers.Text);
 tableY = PrintTableRow(g, tableX, tableWidth, firstColumnX,
 secondColumnX, tableY, “Frames Run”, FramesRun.Text);
 tableY = PrintTableRow(g, tableX, tableWidth, firstColumnX,
 secondColumnX, tableY, “Frame Rate”, FrameRate.Text);

 g.DrawRectangle(Pens.Black, tableX, e.MarginBounds.Y,
 tableWidth, tableY - e.MarginBounds.Y);
 g.DrawLine(Pens.Black, secondColumnX, e.MarginBounds.Y,
 secondColumnX, tableY);

We gave you this
part already. It
draws the oval
header, and
sets up variables
that you’ll use to
draw the table
of bee stats.

Did you figure out how the PrintTableRow() method works? All you need to do is call it once per row, and it prints whatever text you want in the two columns. The trick is that it returns the new tableY value for the next row.

Don’t forget to draw
the rectangle around the
table and the line between
the columns.

Write	the	code	for	the	Print	button	in	the	simulator	so	that	it	pops	up	a	print	preview	window	
showing	the	bee	stats	and	pictures	of	the	hive	and	the	field.

Here’s the event handler for the Document’s PrintPage event. It goes in the form.

exercise solution

Download at WoweBook.Com

you are here 4 619

controls and graphics

 using (Pen blackPen = new Pen(Brushes.Black, 2))
 using (Bitmap hiveBitmap = new Bitmap(hiveForm.ClientSize.Width,
 hiveForm.ClientSize.Height))
 using (Bitmap fieldBitmap = new Bitmap(fieldForm.ClientSize.Width,
 fieldForm.ClientSize.Height))
 {
 using (Graphics hiveGraphics = Graphics.FromImage(hiveBitmap))
 {
 renderer.PaintHive(hiveGraphics);
 }

 int hiveWidth = e.MarginBounds.Width / 2;
 float ratio = (float)hiveBitmap.Height / (float)hiveBitmap.Width;
 int hiveHeight = (int)(hiveWidth * ratio);
 int hiveX = e.MarginBounds.X + (e.MarginBounds.Width - hiveWidth) / 2;
 int hiveY = e.MarginBounds.Height / 3;
 g.DrawImage(hiveBitmap, hiveX, hiveY, hiveWidth, hiveHeight);
 g.DrawRectangle(blackPen, hiveX, hiveY, hiveWidth, hiveHeight);

 using (Graphics fieldGraphics = Graphics.FromImage(fieldBitmap))
 {
 renderer.PaintField(fieldGraphics);
 }
 int fieldWidth = e.MarginBounds.Width;
 ratio = (float)fieldBitmap.Height / (float)fieldBitmap.Width;
 int fieldHeight = (int)(fieldWidth * ratio);
 int fieldX = e.MarginBounds.X;
 int fieldY = e.MarginBounds.Y + e.MarginBounds.Height - fieldHeight;
 g.DrawImage(fieldBitmap, fieldX, fieldY, fieldWidth, fieldHeight);
 g.DrawRectangle(blackPen, fieldX, fieldY, fieldWidth, fieldHeight);
 }
}

private void printToolStripButton_Click(object sender, EventArgs e) {
 bool stoppedTimer = false;
 if (timer1.Enabled) {
 timer1.Stop();
 stoppedTimer = true;
 }
 PrintPreviewDialog preview = new PrintPreviewDialog();
 PrintDocument document = new PrintDocument();
 preview.Document = document;
 document.PrintPage += new PrintPageEventHandler(document_PrintPage);
 preview.ShowDialog(this);
 if (stoppedTimer)
 timer1.Start();
}

You’ll need a black pen that’s 2 pixels wide to draw the lines around the screenshots.

The PaintHive() method needs a Graphics object to draw on, so this code creates an empty Bitmap object and passes it to PaintHive().

e.MarginBounds.Width has the width of the
printable area of the page. That’s how wide
the field screenshot should be drawn.

Here’s where the height of the screenshot is calculated using the form’s height-width ratio.

Here’s the code for the Print button. It pauses the
simulator (if it’s running), creates a PrintDocument,
hooks it up to the PrintPage event handler, shows
the dialog, and then restarts the simulator.

Since the
pen and the
two bitmaps
need to be
disposed, we
put them all
in one big
using block.

The bitmaps need to
be the same size as
the form’s drawing
area, so ClientSize.
comes in handy.

Download at WoweBook.Com

620 Chapter 13

There’s so much more to be done...
You’ve built a pretty neat little simulator, but why stop now?
There’s a whole lot more that you can do on your own. Here are
some ideas—see if you can implement some of them.

Did you come up with a cool modification to the simulator? Show off
your skills—upload your project’s source code to the Head First C#
forums at www.headfirstlabs.com/books/hfcsharp/.

Add a control panel
Convert the constants in the World and Hive classes to properties. Then
add a new form with a control panel that has sliders to control them.

Add enemies
Add enemies that attack the hive. The more flowers there are, the more
enemies are attracted to the hive. Then add Sting Patrol bees to defend
against the enemies and Hive Maintenance bees to defend and repair the
hive. Those bees take extra honey.

Add hive upgrades
If the hive gets enough honey, it gets bigger. A bigger hive can hold more
bees, but takes more honey and attracts more enemies. If enemies cause
too much damage, the hive gets smaller again.

Add a queen bee who lays eggs
The eggs need Baby Bee Care worker bees to take care of them. More
honey in the hive causes the queen to lay more eggs, which need more
workers to care for them, who consume more honey.

Add animation
Animate the background of the Hive form so the sun slowly travels
across the sky. Make it get dark at night, and draw stars and a moon.
Add some perspective—make the bees get smaller the further they get
from the hive in the field of flowers.

Use your imagination!
Try to think of other ways you can make the simulation more interesting
or more interactive.

A good
simulation will
have lots of
tradeoffs, and
will give the
user ways to
decide which
tradeoffs
to make to
influence the
progress of
the hive.

mini lab

Download at WoweBook.Com

CAPTAIN AMAZING
THE DEATH

OF THE OBJECT
Head First Labs

$2.98 Chapter
14

Download at WoweBook.Com

622

Captain Amazing, Objectville’s most
amazing object, pursues his arch-nemesis...

... ready to wreak havoc
on the streets of

objectville!

you’re too late! as we speak
my clone army is gathering in

the factory beneath us...

i’ll take down each
clone’s references, one

by one.

i’ve got you now,
swindler.

Download at WoweBook.Com

623

a few minutes from
now, you AND my

army will be garbage
(collected, that is)

Is this the end of Captain Amazing...?

Captain Amazing backs Swindler into a corner...

 ...but ends up trapped himself.

Download at WoweBook.Com

624 Chapter 14

 Below is the code detailing the fight between Captain Amazing and Swindler (not to
mention his clone army). Your job is to draw out what’s going on in memory when
the FinalBattle class is instantiated.

public class FinalBattle {
 public CloneFactory Factory = new CloneFactory();
 public List<Clone> Clones = new List<Clone>();
 public SwindlersEscapePlane escapePlane;

 public FinalBattle() {
 public Villain swindler = new Villain(this);
 using (Superhero captainAmazing = new Superhero()) {
 Factory.PeopleInFactory.Add(captainAmazing);
 Factory.PeopleInFactory.Add(swindler);
 captainAmazing.Think(“I’ll take down each of the clones’ references,
 one by one”);
 captainAmazing.IdentifyTheClones(Clones);
 captainAmazing.RemoveTheClones(Clones);
 swindler.Think(“A few minutes from now, you AND my army will be garbage”);
 swindler.Think(“(collected, that is!)”);
 escapePlane = new SwindlersEscapePlane(swindler);
 swindler.TrapCaptainAmazing(Factory);
 MessageBox.Show(“The Swindler escaped”);
 }
 }
}
 [Serializable]
public class Superhero : IDisposable {
 private List<Clone> clonesToRemove = new List<Clone>();
 public void IdentifyTheClones(List<Clone> clones) {
 foreach (Clone clone in clones)
 clonesToRemove.Add(clone);
 }
 public void RemoveTheClones(List<Clone> clones) {
 foreach (Clone clone in clonesToRemove)
 clones.Remove(clone);
 ...
 }
}
 public class Villain {
 private FinalBattle finalBattle;
 public Villain(FinalBattle finalBattle) {
 this.finalBattle = finalBattle;
 }
 public void TrapCaptainAmazing(CloneFactory factory) {
 factory.SelfDestruct.Tick += new EventHandler(SelfDestruct_Tick);
 factory.SelfDestruct.Interval = 600;
 factory.SelfDestruct.Start();
 }
 private void SelfDestruct_Tick(object sender, EventArgs e) {
 finalBattle.factory = null;
 }
}

11

3

2

There’s more code here (including the
Dispose() method) that we aren’t showing
you, but you don’t need it to answer this.

Draw a picture of what the heap will look like exactly one second after the FinalBattle constructor runs.

Draw what’s going on
right here, when the
SwindlersEscapePlane
object is instantiated.

We’ve gotten you started here, with what’s going on in the factory object.

reenacting the crime

You can assume that Clones was
set using an object initializer.

Download at WoweBook.Com

you are here 4 625

the death of an object

Based on your diagrams, where in the code did Captain Amazing die?

Be sure and annotate that on your diagram, too.

2

3

public class SwindlersEscapePlane {
 public Villain PilotsSeat;
 public SwindlersEscapePlane(Villain escapee) {
 PilotsSeat = escapee;
 }
}

public class CloneFactory {
 public Timer SelfDestruct = new Timer();
 public List<object> PeopleInFactory = new List<object>();
 ...
}

1

CloneFactory
We started the first one for you. Make sure you
draw in lines showing the architecture—we drew a
line from the clone factory to the Villain object,
because the factory has references to it (via its
PeopleInFactory field).

facto
ry

We’ve left space, as there is more to be drawn at this stage.

Make sure you add labels to your objects to show the reference variables that are
pointing to them.

Don’t worry about drawing the

Clone and List objects—just add

the objects for the Captain, the

Swindler, the clone factory
, and

Swindler’s escape plane.

Your job is to draw what’s going on in these two bits of memory, too.

Villain object

swindler

There’s a clone class
and that we’re not
showing you in this
code too. You don’t
need it to answer the
questions.

Download at WoweBook.Com

626 Chapter 14

Draw what’s happening in memory with the FinalBattle program.

Timer

Villain

3

2

1

When the selfDestruct fires, the factory reference variable is set to null, and eligible for garbage collection. So it’s gone in this drawing.

The captainAmazing reference points to a Superhero object, and the swindler reference points to a Villain object, and the clone factory’s PeopleInFactory list contains references to both of them.

As long as there’s a
reference to swindler
from the escapePlane,
he won’t get garbage
collected.

Villain object

Superhero obj
e c

t

CloneFactory

facto
ry

captain
amazing

swindler

Villain object

Superhero obj
e c

t

CloneFactory

facto
ry

captain
amazing

swindler

Self
Destruct

swindler

One second after th
e

FinalBattle constructor r
an,

the hero was gone.

Here’s the
object you
should have
added to this
diagram.

The escapePlane
reference now
points to a new
instance of the
SwindlersEscapePlane
object, and its
PilotSeat field
points to the
Villain object

Based on your diagrams, where in the code did Captain Amazing die?

Once finalBattleFactory was set to null, it was ready for garbage
collection. And it took the last reference to the Captain with it!

 void SelfDestruct_Tick(object sender, EventArgs e) {
 finalBattle.factory = null;
}

As soon as the factory reference was gone, it
took the CloneFactory object with it—and
that caused the List object referenced by its
PeopleInFactory field to disappear... and that
was the only thing keeping the SuperHero object
alive. Now he’ll be destroyed the next time the
garbage collector runs.

Once the Superhero instance had no
clone factory referencing it, it was
marked for garbage collection too.

hmm... i wonder what those numbers say

SwindlersEscape
Pl

a n
e

escape
Plane

SwindlersEscape
Pl

a n
e

escape
Plane

Download at WoweBook.Com

627

Later, at the funeral home

the captain’s coffin is
empty... but what’s this?

that looks like some kind of
secret code. do you think it’s

from the captain?

6e
61

6d
65

73
70

61
63

65
20

51
7b

0d
0a

5b
53

65
72

69
61

6c
69

7a
61

62
6c

65
5d

70
75

62
6c

69
63

20
63

6c
61

73
73

20
4d

73
67

7b
0d

0a
70

75
62

6c
69

63
20

73
74

72
69

6e
67

20
61

3b
70

75
62

6c
69

63
20

73
74

72
69

6e
67

20
62

3b
70

75
62

6c
69

63
20

73
74

72
69

6e
67

20
63

3b
70

75
62

6c
69

63
20

69
6e

74
20

69
3b

0d
0a

70
75

62
6c

69
63

20
76

6f
69

64
20

53
68

6f
77

28
29

7b
4d

65
73

73
61

67
65

42
6f

78
2e

53
68

6f
77

28
63

2e
53

75
62

73
74

72
69

6e
67

28
31

2c
32

29
2b

69
2b

22
40

22
2b

61
2b

63
2b

22
2e

22
2b

62
29

3b
7d

7d
7d

00
01

00
00

00
ff

ff
ff

ff
01

00
00

00
00

00
00

00
0c

02
00

00
00

38
51

2c
20

56
65

72
73

69
6f

6e
3d

31
2e

30
2e

30
2e

30
2c

20
43

75
6c

74
75

72
65

3d
6e

65
75

74
72

61
6c

2c
20

50
75

62
6c

69
63

4b
65

79
54

6f
6b

65
6e

3d
6e

75
6c

6c
05

01
00

00
00

05
51

2e
4d

73
67

04
00

00
00

01
61

01
62

01
63

01
69

01
01

01
00

08
02

00
00

00
06

03
00

00
00

04
6f

62
6a

65
06

04
00

00
00

03
6e

65
74

06
05

00
00

00
07

63
74

76
69

6c
6c

65
17

00
00

00
0b

Download at WoweBook.Com

628 Chapter 14

[Serializable]
public class Clone {
 string Location;
 int CloneID;

 public Clone (int cloneID, string location){
 this.CloneID = cloneID;
 this.Location = location;
 }

 public void TellLocation(string location, int cloneID){
 Console.WriteLine(“My Identification number is {0} and ” +
 “you can find me here: {1}.”, cloneID, location);
 }

 public void WreakHavoc(){...}

 ~Clone() {
 TellLocation(this.Location, this.CloneID);
 Console.WriteLine (“{0} has been destroyed”, CloneID);
 }
}

Sometimes you need to be sure something happens before your object gets
garbage collected. You might want to release connections or resources... or
perhaps send a coded message to the world.

A special method in your object called the finalizer allows you to write code
that will always execute when your object is destroyed. Think of it as your
object’s personal finally block: it gets executed last, no matter what.

Here’s an example of a destructor in the Clone class:

Your last chance to DO something...
your object’s finalizer

Here’s the constructor. It looks like
the CloneID and Location fields are
populated anytime a Clone gets created.

This is the finalizer. It sends a message to the villain telling the ill-fated clone’s location and ID. But it will only run when the object is garbage collected.

You write a finalizer method just like
a constructor, but instead of an access
modifier, you put a ~ in front of the
class name. That tells .NET that the
code in the finalizer block should be
run any time it garbage collects the
object.

Additionally, finalizers can’t have
parameters, since .NET calls this
object, rather than any other object.

This ~ (or “tilde”) character says
that the code in this block gets run
when the object is garbage collected.

 Destructors and finalizers are the same
thing.

Sometimes you’ll hear people refer to an object’s
Finalizer method, and sometimes to its destructor.
Both of those terms refer to a method that runs

when an object is garbage collected. “Finalizer” is generally
replacing “destructor” as the name for this. We’ll use “destructor”
a few times, just because some of the IDE’s error messages do.

godzilla versus destructor

Download at WoweBook.Com

you are here 4 629

the death of an object

The finalizer you build for your object runs when that
object gets garbage collected. And garbage collection
happens after all references to your object go away. But
garbage collection doesn’t always happen right after the
references are gone.

Suppose you have an object with a reference to it.
.NET sends the garbage collector to work, and it checks
out your object. But since there are references to your
object, the garbage collector ignores it and moves along.
Your object keeps living on in memory.

Then, something happens. That last object holding a
reference to your object decides to move on. Now, your
object is sitting in memory, with no references. It can’t
be accessed. It’s basically a dead object.

But here’s the thing. Garbage collection is
something that .NET controls, not your objects. So
if the garbage collector isn’t sent out again for, say, a
few seconds, or maybe even a few minutes, your object
still lives on in memory. It’s unusable, but it hasn’t been
garbage collected. And any finalizer your object
has does not (yet) get run.

Finally, .NET sends the garbage collector out again.
Your destructor runs... possibly several minutes after the
last reference to the object was removed or changed.
Now that it’s been finalized, your object is dead, and
the collector tosses it away.

When EXACTLY does a finalizer run?

 MyObject

poof!

.NET does let you suggest that garbage collection would
be a good idea. Most times, you’ll never use this
method, because garbage collection is tuned to
respond to a lot of conditions in the CLR and
calling it isn’t really a good idea. But just to see how
a finalizer works, you could call for garbage collection
on your own. If that’s what you want to do, just call
GC.Collect().

Be careful, though. That method doesn’t force .NET
to garbage collect things immediately. It just says, “Do
garbage collection as soon as possible.”

You can SUGGEST to .NET that it’s
time to collect the garbage

public void RemoveTheClones(
 List<Clone> clones) {
 foreach (Clone clone in clonesToRemove)
 clones.Remove(clone);
 GC.Collect();
}

Here’s your object,
living in memory.

This other object
references your object.

Your object is still
on the heap...

...but now there
aren’t any
references to it.

 OtherObjec
t

 OtherObjec
t

Now this other
object change

d its

reference.

Eventually the garbage
collector comes along,
and trashes your object.

The Heap

The Heap

The Heap

 OtherObjec
t

 MyObject

Download at WoweBook.Com

630 Chapter 14

Dispose() runs whenever an object that is created in a using statement is set
to null or loses all of its references. If you don’t use a using statement, then just
setting the reference to null won’t cause Dispose() to get called—you’ll need
to call it directly. An object’s finalizer runs at garbage collection for that particular
object. Let’s create a couple of objects, and see how these two methods differ:

Dispose() works with using,
finalizers work with garbage collection

Create a Clone class and make sure it implements IDisposable.
The class should have one int automatic property called ID. It has a
constructor, a Dispose() method and a finalizer:

11

Do this!

Create a Form with three buttons.
Create one instance of Clone inside the Click handler for the first button
with a using statement. Here’s the first part of the code for the button:

22

As soon as the using block is done and the Clone object’s Dispose() method is called, there’s no more reference to it and it gets marked for garbage collection.

private void clone1_Click(object sender, EventArgs e)
 using (Clone clone1 = new Clone(1)) {
 // Do nothing!
 }
}

Here’s the form you
should create.

The method
creates a
new Clone
and then
immediately
kills it by
taking away
its reference.

collect the garbage

public class Clone : IDisposable {
 public int ID { get; private set; }

 public Clone(int ID) {
 this.ID = ID;
 }

 public void Dispose() {
 MessageBox.Show(“I’ve been disposed!”,
 “Clone #” + ID + “ says...”);
 }

 ~Clone() {
 MessageBox.Show(“Aaargh! You got me!”,
 “Clone #” + ID + “ says...”);
 }
}

Here’s the finalizer. It will run when the object gets garbage collected.

Since the class implements
IDisposable, it has to have a
Dispose() method.

Since we declared clone1
with a using statement, its
Dispose() method gets run.

Download at WoweBook.Com

you are here 4 631

the death of an object

private void gc_Click(object sender, EventArgs e) {
 GC.Collect();
}

private void clone2_Click(object sender, EventArgs e) {
 Clone clone2 = new Clone(2);
 clone2 = null;
}

This suggests that
garbage collection run.

Since this doesn’t use a using
statement, Dispose() won’t ever get
run, but the finalizer will.

Run the program and play with Dispose() and finalizers.
Click on the first button and check out the message box: Dispose() runs first.

44

Now click on the second button... Nothing happens. right?
That’s because we didn’t use a using statement, so no
Dispose() method. And until the garbage collector runs,
you won’t see the message boxes from the finalizer.

Now click the third button, to suggest garbage collection.
You should see the finalizer from both Clone1 and Clone2
fire up and display message boxes.

Even though the Clone1 object has been set to null and its Dispose method has run, it’s still on the heap waiting for garbage collection.

poof!

The Heap

poof!

When GC.Collect() is run, both objects run
their finalizers and disappear.

Implement the other two buttons.
Create another instance of Clone in the second button’s Click handler,
and set it to null manually:

33

For the third button, add a call to GC.Collect() to suggest
garbage collection occur.

In most cases, you won’t see the garbage collection
message box. Because your object is set to null, but
garbage collection hasn’t run yet.

The Heap

 Clone1

The Heap

 Clone2

Now Clone2
is on the
heap, too, but
without any
references
to it.

Play around with the program. Click the Clone #1 button, then the Clone #2 button, then the GC
button. Do it a few times. Sometimes clone #1 is collected first, and sometimes clone #2 is. And once in a
while, the garbage collector runs even though you didn’t ask it to using GC.Collect().

Remember, normally it’s not
a great idea to do this. But
it’s fine here, because it’s
a good way to learn about
garbage collection.

Download at WoweBook.Com

632 Chapter 14

Finalizers can’t depend on stability
When you write a finalizer, you can’t depend
on it running at any one time. Even if you call
GC.Collect()—which you should avoid, unless
you have a really good reason to do it—you’re only
suggesting that the garbage collector is run. It’s not a
guarantee that it’ll happen right now. And when it does,
you have no way of knowing what order the objects will
be collected.

So what does that mean, in practical terms? Well, think
about what happens if you’ve got two objects that have
references to each other. If object #1 is collected first,
then object #2’s reference to it is pointing to an object
that’s no longer there. But if object #2 is collected
first, then object #1’s reference is invalid. So what that
means is that you can’t depend on references in
your object’s finalizer. Which means that it’s a really
bad idea to try to do something inside a finalizer that
depends on references being valid.

Serialization is a really good example of something that
you shouldn’t do inside a finalizer. If your object’s
got a bunch of references to other objects, serialization
depends on all of those objects still being in memory...
and all of the objects they reference, and the ones those
objects reference, and so on. So if you try to serialize
when garbage collection is happening, you could end
up missing vital parts of your program because some
objects could’ve been collected before the finalizer ran.

Luckily, C# gives us a really good solution to this:
IDisposable. Anything that could modify your core
data or that depends on other objects being in memory
needs to happen as part of a Dispose() method, not
a finalizer.

Some people like to think of a finalizers as a kind of
failsafe for the Dispose() method. And that makes
sense—you saw with your Clone object that just because
you implement IDisposable, that doesn’t mean the
object’s Dispose() method will get called. But you need
to be careful—if your Dispose() method depends on
other objects that are on the heap, then calling Dispose()
from your finalizer can cause trouble. The best way
around this is to make sure you always use a using
statement any time you’re creating an IDispoable
object.

an unstable environment

Object #1

Object #1

O
bject #2

poof!

Let’s say you’ve got
two objects that have
references to each other...

…if they’re both marked for garbage
collection at the same time, then
object #1 could disappear first…

O
bject #2poof!

…on the other hand, object #2 could
disappear before object #1. You’ve
got no way of knowing the order…

…and that’s why one object’s
finalizer can’t rely on any other
object still being on the heap.

Download at WoweBook.Com

you are here 4 633

the death of an object

Once you understand the difference between Dispose() and a
finalizer, it’s pretty easy to write objects that serialize themselves out
automatically when they’re disposed of.

Make an object serialize itself in its Dispose()

Make the Clone class (from page 630) Serializable.
Just add the Serializeable attribute on top of the class so that we can save the file out.

11

[Serializable]
public class Clone : IDisposable

Do this!

Modify Clone’s Dispose() method to Serialize itself out to a file.
Let’s use a BinaryFormatter to write Clone out to a file in Dispose():

22

using System.IO;
using System.Runtime.Serialization.Formatters.Binary;

// existing code

public void Dispose() {
 string filename = “C:\\Temp\\Clone.dat”;
 string dirname = “C:\\Temp\\”;
 if (File.Exists(filename) == false) {
 Directory.CreateDirectory(dirname);
 }
 BinaryFormatter bf = new BinaryFormatter();
 using (Stream output = File.OpenWrite(filename)) {
 bf.Serialize(output, this);
 }
 MessageBox.Show(“This is ” + this.ID +
 “ must.. serialize..object.”);
}

Run the application.
You’ll see the same behavior you saw on the last few pages... but before the Clone1
object is garbage collected, it’s serialized to a file. Look inside the file and you’ll see the
binary representation of the object.

33

You’ll need a
few more using
statements to
access the I/O
classes we’ll use.

The Clone will create the C:\Temp directory and serialize itself out to a file called Clone.dat.

We hardcoded the filename—
we included them as string
literals in the code. That’s
fine for a small demo program
like this, but it’s not the most
robust design. Can you think
of problems this might cause,
and how you could avoid them?

What do you think the rest of the SuperHero
object’s code looked like? We showed you part of it
on page 624. Could you write the rest now?

Download at WoweBook.Com

634 Chapter 14

Tonight’s talk: The Dispose() method and a finalizer spar
over who’s more valuable.

Dispose:
To be honest, I’m a little surprised I was invited here.
I thought the programming world had come to a
consensus. I mean, I’m way more valuable than you
are. Really, you’re pretty feeble. You can’t even serialize
yourself out, alter core data, anything. Pretty unstable,
aren’t you?

There’s an interface specifically because I’m so
important. In fact, I’m the only method in it!

OK, you’re right, programmers need to know they’re
going to need me and either call me directly or use a
using statement to call me. But they always know when
I’m gonna run, and they can use me to do whatever they
need to do to clean up after their object. I’m powerful,
reliable, and easy to use. I’m a triple threat. And you?
Nobody knows exactly when you’ll run or what the state
of the application will be when you finally do decide to
show up.

So there’s basically nothing you can do that I can’t do.
But you think you’re a big shot because you run when
garbage collection happens.

Finalizer:

Excuse me? That’s rich. I’m feeble... OK. Well, I didn’t
want to get into this, but since we’re already stooping
this low... at least I don’t need an interface to get started.
Without IDisposable, you’re just another useless
method.

Right, right... keep telling yourself that. And what
happens when someone forgets to use a using
statement when they instantiate their object? Then
you’re nowhere to be found.

OK, but if you need to do something at the very last
moment when an object is garbage collected, there’s no
way to do it without me. I can free up network resources
and windows handles and streams and anything else that
might cause a problem for the rest of the program if you
don’t clean it up. I can make sure that your objects deal
with being trashed more gracefully, and that’s nothing to
sneeze at.

I’ll take that over your flash and attitude any day, pal.

what happened to the captain?

Handles are what your programs use when they go around .NET and the CLR and interact directly with Windows. Since .NET doesn’t know about them, it can’t clean them up for you.

Download at WoweBook.Com

635

... but how do we
get it back?

somehow captain amazing
captured his whole essence in

this note...

Q: Can a finalizer use all of an object’s fields and methods?

A:	Sure.	While	you	can’t	pass	parameters	to	a	finalizer	method,	
you	can	use	any	of	the	fields	in	an	object,	either	directly	or	using	
this—but	be	careful,	because	if	those	fields	reference	other	
objects,	then	the	other	objects	may	have	already	been	finalized.	But	
you	can	definitely	call	other	methods	in	the	object	being	finalized	(as	
long	as	those	methods	don’t	depend	on	other	objects).

Q: What happens to exceptions that get thrown in a finalizer?

A:	Good	question.	It’s	totally	legal	to	put	a	try/catch	block	
inside	a	finalizer	method.	Give	it	a	try	yourself.	Create	a	divide	by	
zero	exception	inside	a	try	block	in	the	Clone	program	we	just	
wrote.		Catch	it	and	throw	up	a	message	box	that	says	“I	just	caught	
an	exception.”	right	before	the	“...I’ve	been	destroyed.”	box	we’d	
already	written.		Now	run	the	program	and	click	on	the	first	button	
and	then	the	GC	button.	You’ll	see	both	the	exception	box	and	the	
destroyed	box	pop	up.	(Of	course,	it	generally	a	really bad idea to	
pop	up	message	boxes	in	finalizers	for	objects	that	are	more	than	
just	toys...	and	those	message	boxes	may	never	actually	pop	up.)

Q: How often does the garbage collector run automatically?

A:	There’s	no	good	answer	to	that	one.	It	doesn’t	run	on	an	easily	
predictable	cycle,	and	you	don’t	have	any	firm	control	over	it.	You	
can	be	sure	it	will	be	run	when	your	program	exits.	But	if	you	want	to	
be	sure	it’ll	run,	you	have	to	use	GC.Collect()	to	set	it	off...	and	even	
then,	timing	is	an	issue.

Q: How soon after I call GC.Collect() will .NET start garbage
collection?

A:	When	you	run	GC.Collect(),	you’re	telling	.NET	to	
garbage	collect	soon	as	possible.	That’s	usually as	soon	as	.NET	
finishes	whatever	its	doing.	That	means	it’ll	happen	pretty	soon,	but	
you	can’t	actually	control	when.	

Q: If I absolutely need something to run, I put it in a finalizer,
right?

A:	It’s	possible	that	your	finalizer	won’t	run.	It’s	possible	to	
suppress	finalizers	when	garbage	collection	happens.	Or	the	process	
could	end	entirely.	But	as	a	general	rule,	your	finalizer	should	run.

Download at WoweBook.Com

636

captain amazing...
he’s back! captain amazing took so long

to get here that mr fluffy
rescued himself from the tree...

meow!

Even later...

What’s wrong? Why are the
Captain’s powers behaving
differently? Is this the end?

puff... pant.... ugh!
i’m exhausted

but something’s wrong. he
doesn’t seem the same... and

his powers are weird.

Later...

Meanwhile, on the streets of Objectville...

Download at WoweBook.Com

you are here 4 637

the death of an object

One of the types in .NET we haven’t talked about much is the struct.
struct is short for structure, and structs look a lot like objects.
They have fields and properties, just like objects. And you can even pass
them into a method that takes an object type parameter:

A struct looks like an object...

..but isn’t on the heap

public struct AlmostSuperhero : IDisposable {
 public int SuperStrength;
 public int SuperSpeed { get; private set; }

 public void RemoveVillain(Villain villain)
 {
 Console.WriteLine(“OK, ” + villain.Name +
 “ surrender and stop all the madness!”);
 if (villain.Surrendered)
 villain.GoToJail();
 else
 villain.Kill();
 }

 public void Dispose() { ... }
}

But structs aren’t objects on the heap. They can have methods and
fields, but they can’t have finalizers. They also can’t inherit from other
classes or structs, or have classes or structs inherit from them.

 SuperHero

struct
structs can’t
inherit from
other objects.

You can mimic a standalone object with a struct, but structs don’t stand in very well for complex inheritance hierarchies.

The power of objects
lies in their ability
to mimic real‑world
behavior, through
inheritance and
polymorphism.

Structs are best
used for storing
data, but the lack of
inheritance and the
way they’re managed
in memory can be a
serious limitation.

...and define methods.

Structs can implement
interfaces but can’t
subclass other classes.

A struct can have
properties and fields...

All structs inherit from System.ValueType, which in turn inherits from System.Object. That’s why every struct has a ToString() method – it gets it from Object. But that’s all the inheriting that structs are allowed to do.”

That’s why you don’t usually find yourself defining your own structs. But that doesn’t mean they don’t have their uses!

Download at WoweBook.Com

638 Chapter 14

 List<Float>

You already have a sense of how some types are different than others. On one hand
you’ve got value types like int, bool, and decimal. On the other hand, you’ve
got objects like List, Stream, and Exception. And they don’t quite work
exactly the same way, do they?

When you use the equals sign to set one value type variable to another, it makes a
copy of the value, and afterwards the two variables aren’t connected to each other.
On the other hand, when you use the equals sign with references, what you’re doing is
pointing both references at the same object.

Variable declaration and assignment works the same with
value types or object types:

≥≥

Differences creep in when you start to assign values, though. Value types all are
handled with copying. Here’s an example:

≥≥

temperatures

differentlist

This line sets the
differentList
reference to point
to the same object
as the temperatures
reference.

This line copies the value that’s stored in the fifteenMore variable into the howMany variable and adds 15 to it.Changing the
fifteenMore
variable has
no effect on
howMany, and
vice versa.

When you called differentList.Add(),
it added a new temperature to the
object that both differentList and
temperatures point to.

Values get copied, references get assigned

int and bool are value types, List
and Exception are object types.

Here’s a quick refresher on value types vs. objects.

int howMany = 25;
bool Scary = true;
List<float> temperatures = new List<float>();
Exception ex = new Exception(“Does not compute”);

These are all
initialized in the
same basic way.

int fifteenMore = howMany;
fifteenMore += 15;
Console.WriteLine(“howMany has {0}, fifteenMore has {1}”,
 howMany, fifteenMore);

The output here shows that fifteenMore and howMany are not connected:

howMany has 25, fifteenMore has 40

With object assignments, though, you’re assigning references, not actual values:≥≥

temperatures.Add(56.5F);
temperatures.Add(27.4F);
List<float> differentList = temperatures;
differentList.Add(62.9F); Both references

point at the same
actual object.

So changing the List means both references see the
update... since they both point to a single List object.

Console.WriteLine(“temperatures has {0}, differentlist has {1}”,
 temperatures.Count(), differentList.Count());

temperatures has 3, differentList has 3

The output here demonstrates that differentList and
temperatures are actually pointing to the same object:

makin’ copies

Remember when we
said that methods and
statements ALWAYS
live in classes? Well, it
turns out that’s not
100% accurate -- they
can also live in structs.

Download at WoweBook.Com

you are here 4 639

the death of an object

Structs are value types; objects are reference types
When you create a struct, you’re creating a value type. What that
means is when you use equals to set one struct variable equal to
another, you’re creating a fresh copy of the struct in the new variable. So
even though a struct looks like an object, it doesn’t act like one. Do this

Create a struct called Dog
Here’s simple struct to keep track of a dog. It looks just like an object, but it’s not.

11

 public struct Dog {
 public string Name;
 public string Breed;

 public Dog(string name, string breed) {
 this.Name = name;
 this.Breed = breed;
 }

 public void Speak() {
 Console.WriteLine(“My name is {0} and I’m a {1}.”, Name, Breed);
 }
 }

Create a class called Canine
Make an exact copy of the Dog struct, except replace struct with class and then
replace Dog with Canine. Now you’ll have a Canine class that you can play with,
which is almost exactly equivalent to the Dog struct.

22

Add a button that makes some copies of Dogs and Canines
Here’s the code:

 Canine spot = new Canine(“Spot”, “pug”);
 Canine bob = spot;
 bob.Name = “Spike”;
 bob.Breed = “beagle”;
 spot.Speak();

 Dog jake = new Dog(“Jake”, “poodle”);
 Dog betty = jake;
 betty.Name = “Betty”;
 betty.Breed = “pit bull”;
 jake.Speak();

33

Yes, this is not good encapsulation.
Bear with us—we’re making a point.

Before you press that button...
Write down the what you think will be written to the console when you run this code:

44

Download at WoweBook.Com

640 Chapter 14

My name is Spike and I’m a beagle.
My name is Jake and I’m a poodle.

Here’s what happened...
The bob and spot references both point to the same object, so
both changed the same fields and accessed the same Speak()
method. But structs don’t work that way. When you created
betty, you made a fresh copy of the data in jake. The two
structs are completely independent of each other.

Dog jake = new Dog(“Jake”, “poodle”);

Dog betty = jake;

betty.Name = “Betty”;

betty.Breed = “pit bull”;

jake.Speak();

Canine spot = new Canine(“Spot”, “pug”);

Canine bob = spot;

bob.Name = “Spike”;

bob.Breed = “beagle”;

spot.Speak();

jake

4

5

1

2

Canine object

1
spot

Canine object

2 spot

3

6

A new Canine object was
created and the spot
reference points to it.

The new reference variable bob was
created, but no new object was added
to the heap—the bob variable points to
the same object as spot.

Spot
pug

Canine object

3

spot
bob Spike

beagle

Spot
pug

bob

Since spot and bob both point to the same object,
spot.Speak() and bob.Speak() both call the same
method, and both of them produce the same output with “Spike” and “beagle”.

Jake
poodle

jake

Jake
poodle

betty

Jake
poodle

betty

Betty
pit bull

jake

Jake
poodle

4

5

6

When you set one struct
equal to another, you’re
creating a fresh COPY of
the data inside the struct.
That’s because struct is a
VALUE TYPE.

When you create a new struct,
it looks really similar to creating
an object—you’ve got a variable
that you can use to access its
fields and methods.

Here’s the big difference. When
you added the betty variable,
you created a whole new struct,
even though you didn’t use the
new keyword.

Since you created a fresh
copy of the data, jake
was unaffected when you
changed betty’s fields.

What did you think would get written to the console?

stack versus heap

Download at WoweBook.Com

you are here 4 641

the death of an object

It’s easy to understand how a struct differs from an object—you can make a fresh
copy of a struct just using equals, which you can’t do with an object. But what’s really
going on behind the scenes? The reason structs act like other value types is that
value types don’t live on the heap. The .NET CLR divides your data into two
places in memory. You already know that objects live on the heap. It also keeps another
part of memory called the stack to store all of the local variables you declare in your
methods, and the parameters that you pass into those methods. You can think of the
stack as a bunch of slots that you can stick values in. When a method gets called, the
CLR adds more slots to the top of the stack. When it returns, its slots are removed.

The stack vs. the heap: more on memory

The Code
Here’s code that you might

see in a program.

Behind
the Scenes

The Stack
This is where structs and local

variables hang out.

Dog jake

spot

Dog betty

Dog jake

spot

Canine spot = new Canine(“Spot”, “pug”);

Dog jake = new Dog(“Jake”, “poodle”);

Canine spot = new Canine(“Spot”, “pug”);

Dog jake = new Dog(“Jake”, “poodle”);

Dog betty = jake;

public SpeakThreeTimes(Dog dog) {

 int i;

 for (i = 0; i < 5; i++)

 dog.Speak();

}

Dog betty

Dog jake

spot

Dog myDog

int i

Dog dog

Canine spot = new Canine(“Spot”, “pug”);

Dog jake = new Dog(“Jake”, “poodle”);

Dog betty = jake;

SpeakThreeTimes(jake);

When you call a
method, the CLR
puts its local
variables on the
top of the stack.
It takes them off
when it’s done.

Here’s what the stack looks like after these two lines of code run.

When you create a new struct—or any other value
type variable—a new “slot” gets added onto the
stack. That slot is a copy of the value in your type.

Remember, when your
program’s running, the CLR is actively managing memory, dealing with the heap and collecting garbage.

Even though you can
set an object variable
equal to a struct,
structs and objects
are different.

Download at WoweBook.Com

642 Chapter 14

Dog sid (boxed)

Wait a minute. Didn’t you just say that you can set
an object variable equal to a struct? If an object’s on
the heap, and a struct is on the stack, what happens?

When you set an object equal to a value type, it gets boxed.
There are some times that you need to be able to write a method that can take
either a value type or a reference type—perhaps a method that can work with
either a Dog struct or a Canine object. If you find yourself in that situation,
you can use the object keyword:

 public WalkDogOrCanine(object anything) { ... }

If you send this method a struct, the struct gets boxed into a special object
“wrapper” that allows it to live on the heap. While the wrapper’s on the heap, you
can’t do much with the struct. You have to “unwrap” the struct to work with it.
Luckily, all of this happens automatically when you set an object equal to a value
type, or pass a value type into a method that expects an object.

Sid
husky

Here’s what the stack and heap look like after you create an object
variable and set it equal to a Dog struct.

Dog sid = new Dog(“Sid”, “husky”);

Object obj = sid;

11

Dog sid (boxed)

Sid
husky

If you want to unbox the object, all you need to do is cast it to the right type, and
it gets unboxed automatically. This is where the is keyword comes in handy.

if (obj is Dog)

 Dog happy = (Dog) obj;

22

obj

obj

obj

obj

Dog sid

Dog sid

Dog happy

You can also use the “is”
keyword to see if an
object is a struct, or
any other value type,
that’s been boxed and
put on the heap.

These are structs, so unless they’re boxed, they don’t live on the heap.

don’t box me in

After a struct
is boxed, there
are two copies
of the data: on
the stack, and
the copy boxed
on the heap.

After this line
runs, you’ve got
a third copy of
the data in a
new struct called
happy, which gets
its own slot on
the stack.

There’s a special case where value types don’t get boxed: if they live inside an object. If you’ve got a class with an int field, that int doesn’t need to be boxed before it’s added to the heap because it’s already got a container
– the object that it’s a part of.

Download at WoweBook.Com

you are here 4 643

the death of an object

Pool Puzzle
Your job is to take snippets from the

pool and place them into the blank
lines in the code. You may use
the same snippet more than once,
and you won’t need to use all the
snippets. Your goal is to make
the code write this output to the

console when a new instance of the
Faucet class is created:

Note: each
thing from
the pool can
be used more
than once.

public class Faucet {
 public Faucet() {
 Table wine = new Table();
 Hinge book = new Hinge();
 wine.Set(book);
 book.Set(wine);
 wine.Lamp(10);
 book.Garden.Lamp(“back in”);
 book.Bulb *= 2;
 wine.Lamp(“minutes”);
 wine.Lamp(book);
 }
}

public ________ Table {
 public string Stairs;
 public Hinge Floor;
 public void Set(Hinge b) {
 Floor = b;
 }
 public void Lamp(object oil) {
 if (oil ____ int)
 ________.Bulb = (int)oil;
 else if (oil ____ string)
 Stairs = (string)oil;
 else if (oil ____ Hinge) {
 ________ vine = oil ____ ________;
 Console.WriteLine(vine.Table()
 + “ ” + ________.Bulb + “ ” + Stairs);
 }
 }
}
public ________ Hinge {
 public int Bulb;
 public Table Garden;
 public void Set(Table a) {
 Garden = a;
 }
 public string Table() {
 return ________.Stairs;
 }
}

Output when you create a
new Faucet object:
back in 20 minutes

public
private
class
new

abstract
interface

struct
string

int
float

single
double

if
or
is
on
as

oop

+
-

++
--
=

==

Garden
Floor

Window
Door
Hinge

Brush
Lamp
Bulb
Table
Stairs

Bonus points: Circle the lines
where boxing happens.Here’s the goal... to

get this output.

Answers on page 652.
Download at WoweBook.Com

644 Chapter 14

Q: Okay, back up a minute. Why do I
care about the stack?

A:	Because	understanding	the	difference	
between	the	stack	and	the	heap	helps	you	
keep	your	reference	types	and	value	types	
straight.	It’s	easy	to	forget	that	structs	and	
objects	work	very	differently—when	you	use	
the	equals	sign	with	both	of	them,	they	look	
really	similar.	Having	some	idea	of	how	.NET	
and	the	CLR	handle	things	under	the	hood	
helps	you	understand	why	reference	and	
value	types	are	different.

Q: And boxing? Why is that important
to me?

A:	Because	you	need	to	know	when	
things	end	up	on	the	stack,	and	you	need	
to	know	when	data’s	being	copied	back	and	
forth.	Boxing	takes	extra	memory	and	more	
time.	When	you’re	only	doing	it	a	few	times	
(or	a	few	hundred	times)	in	your	program,	
then	you	won’t	notice	the	difference.	But	let’s	
say	you’re	writing	a	program	that	does	the	
same	thing	over	and	over	again,	millions	of	
times	a	second.	That’s	not	too	far-fetched,	
since	that’s	exactly	what	your	beehive	
simulator	did.	If	you	find	that	your	program’s	
taking	up	more	and	more	memory,	or	going	
slower	and	slower,	then	it’s	possible	that	you	
can	make	it	more	efficient	by	avoiding	boxing	
in	the	part	of	the	program	that	repeats.

Q: I get how you get a fresh copy of a
struct when you set one struct variable
equal to another one. But why is that
useful to me?

A:	One	place	that’s	really	helpful	is	with	
encapsulation.	Take	a	look	at	this	familiar		
code	from	a	class	that	knows	its	location:	
	
private Point location;
public Point Location {
 get { return location; }
}	
	
If	Point	were	a	class,	then	this	would	be	
terrible	encapsulation.	It	wouldn’t	matter	that	
location	is	private,	because	you	made	
a	public	read-only	property	that	returns	a	
reference	to	it,	so	any	other	object	would	be	
able	to	access	it.		
Lucky	for	us,	Point	is	actually	a	struct.	
And	that	means	that	the	public	Location	
property	returns	a	fresh	copy	of	the	point.	
The	object	that	uses	it	can	do	whatever	it	
wants	to	that	copy—none	of	those	changes	
will	make	it	to	the	private	location	field.

Q: If Point is a struct, does that mean
there are other structs that I’ve been
working with all along?

A:	Yes!	One	struct	that’s	really	useful	
and	very	common	when	you’re	working	with	
graphics	and	forms	is	Rectangle.	It’s	
got	some	very	useful	methods	that	come	in	
really	handy	when	you	need	to	figure	out	
boundaries	and	check	whether	points	are	
inside	or	outside	of	the	rectangle.	All	you	
need	to	do	is	set	its	location	and	size,	and	
it’ll	automatically	compute	its	top,	bottom,	
left,	right,	width,	and	height.		
Another	useful	struct	that	you’ll	run	into	is	
Size.	You’ve	already	seen	it	in			

		
action—you	used	it	when	you	were	
determining	the	size	of	a	string	using	the	
MeasureString()	method.	It’s	a	
struct,	too.

Q: How do I know whether to use a
struct or a class?

A:	Most	of	the	time,	programmers	use	
classes.	Structs	have	a	lot	of	limitations	that	
can	really	make	it	hard	to	work	with	them	for	
large	jobs.	They	don’t	support	inheritance,	
abstraction,	or	polymorphism,	and	you	
already	know	how	important	those	things	are	
for	building	programs	easily.		
Where	structs	come	in	really	handy	is	if	you	
have	a	small,	limited	type	of	data	that	you	
need	to	work	with	repeatedly.	Rectangles	
and	points	are	good	examples—there’s	not	
much	you’ll	do	with	them,	but	you’ll	use	
them	over	and	over	again.	Structs	tend	to	be	
relatively	small	and	limited	in	scope.	If	you	
find	that	you	have	a	small	chunk	of	a	few	
different	kinds	of	data	that	you	want	to	store	
in	a	field	in	a	class	or	pass	to	a	method	as	a	
parameter,	that’s	probably	a	good	candidate	
for	a	struct.

A struct can be very
valuable when you
want to add good
encapsulation to
your class, because a
read‑only property
that returns a struct
always makes a
fresh copy of it.

structs are safe

Pop quiz, hotshot! Answer’s on page 646.

This method is supposed to kill a Clone object, but it
doesn’t work. Why not?

private void SetCloneToNull(Clone clone) {
 clone = null;
}

Download at WoweBook.Com

you are here 4 645

the death of an object

i think i’ve found a way to give his
powers to a normal citizen!

Back at the Lab

With all this talk of boxing, you should have a pretty good
idea of what was going on with the less-powerful, more-
tired Captain Amazing. In fact, it wasn’t Captain Amazing
at all, but a boxed struct:

Captain Amazing... not so much

struct SuperHero vs.
Structs can’t inherit from
classes or implement interfaces
No wonder the Captain’s superpowers
seemed a little weak! He didn’t get any
inherited behavior.

11 You can’t create a fresh copy of
an object
When you set one object variable equal
to another, you’re copying a reference to
the same variable.

11

Structs can only live on the heap
when they’re boxed
The struct couldn’t get onto the heap
without being boxed up.

22 You can use the “as” keyword with
an object
Objects allow for polymorphism by
allowing an object to function as any of
the objects it inherits from.

22

That’s one big
advantage of structs
(and other value
types)—you can easily
make copies of them.

Download at WoweBook.Com

646 Chapter 14

public sealed class OrdinaryHuman {
 private int age;
 int weight;

 public OrdinaryHuman(int weight){
 this.weight = weight;
 }

 public void GoToWork() { // code to go to work }
 public void PayBills() { // code to pay bills }
}

public static class SuperSoldierSerum {
 public static string BreakWalls(this OrdinaryHuman h, double wallDensity) {
 return (“I broke through a wall of “ + wallDensity + “ density.”);
 }
}

Sometimes you need to extend a class that you can’t inherit from, like a sealed class (a lot of the .NET classes
are sealed, so you can’t inherit from them). And C# gives you a powerful tool for that: extension methods.
When you add a class with extension methods to your project, it adds new methods to classes that already
exist. All you have to do is create a static class, and add a static method that accepts an instance of the class as its
first parameter using the this keyword.

So let’s say you’ve got an OrdinaryHuman class:

Extension methods add new
behavior to EXISTING classes

Extension methods are always
static methods, and they have
to live in static classes.

Since we want to extend the OrdinaryHuman class, we make the first parameter this OrdinaryHuman.

The OrdinaryHuman class is
sealed, so it can’t be subclassed.
But what if we want to add a
method to it?

When the form creates
an instance of the
OrdinaryHuman class, it
can access the BreakWalls()
method directly—as long
as it has access to the
SuperSoldierSerum class.

extend this

All this method does is set its own parameter to null, but that parameter’s just a
reference to a Clone. It’s like sticking a label on an object and peeling it off again.

So the clone parameter
is just on the stack, so
setting it to null doesn’t do
anything to the heap.

The SuperSolierSerum method adds an extension method to OrdinaryHuman:

As soon as the SuperSoldierSerum class is added to the project, OrdinaryHuman
gets a BreakWalls method. So now a form can use it:

private void button1_Click(object sender, EventArgs e) {
 OrdinaryHuman steve = new OrdinaryHuman(185);
 Console.WriteLine(steve.BreakWalls(89.2));
}

You use an extension method by specifying the first parameter using the “this” keyword.

This method is supposed to kill a Clone object, but it doesn’t work. Why not?

private void SetCloneToNull(Clone clone) {
 clone = null;
}

Remember the sealed access
modifier from Chapter 7? It’s
how you set up a class that
can’t be extended.

Download at WoweBook.Com

you are here 4 647

the death of an object

Q: Tell me again why I wouldn’t add the new methods I
need directly to my class code, instead of using extensions?

A:	You	could	do	that,	and	you	probably	should	if	you’re	just	
talking	about	adding	a	method	to	one	class.	Extension	methods	
should	be	used	pretty	sparingly,	and	only	in	cases	where	you	
absolutely	can’t	change	the	class	you’re	working	with	for	some	
reason	(like	it’s	part	of	the	.NET	Framework	or	another	third	party).	
Where	extension	methods	really	become	powerful	is	when	you	
need	to	extend	the	behavior	of	something	you	wouldn’t normally
have access to,	like	a	type	or	an	object	that	comes	for	free	with	
the	.NET	framework	or	another	library.	

Q:Why use extension methods at all? Why not just extend
the class with inheritance?

A:	If	you	can	extend	the	class,	then	you’ll	usually	end	up	doing	
that—extension	methods	aren’t	meant	to	be	a	replacement	for	
inheritance.	But	they	come	in	really	handy	when	you’ve	got	classes	
that	you	can’t	extend.	With	extension	methods,	you	can	change	the	
behavior	of	whole	groups	of	objects,	and	even	add	functionality	to	
some	of	the	most	basic	classes	in	the	.NET	Framework.		
Extending	a	class	gives	you	new	behavior,	but	requires	that	you	
use	the	new	subclass	if	you	want	to	use	that	new	behavior.

Q:	Does my extension method affect all instances of a
class, or just a certain instance of the class?

A:	It	will	affect	all	instances	of	a	class	that	you	extend.	In	fact,	
once	you’ve	created	an	extension	method,	the	new	method	will	
show	up	in	your	IDE	alongside	of	the	extended	class’s	normal	
methods.

Oh, I get it! So you’d use extension methods
to add new behavior to one of the built-in
.NET Framework classes, right?

Exactly! There are some classes that you can’t inherit from.
Pop open any project, add a class, and try typing this:

 public class x : string { }

Try to compile your code—the IDE will give you an error. The reason is that some .NET
classes are sealed, which means that you can’t inherit from them. (You can do this with
your own classes, too! Just add the sealed keyword to your class after the public access
modifier, and no other class will be allowed to inherit from it.) Extension methods give
you a way to extend it, even if you can’t inherit from it.

But that’s not all you can do with extension methods. In addition to extending classes,
you can also extend interfaces. All you have to do is use an interface name in place of
the class, after the this keyword in the extension method’s first parameter. When you
do, the extension method is added to every class that implements that interface.
Remember that LINQ code you added to your simulator in chapter 12? LINQ was built
entirely with extension methods, extending the IEnumerable class. (You’ll learn a lot
more about LINQ in Chapter 15.)

That’s another thing
you just can’t do with
inheritance—there’s no
way to inherit from an
interface.

Download at WoweBook.Com

648 Chapter 14

You don’t often get to change the behavior of a language’s
most fundamental types, like strings. But with extension
methods, you can do just that! Create a new project, and
add a file called HumanExtensions.cs.

Extending a fundamental type: string

Put all of your extension methods in a separate namespace.
It’s a good idea to keep all of your extensions in a different namespace than the rest of
your code. That way, you won’t have trouble finding them for use in other programs. Set
up a static class for your method to live in, too.

11

namespace MyExtensions {
 public static class HumanExtensions {

Do this!

Create the static extension method, and defines its first parameter as
this and then the type you’re extending.
The two main things you need to know when you declare an extension method is that the
method needs to be static and have the class it’s extending as its first parameter.

22

Put the code to evaluate the string in the method. 33

Create a form and add a string.
Now go to your form code and add using MyExtensions; to the top, and add a button to the form so
you can try out your new extension method inside its event handler. Now, when you use a string, you get the
extension methods for free. You can see this for yourself by typing the name of a string variable and a period:

44

string message1;
message1 = “An army of clones is wreaking havoc at the factory. Help!”;
message1.

public static class HumanExtensions {
 public static bool IsDistressCall(this string s){
 if (s.Contains(“Help!”))
 return true;
 else
 return false;
 }
}

public static bool IsDistressCall (this string s){

Comment out the using line and the
extension method will disappear from

the IntelliSense window.

This checks the string for a certain value... something definitely not in the default string class.

Using a separate namespace is a good
organizational tool.

The class your extension method is
defined in must be static.

The extension method must
be static, too.

“this string” says we’re extending the string class.

As soon as you type
the dot, The IDE
pops up a helper
window with all of
string’s methods...
including your
extension method.

better faster stronger

This toy example just shows you the
syntax of extension methods. To get
a real sense of how useful they are,
just wait until the next chapter. It’s
all about LINQ, which is implemented
entirely with extension methods.

Download at WoweBook.Com

you are here 4 649

the death of an object

Extension Magnets
Arrange the magnets to produce this output:

a buck begets more bucks

namespace Upside { namespace Sideways {
 using Upside;

public static class Margin {

public static void SendIt

}

Console.Write(s);

public static string ToPrice

if (n == 1)
 return “a buck ”;

else
 return “ more bucks”;

}

public static string Green

(this bool b) {
if (b == true)
 return “be”;

else
 return “gets”;

}
}

}

public static class Ticker {

public static void Main () {

int i = 1;

string s = i.ToPrice();

s.SendIt();

bool b = true;
b = false;

i = 3;

b.Green().SendIt ();

i.ToPrice()

.SendIt();

}
}

}

(this string s) { (this int n) {

b.Green().
SendIt ();

Download at WoweBook.Com

650 Chapter 14

Extension Magnets
Your job was to arrange the magnets to produce this output:

a buck begets more bucks

namespace Upside {

namespace Sideways {
 using Upside;

public static class Margin {

public static void SendIt (this string s) {

}

Console.Write(s);

public static string ToPrice (this int n) {
if (n == 1)
 return “a buck ”;

else
 return “ more bucks”;

}

public static string Green (this bool b) {

if (b == true)
 return “be”;

else
 return “gets”;

}
}

}

public static class Ticker {

public static void Main () {

int i = 1;

string s = i.ToPrice();

s.SendIt();

bool b = true;

b.Green().SendIt ();

b = false;

i = 3;

i.ToPrice() .SendIt();

}
}

}

The Upside namespace
has the extensions. The
Sideways namespace has
the entry point.

The Green method extends a bool—it returns the string “be” if the bool is true, and “gets” if it’s false.

The entry point method
uses the extensions that
you added in the Margin
class.

The Margin class extends string by adding
a method called SendIt() that just writes
the string to the console, and it extends int
by adding a method called ToPrice() that
returns “a buck” if the int’s equal to 1, or
“more bucks” if it’s not.

Here’s where the Margin class extends
bool by adding a Green() method to it.
If the bool is true, Green returns “be”,
otherwise it returns “gets”.

the captain’s alive!

b.Green().SendIt ();

Download at WoweBook.Com

651

TheUNIVERSE
CAPTAIN AMAZING REBORNDeath was not the end!

By Bucky Barnes
UNIVERSE STAFF WRITER

OBJECTVILLE

Captain Amazing deserializes himself, makes stunning comebackIn a stunning turn of events, Captain Amazing has returned to Objectville. Last month, Captain Amazing’s coffin was found empty, and only a strange note left where his body should have been. Analysis of the note revealed Captain Amazing’s object DNA—all his last fields and values, captured faithfully in binary format.

Today, that data has sprung to life. The Captain is back, deserialized from his own brilliant note. When asked how he conceived of such a plan, the Captain merely shrugged and mumbled, “Chapter 9.” Sources close to the Captain refused to comment on the meaning of his cryptic reply, but did admit that prior to his failed assault on Swindler, the Captain has spent a lot of time reading books, studying Dispose methods and persistence. We expect Captain Amazing…
…see AMAZING on A-5

Captain Amazing is back!�

we’ve rebuilt the superhero class, but
how do we bring back the captain?

eureka! i’ve analyzed the
code—captain amazing
used his own death to

serialize himself!

Download at WoweBook.Com

652 Chapter 14

Pool Puzzle Solution

public class Faucet {

 public Faucet() {

 Table wine = new Table();

 Hinge book = new Hinge();

 wine.Set(book);

 book.Set(wine);

 wine.Lamp(10);

 book.Garden.Lamp(“back in”);

 book.Bulb *= 2;

 wine.Lamp(“minutes”);

 wine.Lamp(book);

 }

}

public struct Table {

 public string Stairs;

 public Hinge Floor;

 public void Set(Hinge b) {

 Floor = b;

 }

 public void Lamp(object oil) {

 if (oil is int)

 Floor.Bulb = (int)oil;

 else if (oil is string)

 Stairs = (string)oil;

 else if (oil is Hinge) {

 Hinge vine = oil as Hinge;

 Console.WriteLine(vine.Table()

 + “ ” + Floor.Bulb + “ ” + Stairs);

 }

 }

}

public class Hinge {

 public int Bulb;

 public Table Garden;

 public void Set(Table a) {

 Garden = a;

 }

 public string Table() {

 return Garden.Stairs;

 }

}

Output when you create a
new Faucet object:
back in 20 minutes

Here’s why Table has to be a struct. If it were a class, then wine would point to the same object as book.Garden, which would cause this to overwrite the “back in” string.

The Lamp() method sets the various

strings and ints. If you call it w
ith

an int, then it sets the Bulb field
in whatever object Hinge points to.

If you pass a
string to Lamp,
it sets the Stairs
field to whatever
is in that string.

Remember, the as
keyword only works with
classes, not structs.

Both Hinge and Table
have a Set() method.
Hinge’s Set() sets
its Table field called
Garden, and Table’s
Set() method sets
its Hinge field called
Floor.Bonus question: Circle the

lines where boxing happens.

Since the Lamp() method takes an object
parameter, boxing automatically happens
when it’s passed an int or a string.

puzzle solution

Download at WoweBook.Com

this is a new chapter 653

LINQ15

Get control of your data

It’s a data-driven world... you better know how to live in it.
Gone are the days when you could program for days, even weeks, without dealing with

loads of data. But today, everything is about data. In fact, you’ll often have to work

with data from more than one place... and in more than one format. Databases, XML,

collections from other programs... it’s all part of the job of a good C# programmer. And

that’s where LINQ comes in. LINQ not only lets you query data in a simple, intuitive way,

but it lets you group data, and merge data from different data sources.

It’s a data-driven world... you better know how to live in it.
Gone are the days when you could program for days, even weeks, without dealing with

loads of data. But today, everything is about data. In fact, you’ll often have to work

with data from more than one place... and in more than one format. Databases, XML,

collections from other programs... it’s all part of the job of a good C# programmer. And

that’s where LINQ comes in. LINQ not only lets you query data in a simple, intuitive way,

but it lets you group data, and merge data from different data sources.

So if you take the first word from this
article, and the second word in that list, and
add it to the fifth word over here... you get
secret messages from the government!

Download at WoweBook.Com

654 Chapter 15

An easy project...

All of Objectville Paper’s
customers who are Starbuzz
regulars get a free mug. Just tell us
who the mugs need to go to and what
their favorite drinks are, okay?

Objectville Paper Company wants to do a cross-promotion with
Starbuzz Coffee. Starbuzz has a frequent customer program where
they know who buys which drink and how often they buy it. Objectville
Paper wants to figure out which of their customers are also
Starbuzz regulars and send them a free mug and a coupon for
their favorite coffee drink... and it’s up to you to combine the data and
generate the list of customers to send mugs and coupons to.

devil’s in the details

Download at WoweBook.Com

you are here 4 655

LINQ

Starbuzz keeps all their data in classes, grouped together in a big List.
But the Objectville data is in a database (from way back in Chapter
1). We want to find any Starbuzz customers who spent more than $90,
match them to the Objectville Paper contact list, and make a final list
of people: we want each person’s name, the company they
work for, and their favorite Starbuzz drink.

...but the data’s all over the place

List<Starbuzz
Da

ta
>

How would you combine the data
from Starbuzz and Objectville Paper
Company data to get a complete
contact list?

public class StarbuzzData
{
 public string Name { get; set; }
 public Drink FavoriteDrink { get; set; }
 public int MoneySpent { get; set; }
 public int Visits { get; set; }
}

public enum Drink {
 BoringCoffee,
 ChocoRockoLatte,
 TripleEspresso,
 ZestyLemonChai,
 DoubleCappuccino,
 HalfCafAmericano,
 ChocoMacchiato,
 BananaSplitInACup,
}

You’ve already got the customer data
You built the Objectville Paper Company contact list
back in Chapter 1—it’s got part of the data you need.

The Starbuzz data’s in a List<>
The Starbuzz people provided a program that
connects to their website and pulls all the data
into a List of StarbuzzData class.

ContactDB
database

Here’s the class
and enum from
Starbuzz’s code.

All of the Objectville Paper Company customer data is in a database.

You need to get the list of
Starbuzz data, and find
the customers that match
Objectville customers.

Download at WoweBook.Com

656 Chapter 15

LINQ can pull data from multiple sources
You used LINQ in the Hive Simulator to track what groups of Bees
were doing. You took advantage of the power of LINQ there to write
simple queries to pull data out of a collection. LINQ can work with
the Starbuzz data just like it worked with the bees, helping you use
queries to pull out customer data. As long as a collection implements
the IEnumerable interface, you can use LINQ queries with it.

But LINQ also lets you work with more than just collections. You can
use the same queries to pull data from a database, or even an XML
document. So once we get collections under control, we can use
LINQ on the Objectville database.

LINQ works with pretty much every kind of data source you could
use in .NET. Your code needs a using System.Linq; at the top
of your file, but that’s it. Even better, the IDE automatically puts a
reference to LINQ in the header of any code files that are created in
Visual Studio 2008. So if you’re using Visual Studio 2008 or later, just
start coding, and LINQ is available to you.

LINQ to the rescue

List of Bee o
bj

ec
ts

Bee

Bees
Bee

Bee

ID = 987
currentState = MakingHoney

ID = 12
currentState = FlyingToFlower

ID = 1982
currentState = GatheringNectar

Database

Bees table
ID = 987 currentState = MakingHoney
ID = 12 currentState = FlyingToFlower

ID = 1982 currentState = GatheringNectar

XML
<bee id=”987” currentState=”MakingHoney” />
<bee id=”12” currentState=”FlyingToFlower” />
<bee id=”1982” currentState=”GatheringNectar” />

var beeGroups =
 from bee in world.Bees
 group bee by bee.CurrentState
 into beeGroup
 orderby beeGroup.Key
 select beeGroup;

LINQ

Here was the query we used in
the bee simulator to group and
order bees by their state.

We need a similar query to pull data
from the Starbuzz customer data,
which is also in a collection.

In the simulator, the bees were in a collection.

The nice thing about LINQ is
that the same query works on a
database or XML document, of
bees or customers or anything else.

We gave you Ready Bake Code for the LINQ query in Chapter 12. We’ll see exactly how it works in a few pages.

Download at WoweBook.Com

you are here 4 657

LINQ

LINQ uses extension methods to let you query, sort, and update data.
Check it out for yourself. Create an int array called linqtest, put some
numbers in the array, and then type this line of code (don’t worry, you’ll learn
what it does in a minute):

 var result = from i in linqtest where i < 3 select i;

Now comment out the using System.Linq; line up in the header of the
file you’ve created. When you try to rebuild the solution, you’ll see that this line
doesn’t compile anymore. The methods you’re calling when you use LINQ are
just extension methods that are being used to extend the array.

All of the collection types in .NET implement the IEnumerable interface.
Type System.Collections.Generic.IEnumerable<int> into
your IDE window, right-click on the line, and select Go To Definition. You’ll
see that the IEnumerable interface defines a GetEnumerator()
method:

namespace System.Collections.Generic {
 public interface IEnumerable<T> : IEnumerable {
 // Summary:
 // Returns an enumerator that iterates through the collection.
 //
 // Returns:
 // A System.Collections.Generic.IEnumerator<T> that can be
 // used to iterate through the collection.
 IEnumerator<T> GetEnumerator();
 }
}

This T means that
IEnumerable will work with
any object or type.

This is the only method in the interface. Each
collection implements this method. You could create
your own kind of collection that implemented
IEnumerable too... And if you did, you could use LINQ
with your collection.

.NET collections are already set up for LINQ

This method requires collections to define a way to move
through the collection, one element at a time. That’s all
LINQ requires as a prerequisite. If you can move through a
list of data, item-by-item, LINQ can query the collection.

Now you can see why extension methods were so important in Chapter 14... they let .NET (and you) add all kinds of cool behavior to existing types.

Behind
the Scenes

All collections and arrays im
plement

IEnumerable. Many of them do it by

implementing IEnumerable<T>, which

inherits from IEnumerable.

Download at WoweBook.Com

658 Chapter 15

LINQ makes queries easy

 LINQ is a new feature
that’s part of C# 3.0 and
Visual Studio 2008.

If you’re using an earlier
version of C#, take a few

minutes to download and install Visual
C# 2008 Express Edition. It’s free from
Microsoft, and it can be installed
alongside previous versions.

int[] values = new int[] {0, 12, 44, 36, 92, 54, 13, 8};

var result = from v in values

 where v < 37

 orderby v

 select v;

foreach(int i in result)

 Console.WriteLine(i);

Here’s a simple example of LINQ syntax. It selects all the numbers in an
int array that are under 37 and puts those numbers in ascending order.
It does that using four clauses that tell it what collection to query, what
criteria to use to determine which members of the collection to select, how
to sort the results, and how the results should be returned.

This assigns the letter “v” to stand in for each of the values array in the query. So v is 0, then 12, then 44, then 36... etc.

var
var is a keyword that tells the compiler to
figure out the type of a variable at compilation
time. .NET detects the type from the type
of the local variable that you’re using LINQ to
query. When you build your solution, the compiler
will replace var with the right type for the data
you’re working with.
In the example above, when this line is compiled:
 var result = from v in values

The compiler replaces “var” with this:
 IEnumerable<int>

Output:
0, 8, 12, 13, 36

This says, select each v in the
array that is less than 37.

Then, put those values in order (lowest to highest).
If you’ve used SQL before, it may
seem weird to put the select at
the end, but that’s how things
work in LINQ.

Now you can iterate through the
results array and print out each
item in the LINQ result.

This LINQ query has
four clauses: the from
clause, a where clause, an
orderby clause, and the
select clause.

some queries are simple

Download at WoweBook.Com

you are here 4 659

LINQ

Jimmy just sold his start-up company to a big investor, and wants to take some
of his profits and buy the most expensive issues of Captain Amazing that he can
find. But all he’s got is data. How can LINQ help him scour his two collections
and figure out which comics are the most expensive?

LINQ is simple, but your queries don’t have to be

Luckily, there’s a thriving marketplace for Captain Amazing comics on Greg’s List. He knows that
issue #57, “Hippie Madness,” was misprinted and the almost all of the run was destroyed by the
publisher, and he found a rare copy recently sold on Greg’s List for $13,525. After a few hours of
searching, Jimmy was able to build a Dictionary<> that mapped issue numbers to values.

private static Dictionary<int, int> GetPrices() {
 Dictionary<int, int> values = new Dictionary<int, int>();
 values.Add(6, 3600);
 values.Add(19, 500);
 values.Add(36, 650);
 values.Add(57, 13525);
 values.Add(68, 250);
 values.Add(74, 75);
 values.Add(83, 25);
 values.Add(97, 35);
 return values;
}

22

Look closely at the LINQ query on page 658.
What do you think Jimmy has to put in his
query to find the most expensive issues?

Jimmy downloaded a list of Captain Amazing issues from a Captain Amazing fan page. He put
them in a List<> of Comic objects that have two fields, Name and Issue.

public class Comic {
 public string Name { get; set; }
 public int Issue { get; set; }
}

Jimmy used object initializers and a collection initializer to build his catalog:

private static List<Comic> BuildCatalog() {
 List<Comic> comics = new List<Comic>();
 comics.Add(new Comic(“Johnny America vs. the Pinko”, 6));
 comics.Add(new Comic(“Rock and Roll (limited edition)”, 19));
 comics.Add(new Comic(“Woman’s Work”, 36));
 comics.Add(new Comic(“Hippie Madness (misprinted)”, 57));
 comics.Add(new Comic(“Revenge of the New Wave Freak (damaged)”, 68));
 comics.Add(new Comic(“Black Monday”, 74));
 comics.Add(new Comic(“Tribal Tattoo Madness”, 83));
 comics.Add(new Comic(“The Death of an Object”, 97));
 return comics;
}

11

Issue #57 is worth $13,525.

Issue #74 of Captain Amazing
is called “Black Monday”

Download at WoweBook.Com

660 Chapter 15

List<Comic> comics = BuildCatalog();

Dictionary<int, int> values = GetPrices();

var mostExpensive =

 from comic in comics

 where values[comic.Issue] > 500

 orderby values[comic.Issue] descending

 select comic;

foreach (Comic comic in mostExpensive)

 Console.WriteLine(“{0} is worth {1:c}”,

 comic.Name, values[comic.Issue]);

The LINQ query pulls Comic objects
out of the comics list, using the
data in the values dictionary to
decide which comics to select.

The first clause in the query is the from clause. This one tells LINQ to query the comics collection, and that the name
comic will be used in the query to specify how to treat each individual piece of data in the collection.

The where and orderby
clauses can include ANY C#
statement, so we can use the
values dictionary to select
only those comics worth
more than $500 and we can
sort the results so the most
expensive ones come first.

When you add “{1:c}” to the
WriteLine output, that tells it
to print the second parameter
in the local currency format.

The name comic was defined in the from
clause specifically so it could be used in
the where and orderby clauses.

The query returned its results into a collection called
mostExpensive. The select clause determines what
goes into the results—since it selected comic, the
query returned Comic objects.

it’s not sql

Anatomy of a query
Jimmy could analyze his comic book data with one LINQ query. The where clause tells
LINQ which items from the collection should be included in the results. But that clause
doesn’t just have to be a simple comparison. It can include any valid C# statement—like
using the values dictionary to tell it to return only comics worth more than $500. And the
orderby clause works the same way—we can tell LINQ to order the comics by their value.

You can
choose any
name you
want when
you use a
from clause.
We chose
“comic”.

Download at WoweBook.Com

you are here 4 661

LINQ

I don’t buy this. I know SQL already—isn’t
writing a LINQ query just like writing SQL?

LINQ may look like SQL, but it doesn’t work like SQL.
If you’ve done a lot of work with SQL, it may be tempting to dismiss
all this LINQ stuff as intuitive and obvious—and you wouldn’t be alone,
because a lot of developers make that mistake. It’s true that LINQ uses
the select, from, where, ascending, and join keywords, which
are borrowed from SQL. But LINQ is very different from SQL, and if
you try to think about LINQ the way you think about SQL you’ll end
up with code that doesn’t do what you expect.

One big difference between the two is that SQL operates on tables,
which are very different from collections. When you execute a SQL
select against a table, you can be sure that the table is not going to
be updated. SQL has all sorts of built-in data security that you can trust.
And SQL queries are set operations, which means they don’t examine
the rows in the table in any predictable order. A collection, on the
other hand, can store anything—values, structs, objects, anything—and
collections have a specific order. (A table’s rows aren’t in any particular
order until you make a SQL query that orders them; items inside a
List, on the other hand, are in order.) And LINQ lets you perform any
operation that’s supported by whatever happens to be in the collection—
it can even call methods on the objects in the collection. And LINQ
loops through the collection, which means that it does its operations in a
specific order. That may not seem all that important, but if you’re used
to dealing with SQL, it means your LINQ queries will surprise you if
you expect them to act like SQL.

Don’t worry if you’ve
never used SQL—you
don’t need to know
anything about it to
work with LINQ. But if
you’re curious, check out
“Head First SQL.”

There are a lot of other differences between LINQ and SQL too, but you don’t need to understand them in order to work with LINQ successfully. Just approach it with an open mind, and don’t expect it to work the way SQL works.

Download at WoweBook.Com

662 Chapter 15

LINQ is versatile
You can do a lot more than just pull a few items out of a collection.
You can modify the items before you return them. And once you’ve
generated a set of result collections, LINQ gives you a bunch of
methods that work with them. Top to bottom, LINQ gives you the
tools you need to manage your data.

Modify every item returned from the query
This code will add a string onto the end of each string in an array. It doesn’t
change the array itself—it creates a new collection of modified strings.

string[] sandwiches = { “ham and cheese”, “salami with mayo”,
 “turkey and swiss”, “chicken cutlet” };
var sandwichesOnRye =
 from sandwich in sandwiches
 select sandwich + “ on rye”;

foreach (var sandwich in sandwichesOnRye)
 Console.WriteLine(sandwich);

This adds the string “ on rye” to every item in the results from the query.

Notice that all the items returned have
“ on rye” added to the end.

Output:
ham and cheese on rye
salami with mayo on rye
turkey and swiss on rye
chicken cutlet on rye

This change is
made to the items
in the results of
your query... but
not to the items
in the original
collection or
database.

Perform calculations on collections
Remember, we said LINQ adds new methods to your collections (and
database access objects)... and some of those are pretty handy on their
own, without actual requiring a query:

List<int> listOfNumbers = new List<int>();
int length = random.Next(50, 150);
for (int i = 0; i < length; i++)
 listOfNumbers.Add(random.Next(100));

Console.WriteLine(“There are {0} numbers”,
 listOfNumbers.Count());
Console.WriteLine(“The smallest is {0}”,
 listOfNumbers.Min());
Console.WriteLine(“The biggest is {0}”,
 listOfNumbers.Max());
Console.WriteLine(“The sum is {0}”,
 listOfNumbers.Sum());
Console.WriteLine(“The average is {0:F2}”,
 listOfNumbers.Average());

None of these methods
are part of the .NET
collections classes... they’re
all defined by LINQ.

As long as you’re using C# 3.0 (which is part of Visual Studio 2008), any collection you create has LINQ capabilities.

that’s why jimmy loves LINQ

These are all extension
methods defined in the
Enumerable class in the
System.Linq namespace.

≥

≥

Download at WoweBook.Com

you are here 4 663

LINQ

Store all or part of your results in a new collection
Sometimes you’ll want to keep your results from a LINQ query
around. You can use the ToList() command to do just that:

var under50sorted =
 from number in listOfNumbers
 where number < 50
 orderby number descending
 select number;

List<int> newList = under50sorted.ToList();

ToList() converts a LINQ var into a list object, so you can keep results of a query around. There’s also ToArray() and ToDictionary() methods, which do just what you’d expect.

This time, we’re
sorting a list
of numbers
descending, from
highest to lowest.

You can even take just a subset of the results, using
the Take() method:

var firstFive = under50sorted.Take(6);

List<int> shortList = firstFive.ToList();
foreach (int n in shortList)
 Console.WriteLine(n);

Take() pulls out the supplied number of items,
from the first of the results from a LINQ
query. You can put these into another var,
and then convert that into a list.

Q: That’s a lot of new keywords—from,
where, orderby, select... it’s like a whole
different language. Why does it look so
different from the rest of C#?

A:	Because	it	serves	a	different	purpose.	
Most	of	the	C#	syntax	was	built	to	do	one	
small	operation	or	calculation	at	a	time.	You	
can	start	a	loop,	or	set	a	variable,	or	do	a	
mathematical	operation,	or	call	a	method...	
those	are	all	single	operations.	
LINQ	queries	look	different	because	a	single	
LINQ	query	usually	does	a	whole	bunch	of	
things	at	once.	Let’s	take	a	closer	look	at	a	
straightforward	query:	

		
var under10 =
 from number in numberArray
 where number < 10
 select number;	
	
It	looks	really	simple—not	a	lot	of	stuff	there,	
right?	But	this	is	actually	a	pretty	complex	
piece	of	code.	Think	about	what’s	got	to	
happen	for	the	program	to	actually	select	all	
the	numbers	from	numberArray	that	
are	less	than	10.	First,	you	need	to	loop	
through	the	entire	array.	Then,	each	number	
is	compared	to	10.	Then	those	results	need	
to	be	gathered	together	so	your	code	can	
use	them.		

		
And	that’s	why	LINQ	looks	a	little	odd:	
because	C#	has	to	cram	a	whole	lot	of	
behavior	into	a	very	small	space.

LINQ lets you write
queries that do very
complex things using
very little code.

Check out Microsoft’s official “101 LINQ Samples” page
There’s way more that LINQ can do. Luckily, Microsoft gave you a great little reference to help you along.

http://msdn2.microsoft.com/en-us/vcsharp/aa336746.aspx

 LINQ queries
aren’t run until
you access
their results!

It’s called “lazy
evaluation”—the LINQ query
doesn’t actually do any looping
until a statement is executed
that uses the results of the
query. That’s why ToList()
is important: it tells LINQ to
evaluate the query immediately.

≥

≥

Download at WoweBook.Com

664 Chapter 15

from is how you specify the collection that you’re
querying. It’s always followed by the name of a
variable, followed by in and the name of the
collection (from value in values).

where generally follows the from clause. That’s
where you use normal C# conditions to tell LINQ
which items to pull out of the collection (where
value < 10).

orderby lets you order the results. It’s followed
by the criteria that you’re using to sort them, and
optionally descending to tell it to reverse the
sort (orderby value descending).

select is how you specify what goes into the
results (select value).

Take lets you pull the first items out of the results
of a LINQ query (results.Take(10)). LINQ
gives you other methods for each collection:
Min(), Max(), Sum(), and Average().

You can select anything—you’re not limited to
selecting the name that you created in the from
clause. Here’s an example: if your LINQ query
pulls a set of prices out of an array of int values
and names them value in the from clause,
you can return a collection of price strings like
this: select String.Format(“{0:c}”,
value.

This is just like the {0:x} you used in Chapter 9
when you built the hex dumper. There’s also {0:d}
and {0:D} for short and long dates, and {0:P} or
{0:Pn} to print a percent (with n decimal places).

a little review

Q: How does the from clause work?

A:	It’s	a	lot	like	the	first	line	of	a	
foreach	loop.	One	thing	that	makes	
thinking	about	LINQ	queries	a	little	tricky	
is	that	you’re	not	just	doing	one	operation.	
Most	C#	statements	just	do	one	single	thing.	
	
A	LINQ	query	does	the	same	thing	over	and	
over	again	for	each	item	in	a	collection.	The	
from	clause	does	two	things:	it	tells	LINQ	
which	collection	to	use	for	the	query,	and	it	
assigns	a	name	to	use	for	each	member	of	
the	collection	that’s	being	queried.	
	
The	way	the	from	clause	creates	a	new	
name	for	each	item	in	the	collection	is	really	
similar	to	how	a	foreach	loop	does	it.	
Here’s	the	first	line	of	a	foreach	loop:	

		
 foreach (int i in values)	
	
That	foreach	loop	temporarily	creates	
a	variable	called	i,	which	it	assigns	
sequentially	to	each	item	in	the	values	
collection.	Now	look	at	a	from	clause	in	a	
LINQ	query	on	the	same	collection:	
	
 from i in values	
	
That	clause	does	pretty	much	the	same	thing.	
It	creates	a	temporary	variable	called	i	and	
assigns	it	sequentially	to	each	item	in	the	
values	collection.	The	foreach	loop	
runs	the	same	block	of	code	for	each	item	in	
the	collection,	while	the	LINQ	query	applies	
the	same	criteria	in	the	where	clause	
to	each	item	in	the	collection	to	determine	
whether	or	not	to	include	it	in	the	results.

Q: How does LINQ decide what goes
into the results?

A:	That’s	what	the	select	clause	is	
for.	Every	LINQ	query	returns	a	collection,	
and	every	item	in	a	collection	is	of	the	same	
type.	It	tells	LINQ	exactly	what	that	collection	
should	contain.	When	you’re	querying	an	
array	or	list	of	a	single	type—like	an	array	
of	ints	or	a	List<string>—it’s	
obvious	what	goes	into	the	select	
clause.	But	what	if	you’re	selecting	from	a	
list	of	Comic	objects?	You	could	do	what	
Jimmy	did	and	select	the	whole	class.	But	
you	could	also	change	the	last	line	of	the	
query	to	select comic.Name	to	
tell	it	to	return	a	collection	of	strings.	Or	
you	could	do	select comic.Issue	
and	have	it	return	a	collection	of	ints.

Download at WoweBook.Com

you are here 4 665

LINQ

);

LINQ Magnets
Rearrange the magnets so they produce
the output at the bottom of the page.

Console.WriteLine(“Get your kicks on route {0}”,

{ 36, 5, 91, 3, 41, 69, 8 };

int[] badgers =

var skunks =

pigeon in badgers

orderby

where

select

pigeon descending

pigeon + 5;

(pigeon != 36 && pigeon < 50)

var bears =

var weasels =

from

from

sparrow in bears

select

sparrow - 1;

skunks

.Take(3);

weasels.Sum()

Output:
Get your kicks on route 66

Download at WoweBook.Com

666 Chapter 15

);

Console.WriteLine(“Get your kicks on route {0}”,

{ 36, 5, 91, 3, 41, 69, 8 };

var skunks =

pigeon in badgers

orderby

where

select

pigeon descending

pigeon + 5;

(pigeon != 36 && pigeon < 50)

var bears =

var weasels =

from

from sparrow in bears

select sparrow - 1;

skunks .Take(3);

weasels.Sum()

int[] badgers =

LINQ Magnets Solution
Rearrange the magnets so they produce
the output at the bottom of the page.

LINQ starts with some sort
of collection or array—in this
case, an array of integers.

This LINQ statement pulls
all the numbers that are
below 50 and not equal to
36 out of the array, adds 5
to each of them, sorts them
from biggest to smallest, and
puts them in a new collection
called skunks.

Here’s where we take the first three numbers in skunks and put them into a new collection called bears.

This statement just subtracts 1 from each number in bears and puts them all into weasels.

The numbers in weasels add up to 66.

After this statement, skunks contains four numbers: 46, 13, 10 and 8.

After this
statement, bears
contains three
numbers: 46, 13
and 10.

After this statement, weasels contains four numbers: 45, 12, and 9.

45 + 12 + 9 = 66
Collection of g

ro
u

p
s

results

Output:
Get your kicks on route 66

are you a LINQ groupie?

Collection o
f

B
e

e
s

beeGroup

currentState = MakingHoney

Collection o
f

B
e

e
s

beeGroup

currentState = FlyingToFlower

Collection o
f

B
e

e
s

beeGroup

currentState = GatheringNectar

“from pigeon in badgers” makes for a good puzzle, but an unreadable LINQ query. “from badger in badgers” is more readable.

Download at WoweBook.Com

you are here 4 667

LINQ

LINQ can combine your results into groups
You already know that you can use LINQ to build
your results into groups, because that’s what we did
with the beehive simulator. Let’s take a closer look at
that query and see how it works.

Collection of g
ro

u
p

s

results

var beeGroups =

 from bee in world.Bees

 group bee by bee.CurrentState

 into beeGroup

 orderby beeGroup.Key

 select beeGroup;

The query starts out just like the other queries you’ve
seen—by pulling individual bee objects out of the
world.Bees collection, a List<Bee> object.

11

The next line in the query has a new keyword:
group. This tells the query to return groups
of bees. What that means is that rather than
returning one single collection, the query
will return a collection of collections.
group bee by bee.CurrentState tells
LINQ to return one group for each unique
CurrentState property that it finds in the
bees that it selects. Finally, we need to give
LINQ a name for the group. That’s what the
next line is for: into beeGroup says that the
name “beeGroup” refers to the new groups.

22

Now that we’ve got groups, we can manipulate them.
Since we’re returning a collection of groups, we
can use the orderby keyword to put the groups
in order of the CurrentState enum values (Idle,
FlyingToFlower, etc.): orderby beeGroup.Key
tells the query to put the collection of groups in order,
sorting them by the group key. Since we grouped the
bees by their CurrentState, that’s what being
used as a key.

33

Since the bees were grouped by their state,
we call that state the “key”. A group’s key
is the criteria it was grouped by.

Now we just have to use the select
keyword to indicate what’s being returned
by the query. Since we’re returning
groups, we select the group name:
select beeGroup;

44

Note that this query returns groups of bees, not individual bees.

Collection o
f

B
e

e
s

beeGroup

currentState = MakingHoney

Collection o
f

B
e

e
s

beeGroup

currentState = FlyingToFlower

Collection o
f

B
e

e
s

beeGroup

currentState = GatheringNectar

Download at WoweBook.Com

668 Chapter 15

Combine Jimmy’s values into groups
Jimmy buys a lot of cheap comic books, some midrange comic books, and a few expensive ones, and he wants
to know what his options are before he decides what comics to buy. He’s got those prices he got from Greg’s List
and put into a Dictionary<int, int> using his GetPrices() method—let’s use LINQ to group them
into three groups: one for cheap comics that cost under $100, one for midrange comics that cost between $100
and $1000, and expensive ones that cost over $1000. We’ll create a PriceRange enum that we’ll use as the
key for the groups, and a method called EvaluatePrice() that’ll evaluate a price and return a PriceRange.

Now we can group the comics by their price categories
The LINQ query returns a collection of collections. Each of the collections inside the results has
a Key property, which matches the PriceRange that was returned by EvaluatePrice(). Look
closely at the group by clause—we’re pulling pairs out of the Dictionary, and using the name pair
for each of them: pair.Key is the issue number, and pair.Value is the price from Greg’s list.
Adding group pair.Key tells LINQ to create groups of issue numbers, and then bundles all of those
groups up based on the price category that’s returned by EvaluatePrice():

Dictionary<int, int> values = GetPrices();
 var priceGroups =
 from pair in values
 group pair.Key by EvaluatePrice(pair.Value)
 into priceGroup
 orderby priceGroup.Key descending
 select priceGroup;
 foreach (var group in priceGroups) {
 Console.Write(“I found {0} {1} comics: issues ”, group.Count(), group.Key);
 foreach (var price in group)
 Console.Write(price.ToString() + “ ”);
 Console.WriteLine();
}

22

Every group needs a key—we’ll use an enum for that
The group’s key is the thing that all of its members have in common. The key can be anything: a
string, a number, even an object reference. We’ll be looking at the prices that Jimmy got from Greg’s
list. Each group that the query returns will be a collection of issue numbers, and the group’s key will
be a PriceRange enum. And the EvaluatePrice() method takes a price as a parameter and
returns a PriceRange:

public enum PriceRange { cheap, midrange, expensive }

public PriceRange EvaluatePrice(int price) {
 if (price < 100) return PriceRange.cheap;
 else if (price < 1000) return PriceRange.midrange;
 else return PriceRange.expensive;
}

11

The query figures out which group a
particular price belongs to by sending
its price to EvaluatePrice(). That
returns a PriceRange enum, which it
uses as the group’s key.

Each of the groups is a collection, so
we added an inner foreach loop to pull
each of the prices out of the group.

the key to success

Download at WoweBook.Com

you are here 4 669

LINQ

Pool Puzzle
Your job is to take snippets from the

pool and place them into the blank
lines in the program. You can use
the same snippet more than once,
and you won’t need to use all the
snippets. Your goal is to make the
code produce this output:

Note: each snippet
from the pool can be
used more once!

var ______ =

 from ______ in ______

 ______ line by line.______

 into wordGroups

 orderby ________.______

 select ________;

____ _________ = words.______(2);

foreach (var group in twoGroups)

{

 int i = 0;

 foreach (______ inner in ______) {

 i++;

 if (i == ______.Key) {

 var poem =

 ______ word in ______.______

 ________ word descending

 ______ word + ____;

 foreach (var word in ______)
 Console.Write(word);

 }

 }

}

public class Line {

 public string[] Words;

 public int Value;

 public Line(string[] Words, int Value) {

 this.Words = Words; this.Value = Value;

 } }

Line[] lines = {

 new Line(new string[] { “eating”, “carrots,”,

 “but”, “enjoy”, “Horses” } , 1),

 new Line(new string[] { “zebras?”, “hay”,

 “Cows”, “bridge.”, “bolted” } , 2),

 new Line(new string[] { “fork”, “dogs!”,

 “Engine”, “and” }, 3) ,

 new Line(new string[] { “love”, “they”,

 “apples.”, “eating” }, 2) ,

 new Line(new string[] { “whistled.”, “Bump” }, 1) };

from
to

select
inside

outside
orderby

into
output

Horses enjoy eating carrots, but they love eating apples.

+
-

+=
-=
“”
“ ”

int
string

var
[]

[1]
[2]

in
by

Key
Value

Line[]
lines
new
line

group
 groups

 wordGroups
twoGroups

Value
Key

Words
 words

 this
inner

talk
word
Take
poem
write

length

Hint: LINQ sorts strings in
alphabetical order.

Download at WoweBook.Com

670 Chapter 15

public class Line {
 public string[] Words;
 public int Value;
 public Line(string[] Words, int Value) {
 this.Words = Words; this.Value = Value;
 }
}

Line[] lines = {
 new Line(new string[] { “eating”, “carrots,”, “but”, “enjoy”, “Horses” } , 1),
 new Line(new string[] { “zebras?”, “hay”, “Cows”, “bridge.”, “bolted” } , 2),
 new Line(new string[] { “fork”, “dogs!”, “Engine”, “and” }, 3) ,
 new Line(new string[] { “love”, “they”, “apples.”, “eating” }, 2) ,
 new Line(new string[] { “whistled.”, “Bump” }, 1)
};

var words =
 from line in lines
 group line by line.Value
 into wordGroups
 orderby wordGroups.Key
 select wordGroups;

var twoGroups = words.Take(2);

foreach (var group in twoGroups)
{
 int i = 0;
 foreach (var inner in group) {
 i++;
 if (i == group.Key) {
 var poem =
 from word in inner.Words
 orderby word descending
 select word + “ ”;
 foreach (var word in poem)
 Console.Write(word);
 }
 }
}

Output: Horses enjoy eating carrots, but they love eating apples.

This first LINQ query divides the Line objects in the lines[] array into groups, grouped by their Value, in ascending order of the Value key.

The first two groups are the
lines with Values 1 and 2.

Did you figure out that the
two phrases “Horses enjoy eating
carrots, but” and “they love
eating apples” are in descending
alphabetical order?

This loop does a LINQ query
on the first Line object in the
first group and the second Line
object in the second group.

that’s the last pool puzzle in the book

Pool Puzzle Solution

Download at WoweBook.Com

you are here 4 671

LINQ

Use join to combine two collections into one query

List<Purchase
s>

on comic.Issue
equals purchase.Issue

LINQ Collect
io

nresults

List<Comic>

Issue = 6 name = “Johnny America”

Issue = 19 name = “Rock and Roll”

Issue = 57

Price = 3600

Price = 375

name = “Hippie Madness” Price = 13215

from comic

in comics
jo
in
 p
ur
ch
as
e

in
 p
ur
ch
as
es

select new { comic.Name,
comic.Issue, purchase.Price }

Jimmy’s got a whole collection of comics he’s purchased, and he wants to compare them with the prices
he found on Greg’s List to see if the prices he’s been getting are better or worse. He’s been tracking his
purchases using a Purchase class with two automatic properties, Issue and Price. And he’s got
a List<Purchase> called purchases that’s got all the comics he’s bought. But now he needs to
match up the purchases he’s made with the prices he found on Greg’s List. How’s he going to do it?

LINQ to the rescue! Its join keyword lets you combine data from two collections into a
single query. It does it by comparing items in the first collection their matching items in the second
collection. (LINQ is smart enough to do this efficiently—it doesn’t actually compare every pair of
items unless it has to.) The end result is a final result that combines every pair that matches.

Start off your query with the usual from clause.
But instead of following it up with the criteria it’ll
use to determine what goes into the results, you add:
 join name in collection

The join clause tells LINQ to loop through both
collections to match up pairs of one member from
each collection. It assigns name to the member it’ll
pull out of the joined collection in each iteration.
You’ll use that name in the where clause.

11

You’ll continue the LINQ query
with where and orderby
clauses as usual. You could finish
it with a normal select clause,
but you usually want to return
results that pulls some data from
one collection and other data
from the other. That’s where
you use select new to create
a custom set of results using an
anonymous type.

33

Next you’ll add the on clause, which
tells LINQ how to match the two
collections together. You’ll follow it
with the name of the member of
the first collection you’re matching,
followed by equals and the name of
the member of the second collection to
match it to.

22

public class Purchase {
 public int Issue
 { get; set; };
 public int Price;
 { get; set; };
}

The select new is
followed by curly brackets
that contain the data to
return in the results.

You’ve already seen anonymous types. When you use an object initializer, you create an anonymous object by typing a series of names and values inside curly brackets.

Jimmy’s joining his comics
to purchases, a list
of comics he’s bought.

Jimmy’s got his data in a collection of
Purchase objects called purchases.

Download at WoweBook.Com

672 Chapter 15

Now he could do the join!
You’ve seen all the parts of this query already... now here they are, put together in one piece.

List<Comic> comics = BuildCatalog();
Dictionary<int, int> values = GetPrices();
List<Purchase> purchases = FindPurchases();
 var results =
 from comic in comics
 join purchase in purchases
 on comic.Issue equals purchase.Issue
 orderby comic.Issue ascending
 select new { comic.Name, comic.Issue, purchase.Price };
 int gregsListValue = 0;
int totalSpent = 0;
foreach (var result in results) {
 gregsListValue += values[result.Issue];
 totalSpent += result.Price;
 Console.WriteLine(“Issue #{0} ({1}) bought for {2:c}”,
 result.Issue, result.Name, result.Price);
}
Console.WriteLine(“I spent {0:c} on comics worth {1:c}”,
 totalSpent, gregsListValue);

22

Jimmy saved a bunch of dough
It looks like Jimmy drives a hard bargain. He created a list of
Purchase classes that contained his purchases, and compared them
with the prices he found on Greg’s List.

First Jimmy created his collection to join.
Jimmy already had his first collection—he just used his BuildCatalog() method from before. So
all he had to do was write a FindPurchases() method to build his list of Purchase classes.

public List<Purchase> FindPurchases() {
 List<Purchase> purchases = new List<Purchase>() {
 new Purchase() { Issue = 68, Price = 225 },
 new Purchase() { Issue = 19, Price = 375 },
 new Purchase() { Issue = 6, Price = 3600 },
 new Purchase() { Issue = 57, Price = 13215 },
 new Purchase() { Issue = 36, Price = 660 },
 };
 return purchases;
}

11

Jimmy’s real happy
that he knows LINQ,
because it let him
see just how hard a
bargain he can drive!

When Jimmy used a join clause, LINQ
compared every item in the comics
collection with each item in purchases to
see which ones have comic.Issue equal to
purchase.Issue.

The select new clause creates a result set with Name and Issue from the
comic member, and Price from the
purchase member.

jimmy’s a joiner

Jimmy paid $13,215 for issue #57.

Download at WoweBook.Com

you are here 4 673

LINQ

Okay, so now I know Jimmy played with
his comic books using LINQ queries to
query his collections... but what about the
Starbuzz promotion problem? I still don’t

see how LINQ works with databases.

LINQ uses the same syntax with
databases as it does with collections.
You’ve already seen in Chapter 1 how easy .NET makes
it to work with a database. The IDE gives you a really
convenient way to connect with databases, add tables, and
even link data in those tables to your forms.

Now, you can take that same database you already
connected to and query it with LINQ. Not only that,
LINQ lets you combine your data from your database with
data from your objects seamlessly.

In fact, you can use the same exact query syntax... all you
need is to get access to your database so you can run a
LINQ query against it.

List<Starbuzz
D a

ta
>

ContactDB
database

LINQ

LINQ Collect
io

nresults

The StarBuzz
frequent customer
data’s here.

The Objectville
Contact Database
has the addresses.

We can use LINQ to
compare and combine
data from more than
one source and create a
collection of results.

Even though LINQ to SQL is very
different under the hood, when you write your code it looks really similar to other LINQ queries.

Download at WoweBook.Com

674 Chapter 15

Connect LINQ to a SQL database
LINQ operates on collections that implement the IEnumerable interface, right? So it
should make sense that you access your SQL database using an object that implements
IEnumerable. And C# makes it easy to add that object to your project.

Add the Objectville Contact Database to a new project
Back in Chapter 1, you created a database of contacts for the Objectville Paper Company
and saved it in a file called ContactDB.mdf. Start a new Windows Application project,
right-click on your project in the Solution Explorer, select “Add Existing Item” and add the
database. Make sure you select “Data Files” from the “Objects of Type” filter list.

11

The IDE will pop up the Data Source Configuration Wizard
Choose the People table by selecting its checkbox. Click Finish—the wizard will create a
dataset called ContactDBDataSet and add it to your project automatically.

22

Add the LINQ to SQL Classes to your project
Right-click on the project in the Solution Explorer and choose “Add New Item”. It’ll display
the familiar list of icons—choose the LINQ to SQL Classes and call it ContactDB.dbml.

33

This is the same
wizard that you used
in Chapter 1 when
you first created the
database. It adds
classes to your project
that let you access the
database directly.

When you add the LINQ to SQL Classes to your
project, the IDE automatically adds a collection
class to your project that you can use with LINQ.

Do this

bring it all together

Take a minute and flip
back to Chapter 1 to
see how you built it.

Download at WoweBook.Com

you are here 4 675

LINQ

The IDE has a designer to build your SQL collection
As soon as you add the LINQ to SQL Classes to your project, the IDE pops up an empty
window called the Object Relational Designer. Here’s what it looks like:

44

Drag the People table to the Object Relational Designer
Click on the Database Explorer link in the Object Relational Designer window—the IDE will
pop up a Database Explorer window. Expand the Tables node, click on the People table icon,
drag it into the Object Relational Designer window, and save the project.

55

You’re all set to write LINQ queries that pull data out of the database
Add a button to the form—here’s the code for it. Notice how we used the select new
keyword to create custom results that only contain the Name and Company.

ContactDBDataContext context = new ContactDBDataContext();

var peopleData =

 from person in context.Peoples

 select new { person.Name, person.Company };

foreach (var person in peopleData)

 Console.WriteLine(“{0} works at {1}”, person.Name, person.Company);

66

As soon as you save
the project, the
IDE automatically
adds a class called
a DataContext to
your project—one of
its properties is the
collection you can
query with LINQ,
which is connected
to the database.

Get some practice using select new.
It’ll pull just the values from the Name and
Company columns from the database.

The DataContext is a
little too smart for its
own good. It knows that
it’s got a People table, so
it assumes that the table
contains a bunch of rows,
one for each “People”... so
it has a member called
Peoples to contain each
individual People.

Download at WoweBook.Com

676 Chapter 15

Q: Can you rewind a minute and explain what var is again?

A:	Yes,	definitely.	The	var	keyword	solves	a	tricky	problem	that	
LINQ	brings	with	it.	Normally,	when	you	call	a	method	or	execute	a	
statement,	it’s	absolutely	clear	exactly	what	types	you’re	working	with.	
If	you’ve	got	a	method	that	returns	a	string,	for	instance,	then	
you	can	only	store	its	results	in	a	string	variable	or	field.	
But	LINQ	isn’t	quite	so	simple.	When	you	build	a	LINQ	statement,	it	
usually	returns	a	type	that	isn’t defined anywhere in your program.	
Yes,	you	know	that	it’s	going	to	be	a	collection	of	some	sort.	But	what	
kind	of	collection	will	it	be?	You	don’t	know—because	the	objects	that	
are	contained	in	the	collection	depend	entirely	on	what	you	put	in	
your	LINQ	query.								

	
Take	this	query,	for	example:	
var mostExpensive =
 from comic in comics
 where values[comic.Issue] > 500
 select comic;

What	if	you	changed	the	last	line	to	this:	

 select comic.Issue;	
	
That’s	a	perfectly	valid	LINQ	query.	Instead	of	returning	a	collection	of	
Comic	objects,	it’ll	return	a	collection	of	values.	And	that	presents	
a	problem	for	C#—those	are	two	different	types,	and	we’d	have	to	
add	extra	statements	to	define	those	types.	So	instead,	C#	gives	us	
the	var	keyword,	which	tells	the	compiler,	“Okay,	we	know	that	this	
is	a	valid	type,	but	we	can’t	exactly	tell	you	what	it	is	right	now.	So	
why	don’t	you	just	figure	that	out	yourself	and	not	bother	us	with	it?	
Thanks	so	much.”

The	group	clause	tells	LINQ	to	group	the	
results	together—when	you	use	it,	LINQ	creates	a	
collection	of	group	collections.

Every	group	contains	members	that	have	one	
member	in	common,	called	the	group’s	key.	Use	
the	by	keyword	to	specify	the	key	for	the	group.	
Each	group	collection	has	a	Key	member	that	
contains	the	group’s	key.

Use	a	join	clause	to	tell	LINQ	to	combine	two	
collections	into	a	single	query.	When	you	do,	LINQ	
compares	every	member	of	the	first	collection	with	
every	member	of	the	second	collection,	including	
the	matching	pairs	in	the	results.

Join	queries	use	an	on	...	equals	clause	to	tell	
LINQ	how	to	match	the	pairs	of	items.

When	you’re	doing	a	join	query,	you	usually	want	a	
set	of	results	that	includes	some	members	from	the	
first	collection	and	other	members	from	the	second	
collection.	The	select new	clause	lets	you	
build	custom	results	from	both	of	them.

LINQ	can	query	a	SQL	database	using	the	LINQ
to SQL Classes.	Since	LINQ	only	works	with	
collections	that	implement	IEnumerable,	they	
provide	a	collection	that	lets	you	access	the	tables	
and	queries	as	if	they	were	a	collection.

The	IDE’s	Object	Relational	Designer	lets	you	
choose	the	tables	that	you	want	to	access	via	
LINQ.	When	you	specify	the	tables	you	want	to	
access,	it	adds	a	DataContext	class	to	your	project.	
When	it’s	instantiated,	add	its	members	to	your	
LINQ	queries	to	access	the	SQL	tables.

two collections walk into a var

Download at WoweBook.Com

you are here 4 677

LINQ

Q: I don’t quite get how join works.

A:	Join	works	with	any	two	collections.	
Let’s	say	you’ve	got	a	collection	of	football	
players	called	players—its	items	are	
objects	that	have	a	Name	property,	a	
Position	property	and	a	Number	
property.	So	we	could	pull	out	the	players	
whose	jerseys	have	a	number	bigger	than	
10	with	this	query:	
	
var results =
 from player in players
 where player.Number > 10
 select player;

Let’s	say	we	wanted	to	figure	out	each	
player’s	shirt	size,	and	we’ve	got	a	
jerseys	collection	whose	items	have	a	
Number	property	and	a	Size	property.	A	
join	would	work	really	well	for	that:	
	
var results =
 from player in players
 where player.Number > 10
 join shirt in jerseys
 on player.Number
 equals shirt.Number
 select shirt;

Q: Hold on, that query will just give
me a bunch of shirts. What if I want to
connect each player to his shirt size, and
I don’t care about his number at all?

A:	That’s	what	select new	is	for.	
It	lets	you	construct	an	anonymous type	
that	only	has	the	data	you	want	in	it.	And	it	
lets	you	pick	and	choose	from	the	various	
collections	that	you’re	joining	together,	too.	

				
So	you	can	select	the	player’s	name	and	the	
shirt’s	size,	and	nothing	else:	
	
var results =
 from player in players
 where player.Number > 10
 join shirt in jerseys
 on player.Number
 equals shirt.Number
 select new {
 player.Name,
 shirt.Size
 };

The	IDE	is	smart	enough	to	figure	out	exactly	
what	results	you’ll	be	creating	with	your	
query.	If	you	create	a	loop	to	enumerate	
through	the	results,	as	soon	as	you	type	
the	variable	name	the	IDE	will	pop	up	an	
IntelliSense	list.	
	
foreach (var r in results)
 r.	
	
	
	
	
	
	
	
	
Notice	how	the	list	has	Name	and	Size	in	
it.	If	you	added	more	items	to	the	select
new	clause,	they’d	show	up	in	the	list	
too.	That’s	because	the	query	would	create	
a	different	anonymous	type	with	different	
members.	
	
	

Q: But does that only work with joins?

A:	Yes,	you	do.	LINQ	needs	an	object	that	
implements	the	IEnumerable	interface.

Q:	Do	I	always	have	to	add	those	LINQ	
to	SQL	Classes	if	I	want	to	use	LINQ	to	
query	a	SQL	database?	What	are	they?

A:	Yes,	you	do.	LINQ	needs	an	object	
that	implements	the	IEnumerable	interface.	
A	SQL	database	doesn’t	normally	implement	
that	interface...	or	any	interface,	really,	
because	it’s	not	an	object.	So	if	you	want	
LINQ	to	work	with	SQL—or	any	other	
source	of	data	that	you	can	query—then	
you	need	an	object	that	interacts	with	it	and	
implements	the	IEnumerable	interface.	
	
That’s	why	the	IDE	provides	the	LINQ	to	SQL	
classes	for	you.	When	you	add	them	to	your	
project,	they	automatically	do	everything	
you	need	in	order	to	connect	LINQ	to	a	
SQL	database:	they	let	you	drag	database	
objects	into	its	Object	Relational	Designer,	
and	when	you	do,	they	automatically	read	
your	database’s	tables	and	create	classes	
(like	the	People	class)	that	LINQ	can	use	to	
access	them.

You can use “select
new” to construct
custom LINQ query
results that include
only the items that
you want in your
result collection.

Download at WoweBook.Com

678 Chapter 15

Use a join query to connect
Starbuzz and Objectville
Now you have all the tools that you need to combine the data from
Starbuzz and Objectville Paper Company into one final result set. Do this

Build the Starbuzz objects
Here’s the list that contains the Starbuzz customer data. Add them to your project:

public class StarbuzzData { {

 public string Name { get; set; }

 public Drink FavoriteDrink { get; set; }

 public int MoneySpent { get; set; }

 public int Visits { get; set; }

}

public enum Drink {

 BoringCoffee, ChocoRockoLatte, TripleEspresso,

 ZestyLemonChai, DoubleCappuccino, HalfCafAmericano,

 ChocoMacchiato, BananaSplitInACup,

}

You’ll also need a method to generate some sample data:
public List<StarbuzzData> GetStarbuzzData() {
 List<StarbuzzData> list = new List<StarbuzzData>() {
 new StarbuzzData() {
 Name = “Janet Venutian”, FavoriteDrink = Drink.ChocoMacchiato,
 MoneySpent = 255, Visits = 50 },
 new StarbuzzData() {
 Name = “Liz Nelson”, FavoriteDrink = Drink.DoubleCappuccino,
 MoneySpent = 150, Visits = 35 },
 new StarbuzzData() {
 Name = “Matt Franks”, FavoriteDrink = Drink.ZestyLemonChai,
 MoneySpent = 75, Visits = 15 },
 new StarbuzzData() {
 Name = “Joe Ng”, FavoriteDrink = Drink.BananaSplitInACup,
 MoneySpent = 60, Visits = 10 },
 new StarbuzzData() {
 Name = “Sarah Kalter”, FavoriteDrink = Drink.BoringCoffee,
 MoneySpent = 110, Visits = 15 }
 };
 return list;
}

22

We built this method so that it has some names that also
appear in the Objectville contact list. If you used different
names, make sure you’ve got matching data here.

Add the SQL data to your project
If you haven’t already done it, create a new Windows application project and add the
ContactDB SQL database to it. Then add the LINQ to SQL classes to the project, and
write a simple test query just to make sure it’s all working.

11

The Starbuzz data comes as a collection
of StarbuzzData objects. It’s got a lot
of data—you won’t need it all for the
promotion, so you’ll have to select only the
data you need in the LINQ query.

Starbuzz has plenty of great drinks, and
each customer has his or her favorite.

that’s all folks

GetStarbuzzData() uses a collection
initializer and object initializers to set up the Starbuzz objects.

Download at WoweBook.Com

you are here 4 679

LINQ

Now join the SQL database to the Starbuzz collection
Add a button to the project that will execute the query and display the results in the console. Here’s the
code for the query:

List<StarbuzzData> starbuzzList = GetStarbuzzData();
ContactDBDataContext context = new ContactDBDataContext();

var results =

 from starbuzzCustomer in starbuzzList

 where starbuzzCustomer.MoneySpent > 90

 join person in context.Peoples

 on starbuzzCustomer.Name equals person.Name

 select new { person.Name, person.Company,

 starbuzzCustomer.FavoriteDrink };

and it’s easy enough to write to the console:

foreach (var row in results){
 Console.WriteLine(“{0} at {1} likes {2}”,
 row.Name, row.Company, row.FavoriteDrink);
}

33

Check your results—make
sure it works the way you
expect it to.

Nice work... with this
new promotion, I’ll bet we’ll

get tons of repeat business. I’ll
definitely be calling you again.

We’ll need to do a join
to combine the Starbuzz
data with the customer
data in the People table.

The Peoples member
in the DataContext
is a collection that
gives you access to the
People table in the
database.

Here’s where
the select
new clause pulls
the name and
company from
the database
and the favorite
drink from the
Starbuzz data
into one single
result collection.

Edit queries with LINQPad
There’s a great learning too

l for exploring

and using LINQ. It’s called LINQPad, and

it’s available for free from
 Joe Albahari

(one of our superstar “Head First C#”

technical reviewers who kept a lot of bugs

out of this book). You can
 download it

here:
http://www.albahari.com/linqpad.html

Download at WoweBook.Com

Download at WoweBook.Com

C# Lab 681

Name: Date:

C# Lab 681

C# Lab
Invaders

This lab gives you a spec that describes a program
for you to build, using the knowledge you’ve gained
over the last few chapters.
This project is bigger than the ones you’ve seen so
far. So read the whole thing before you get started,
and give yourself a little time. And don’t worry if
you get stuck—there’s nothing new in here, so you
can move on in the book and come back to the lab
later.
We’ve filled in a few design details for you, and
we’ve made sure you’ve got all the pieces you
need... and nothing else.
It’s up to you to finish the job. You can download
an executable for this lab from the website... but
we won’t give you the code for the answer.

Download at WoweBook.Com

682 Head First Lab #1

Invaders

The grandfather of video games
In this lab you’ll pay homage to one of the most popular, revered
and replicated icons in video game history, a game that needs no
further introduction. It’s time to build Invaders.

As the player destroys the
invaders, the score goes up.
It’s displayed in the upper
left-hand corner.

The player starts out with three
ships. The first ship is in play,
and the other two are kept in
reserve. His spare ships are shown
in the upper right-hand corner.

The multicolored
stars in the
background twinkle
on and off, but
don’t affect
gameplay at all.

The invaders return fire. If one

of the shots hits the ship, the

player loses a life. Once all lives
are gone, or if the invaders
reach the bottom of the
screen, the game ends and a big
“GAME OVER” is displayed in
the middle of the screen.

The player moves the ship left
and right, and fires shots at
the invaders. If a shot hits an
invader, the invader is destroyed
and the player’s score goes up.

The invaders attack in waves of 30.
The first wave moves slowly and fires
a few shots at a time. The next wave
moves faster, and fires more shots more
frequently. If all 30 invaders in a wave
are destroyed, the next wave attacks.

Download at WoweBook.Com

you are here 4 683

Invaders

RIGHT

SPACE

Your mission: defend the planet
against wave after wave of invaders
The invaders attack in waves, where each wave is a tight formation
of 30 individual invaders. As the player destroys invaders, the score
goes up. The bottom invaders are shaped like stars and worth 10
points. The spaceships are worth 20, the saucers are worth 30, the
bugs are worth 40, and the satellites are worth 50. The player starts
with three lives. If he loses all three lives or the invaders reach the
bottom of the screen, the game’s over.

The left arrow moves the
ship towards the left-hand
edge of the screen.

The right arrow key moves the ship to the right.

The game should keep
track of which keys
are currently being held
down. So pressing right
and spacebar would
cause the ship to move
to the right and fire
(if two shots aren’t
already on the screen).

The spacebar shoots. But
there can only be two
player shots on the screen
at once. As soon as a shot
hits something or disappears,
another shot can be fired.

Fire!�

If a shot hits
an invader, both
disappear. Otherwise,
the shot disappears
when it gets to the
top of the screen.

There are five different types of invaders, but they all behave the same way. They start at the top of the screen and move left until they reach the edge. Then they drop down and start moving right. When they reach the right-hand boundary, they drop down and
move left again. If the invaders reach the
bottom of the screen, the game’s over.

The first wave of
invaders can fire two
shots at once—the
invaders will hold their
fire if there are more
than two shots on the
screen. The next wave
fires three, the next
fires four, etc.

 LEFT

10 20 30 40 50

Download at WoweBook.Com

684 Head First Lab #1

Invaders

The architecture of Invaders
Invaders needs to keep track of a wave of 30 invaders
(including their locations, type, and score value), the player’s
ship, shots that the player and invaders fire at each other, and
stars in the background. As you did in the Quest lab, you’ll
need a Game object to keep up with all this, and coordinate
between the form and the game objects.

Here’s an overview of what you’ll need to create:

 Game obje
ct

 Form obje

ct

The form is pretty simple. It’s got
timers to tell the game to go, it
passes on key presses, and animates
the invaders and twinkling stars. And
it’s got a Paint event handler to
draw the graphics, which just calls
the Game object’s Draw() method.

The Game object manages the gameplay.
It keeps track of how many lives the
player has left and how many waves of
invaders have attacked. When the game’s
over, it raises a GameOver event to tell
the form to stop its timers.

Download at WoweBook.Com

you are here 4 685

Invaders

PlayerShip ob
je

ct List<Invade
r>

 List<Shot>

Stars object

All of the invaders on the screen are
stored in a List. When an invader’s
destroyed, it’s removed from the list
so the game stops drawing it.

The object that represents the
ship keeps track of its position
and moves itself left and right,
making sure it doesn’t move off
the side of the screen.

The game keeps two
lists of Shot objects:
a list of shots the
player fired at the
invaders, and a list
of shots the invaders
fired back.

The Stars object keeps a List of Star structs
(each of which contain a Point and a Pen). Stars
also has a Twinkle() method that removes five
stars at random and adds five new ones—the
game calls Twinkle() several times a second to
make the stars twinkle in the background.

 List<Shot
>

Download at WoweBook.Com

686 Head First Lab #1

Invaders

Design the Invaders form
The Invaders form has only two controls: a timer to trigger
animation (making the stars twinkle and the invaders animate
by changing each invader picture to a different frame), and
a timer to handle gameplay (the invaders marching left and
right, the player moving, and the player and invaders shooting
at each other). Other than that, the only intelligence in the
form is an event handler to handle the game’s GameOver
event, and KeyUp and KeyDown event handlers to manage
the keyboard input.

Set the form’s FormBorderStyle property to FixedSingle, its
DoubleBuffered property to true, turn off its MinimizeBox
and MaximizeBox properties, set its title, and then stretch
it out to the width you want the game area to be.

When the form initializes its Game object, it passes its ClientRectangle to it so it knows the boundaries of the form. So you can change the size of the battlefield just by changing the size of the form.

You should add two timers: animationTimer and gameTimer.

The form fires a KeyDown event any time a key is pressed, and it fires a KeyUp event whenever a key is released.

Download at WoweBook.Com

you are here 4 687

Invaders

The animation timer handles the eye candy
The stars in the game’s background and the invader animation
don’t affect gameplay, and they continue when the game is
paused or stopped. So we need a separate timer for those.

Add code for the animation timer’s tick event
Your code should have a counter that cycles from 0 to 3 and then back down
to 0. That counter is used to update each of the four-cell invader animations
(creating a smooth animation). Your handler should also call the Game
object’s Twinkle() method, which will cause the stars to twinkle. Finally, it
needs to call the form’s Refresh() method to repaint the screen.

Try a timer interval of 33ms, which will give you about 30 frames per second.
Make sure you set the game timer to a shorter interval, though. The ship
should move and gameplay should occur more quickly than the stars twinkle.

If the animation timer is
set to 33ms, but the Game
object’s Go() method takes
longer than that to run,
then animation will occur
once Go() completes.

We tried things out on a slow machine,
and found that setting the animation
interval to 100ms and the gameplay timer
interval to 50ms gave us a frame rate of
about 10 frames per second, which was
definitely playable. Try starting there and
reducing each interval until you’re happy.

Adjust the timers for smooth animation
With a 33ms interval for animation, set the game timer to 10ms. That way, the
main gameplay will occur more quickly than the animation (which is really just
background eye candy). At the same time, the Go() method in Game (fired
by the game timer, which we’ll talk about in a little bit) can take a lot of CPU
cycles. If the CPU is busy handling gameplay, the animation timer will just wait
until the CPU gets to it, and then fire (and animate the stars and invaders).

Alternately, you can just set both timers to an interval of 5ms, and the game
will run and animate about as fast as your system can handle (although on fast
machines, animation could get annoyingly quick).

Animation occurs even when gameplay doesn’t. That means that the stars twinkle and the invaders animate even if the game is over, paused, or hasn’t been started.

An invader starts with cell 0, goes to cell 1, then 2, then 3...

...and then reverses,
 going back

to 2, then 1, then 0.

Download at WoweBook.Com

688 Head First Lab #1

Invaders

Respond to keyboard input
Before we can code the game timer, we need to write event
handlers for the KeyDown and KeyUp events. KeyDown is
triggered when a key is pressed, and KeyUp when a key is
released. For most keys, we can simply take action, by firing a
shot or quitting the game.

For some keys, like the right or left arrow, we want to store those
in a list that our game timer can then use to move the player’s
ship. So we’ll also need a list of pressed keys in the form object:

List<Keys> keysPressed = new List<Keys>();

private void Form1_KeyDown(object sender, KeyEventArgs e) {
 if (e.KeyCode == Keys.Q)
 Application.Exit();

 if (gameOver)
 if (e.KeyCode == Keys.S) {
 // code to reset the game and restart the timers
 return;
 }

 if (e.KeyCode == Keys.Space)
 game.FireShot();
 if (keysPressed.Contains(e.KeyCode))
 keysPressed.Remove(e.KeyCode);
 keysPressed.Add(e.KeyCode);
}

private void Form1_KeyUp(object sender, KeyEventArgs e) {
 if (keysPressed.Contains(e.KeyCode))
 keysPressed.Remove(e.KeyCode);
}

We need a list of keys so we can
track which keys have been pressed.
Our game timer will need that list
for movement in just a bit.

The ‘Q’ key quits the game.

If the game has ended, reset
the game and start over.

You’ll need to fill in this code.

The spacebar fires a shot.

The Keys
enum
defines all
the keys
you might
want to
check key
codes
against.

By removing the key and then re-adding
it, it makes the key the last (most
current) item in the list.The key that’s pressed gets added to

our key list, which we’ll use in a second.

When a key is released, we remove it from our list of pressed keys.

We want the most
current key pressed to be
at the very top of the
list, so that if the player
mashes a few keys at
the same time, the game
responds to the one that
hit most recently. Then,
when he lets up one key,
the game responds to the
next one in the list.

So if the player’s holding down the left arrow and space bar at the same time, the list will contain Keys.Left and Keys.Space.

But we only want this to work
if the game’s over. Pressing S
shouldn’t restart a game that’s
already in progress.

Download at WoweBook.Com

you are here 4 689

Invaders

One more form detail: the GameOver event
Add a private bool field called gameOver to the form that’s true only
when the game is over. Then add an event handler for the Game object’s
GameOver event that stops the game timer (but not the animation timer, so
the stars still twinkle and the invaders still animate), sets gameOver to true,
and calls the form’s Invalidate() method.

When you write the form’s Paint event handler, have it check gameOver.
If it’s true, have it write GAME OVER in big yellow letters in the middle of
the screen. Then have it write “Press S to start a new game or Q to quit” in
the lower right-hand corner. You can start the game out in this state, so the
user has to hit S to start a new game.

private void gameTimer_Tick(object sender, EventArgs e) {
 if (keysPressed.Count() >= 1) {
 switch (keysPressed[0]) {
 case Keys.Left:
 game.MovePlayer(Direction.Left);
 break;
 case Keys.Right:
 game.MovePlayer(Direction.Right);
 break;
 }
 }
 game.Go();
}

The KeyUp and KeyDown
events use the Keys enum
to specify a key. We’ll use
Keys.Left and Keys.Right
to move the ship.

keysPressed is your List<Keys>
object managed by the KeyDown
and KeyUp event handlers. The
key at index zero will always be
the most recent key pressed.

We only need to deal with movement. Other keys, like spacebar, and ‘Q’ for quit, are handled in the KeyDown() method you just wrote.

The game timer handles movement and gameplay
The main job of the form’s game timer is to call Go() in the
Game class. But it also has to respond to any keys pressed, so it
has to check the keysPressed list to find any keys caught by the
KeyDown and KeyUp events:

Make sure your naming matches up with
what you call your handler methods.

Finally, we call Go() on the Game
object to let game play continue.

Here’s an example of adding

another event to a for
m

without using the IDE. This is

all manual coding.

The game over event and its

delegate live in the Game class,

which you’ll see in just a
minute.

public enum Direction {
 Left,
 Right,
 Up,
 Down,
}

Shots move up and down, the player moves left
and right, and the invaders move left, right,
and down. You’ll need this enum to keep all
those directions straight.

Download at WoweBook.Com

690 Head First Lab #1

Invaders

The form’s game timer tells the game to Go()
In addition to handling movement left and right, the main job of the game
timer is to call the Game object’s Go() method. That’s where all of the
gameplay is managed. The Game object keeps track of the state of the game,
and its Go() method advances the game by one frame. That involves:

Checking to see if the player died, using its Alive property. When the player dies,
the game shows a little animation of the ship collapsing (using DrawImage() to squish
the ship down to nothing). The animation is done by the PlayerShip class, so Go() just
needs to check to see if it’s dead. If it is, it returns—that way, it keeps the invaders from
moving or shooting while the player gets a small break (and watches his ship get crushed).

11

Moving each of the shots. Shots fired by the invaders move down, and shots fired by the
player move up. Game keeps two List<Shot> objects, one for the invaders’ shots and one
for the player’s. Any shot that’s moved off the screen needs to be removed from the list.

22

Moving each of the invaders. Game calls each Invader object’s Move() method,
and tells the invaders which way to move. Game also keeps up with where the invaders are
in case they need to move down a row or switch directions. Then, Game checks to see if it’s
time for the invaders to return fire, and if so, it adds new Shot objects to the List<>.

33

Checking for hits. If a player’s shot hit any invaders, Game removes the invaders from the
appropriate List<>. Then Game checks to see if any of the invader shots have collided with
the player’s ship, and if so, it kills the player by setting its Alive property to false. If the
player’s out of lives, then Game raises the GameOver event to tell the form that the game’s
over. The form’s GameOver event handler stops its game timer, so Go() isn’t called again.

44

 Game objec
t

 game.Go()

 Form object

The game timer fires more often
than the animation timer, making
gameplay happen quickly.

Go() in the Game object handles

everything from movement to

shots to checking to
 see if ships or

invaders have been h
it.

Here’s where that
GameOver event from the last page comes into play.

Download at WoweBook.Com

you are here 4 691

Invaders

 Game objec
t

 game
.Draw(g, animationCell);

The invaders have a four-cell
animation sequence, so the
form passes an int telling the
game which cell to draw. The game tells each

invader which cell to
draw based on the
animationCell passed
by the form.

The Game object’s Draw() method
calls the Draw() methods on all of
the other objects. You’ll see how
each of the other classes’ Draw()
methods work in the next few pages.

 Form object

stars.Draw(g);
foreach (Invader invader in invaders)
 invader.Draw(g, animationCell);
playerShip.Draw(g);
foreach (Shot shot in playerShots)
 shot.Draw(g);
foreach (Shot shot in invaderShots)
 shot.Draw(g);

~
Paint event

fires

Everything that happens visually
in the game happens in the
form’s Paint event handler.

Taking control of graphics
In earlier labs, the form used controls for the graphics. But now
that you know how to use Graphics and double-buffering, the
Game object should handle a lot of the drawing.

So the form should have a Paint event handler (make sure you
set the form’s DoubleBuffered property to true!). You’ll
delegate the rest of the drawing to the Game object by calling its
Draw() method every time the form’s Paint event fires.

 List<Shot>PlayerShip ob
je

ct

 List<Invade
r>

 List<Shot>Stars object

Download at WoweBook.Com

692 Head First Lab #1

Invaders

Building the Game class

public class Game {
 private int score = 0;
 private int livesLeft = 2;
 private int wave = 0;
 private int framesSkipped = 0;

 private Rectangle boundaries;
 private Random random;

 private Direction invaderDirection;
 private List<Invader> invaders;

 private PlayerShip playerShip;
 private List<Shot> playerShots;
 private List<Shot> invaderShots;

 private Stars stars;

 public event EventHandler GameOver;

 // etc...
}

Game

Draw(g: Graphics, animationCell: int)
Twinkle()
MovePlayer(direction: Direction)
FireShot()
Go()

GameOver: event

The score, livesLeft, and wave fields keep track of some basic information about the state of the game.

You’ll use the frame field to slow down the
invaders early on in the game—the first wave
should skip 6 frames before they move to the
left, the next wave should skip 5, the next
should skip 4, etc.

This List<> of Invader objects keeps track of all of
the invaders in the current wave. When an invader is
destroyed, it’s removed from the list. The game checks
periodically to make sure the list isn’t empty—if it is, it
sends in the next wave of invaders.

This Stars object keeps track of the
multicolored stars in the background.

The Game object raises its GameOver event when the player dies and doesn’t have any more lives left. You’ll build the event handler method in the form, and hook it into the Game object’s GameOver event.

The Game class is the controller for the Invaders game. Here’s a
start on what this class should look like, although there’s lots of
work still for you to do.

Remember, these are the
public methods. You may need
a lot more private methods to
structure your code in a way
that makes sense to you.

Most of these
methods combine
methods on other
objects to make a
specific action occur.

Download at WoweBook.Com

you are here 4 693

Invaders

The Game class methods
The Game class has five public methods that get triggered
by different events happening in the form.

The Draw() method draws the game on a graphics object
The Draw() method takes two parameters: a Graphics object and an integer that contains
the animation cell (a number from 0 to 3). First, it should draw a black rectangle that fills up
the whole form (using the display rectangle stored in boundaries, received from the form).
Then the method should draw the stars, the invaders, then the player’s ship, and then the
shots. Finally, it should draw the score in the upper left-hand corner, the player’s ships in the
upper right-hand corner, and a big “GAME OVER” in yellow letters if gameOver is true.

11

The Twinkle() method twinkles the stars
The form’s animation timer event handler needs to be able to twinkle the stars, so the Game
object needs a one-line method to call stars.Twinkle().

22

The MovePlayer() method moves the player
The form’s keyboard timer event handler needs to move the player’s ship, so the Game object
also needs a two-line method that takes a Direction enum as a parameter, checks whether
or not the player’s dead, and calls playerShip.Move() to affect that movement.

33

The FireShot() method makes the player fire a shot at the invaders
The FireShot() method checks to see if there are fewer than two player shots on screen. If
there are, the method should add a new shot to the playerShots list at the right location.

44

The Go() method makes the game go
The form’s animation timer calls the Game object’s Go() method anywhere between 10
and 30 times a second (depending on the computer’s CPU speed). The Go() method does
everything the game needs to do to advance itself by a frame:

The game checks if the player’s dead using its Alive property. If he’s still alive, the
game isn’t over yet—if it were, the form would have stopped the animation timer with
its Stop()method. So the Go() method won’t do anything else until the ship’s alive
again—it’ll just return.

Every shot needs to be updated. The game needs to loop through both List<Shot>
objects, calling each shot’s Move() method. If any shot’s Move() returns false, that
means the shot went off the edge of the screen—so it gets deleted from the list.

The game then moves each invader, and allows them to return fire.

Finally, it checks for collisions: first for any shot that overlaps an invader (and removing
both from their List<>s), and then to see if the player’s been shot. We’ll add a
Rectangle property called Area to the Invader and PlayerShip classes—so we
can use the Contains() method to see if the ships’ area overlaps with a shot.

≥

≥

≥

≥

55

We’ll write code for the Stars
object in a few more pages.

Download at WoweBook.Com

694 Head First Lab #1

Invaders

The constructor sets everything up
The Game object needs to create all of the other objects—the Invader
objects, the PlayerShip object, the List objects to hold the shots, and the
Stars object. The form passes in an initialized Random object and its own
ClientRectangle struct (so the Game can figure out the boundaries of
the battlefield, which it uses to determine when shots are out of range and
when the invaders reached the edge and need to drop and reverse direction). Then,
your code should create everything else in the game world.

Build a NextWave() method
A simple method to create the next wave of invaders will come in handy. It should
assign a new List of Invader objects to the invaders field, add the 30 invaders
in 6 columns so that they’re in their starting positions, increase the wave field by 1,
and set the invaderDirection field to start them moving towards the right-
hand side of the screen. You’ll also change the framesSkipped field.

A few other ideas for private methods
Here are a few of the private method ideas you might play with, and see if these
would also help the design of your Game class:

We’ll talk about most of these
individual objects over the next
several pages of this lab.

Here’s an example of a private method that will really help out your Game class organization.

 A method to see if the player’s been hit (CheckForPlayerCollisions())

 A method to see if any invaders have been hit (CheckForInvaderCollisions())

 A method to move all the invaders (MoveInvaders())

 A method allowing invaders to return fire (ReturnFire())

Filling out the Game class
The problem with class diagrams is that they usually leave out
any non-public properties and methods. So even after you’ve
got the methods from page 693 done, you’ve still got a lot of
work to do. Here are some things to think about:

It’s possible to show protected and private properties
and methods on a class diagram, but you’ll rarely see
that put into practice. Why do you think that is?

Download at WoweBook.Com

you are here 4 695

Invaders

LINQ makes collision detection much easier
You’ve got collections of invaders and shots, and you need to search through those
collections to find certain invaders and shots. Anytime you hear collections and
searching in the same sentence, you should think LINQ. Here’s what you need to do:

Figure out if the invaders’ formation has reached the edge of the battlefield
The invaders need to change direction if any one invader is within 100 pixels of the edge of the battlefield.
When the invaders are marching to the right, once they reach the right-hand side of the form the game
needs to tell them to drop down and start marching to the left. And when the invaders are marching to
the left, the game needs to check if they’ve reached the left edge. To make this happen, add a private
MoveInvaders() method that gets called by Go().The first thing it should do is check and update the
private framesSkipped field, and return if this frame should be skipped (depending on the level).
Then it should check which direction the invaders are moving. If the invaders are moving to the right,
MoveInvaders() should use LINQ to search the invaderCollection list for any invader whose
location’s X value is within 100 pixels of the right-hand boundary. If it finds any, then it should tell the
invaders to march downwards and then set invaderDirection equal to Direction.Left; if not, it
can tell each invader to march to the right. On the other hand, if the invaders are moving to the left, then
it should do the opposite, using another LINQ query to see if the invaders are within 100 pixels of the
left-hand boundary, marching them down and changing direction if they are.

11

Determine which invaders can return fire
Add a private method called ReturnFire() that gets
called by Go(). First, it should return if the invaders’
shot list already has wave + 1 shots. It should also
return if random.Next(10) < 10 - wave.
(That makes the invaders fire at random, and not all
the time.) If it gets past both tests, it can use LINQ to
group the invaders by their Location.X and sort them
descending. Once it’s got those groups, it can choose
a group at random, and use its First() method to
find the invader at the bottom of the column. All right,
now you’ve got the shooter—you can add a shot to the
invader’s shot list just below the middle of the invader
(use the invader’s Area to set the shot’s location).

22

Only the invaders
at the bottom of
the formation fire
shots at the player.

If any invader reaches the bottom of the screen, the game’s over.

When any invader reaches the edge,
the formation turns around.

Check for invader and player collisions
You’ll want to create a method to check for collisions. There are three collisions to check for, and the
Rectangle struct’s Contains() method will come in really handy—just pass it any Point, and it’ll return
true if that point is inside the rectangle.

Use LINQ to find any dead invaders by looping through the shots in the player’s shot list and selecting
any invader where invader.Area contains the shot’s location. Remove the invader and the shot.

Add a query to figure out if any invaders reached the bottom of the screen—if so, end the game.

You don’t need LINQ to look for shots that collided with the player, just a loop and the player’s Area
property. (Remember, you can’t modify a collection inside a foreach loop. If you do, you’ll get
an InvalidOperationException with a message that the collection was modified.)

≥

≥

≥

33

This seems really complex when you first read it, but each LINQ query is just a couple of lines of code. Here’s a hint: don’t overcomplicate it!

Download at WoweBook.Com

696 Head First Lab #1

Invaders

public class Invader {
 private const int HorizontalInterval = 10;
 private const int VerticalInterval = 40;
 public enum Type {
 Bug,
 Saucer,
 Satellite,
 Spaceship,
 Star,
 }

 private Bitmap image;

 public Point Location { get; private set; }

 public Type InvaderType { get; private set; }

 public Rectangle Area { get {
 return new Rectangle(location, image.Size); }
 }

 public int Score { get; private set; }

 public Invader(Type invaderType, Point location, int score) {
 this.InvaderType = invaderType;
 this.Location = location;
 this.Score = score;
 image = InvaderImage(0);
 }

 // Additional methods will go here
}

Crafting the Invader class

Invader

Draw(g: Graphics, animationCell: int)
Move(direction: Direction)

Location: Point
InvaderType: Type
Area: Rectangle
Score: int

Check out what we did
with the Area property.
Since we know the invader’s
location and we know its
size (from its image field),
we can add a get accessor
that calculates a Rectangle
for the area it covers...
which means you can use
the Rectangle’s Contains()
method inside a LINQ query
to detect any shots that
collided with an invader.

The invader uses the Type
enum to figure out what kind of enemy ship it is.

The Invader class keeps track of a single invader. So when the Game
object creates a new wave of invaders, it adds 30 instances of Invader to
a List<Invader> object. Every time its Go() method is called, it calls
each invader’s Move() method to tell it to move. And every time its Draw()
method is called, it calls each invader object’s Draw() method. So you’ll
need to build out the Move() and Draw() methods. And you’ll want to add
a private method called InvaderImage() too—it’ll come in really handy
when you’re drawing the invader. Make sure you call it inside the Draw()
method to keep the image field up to date:

The HorizontalInterval constant
determines how many pixels an invader
moves every time it marches left or
right. VerticalInterval is the number of
pixels it drops down when the formation
reaches the edge of the battlefield.

Download at WoweBook.Com

you are here 4 697

Invaders

Build the Invaders’ methods
The three core methods for Invader are Move(), Draw(), and
InvaderImage(). Let’s look at each in turn:

Move the invader ships
First, you need a method to move the invader ships. The Game object should
send in a direction, using the Direction enum, and then the ship should
move. Remember, the Game object handles figuring out if an invader needs to
move down or change direction, so your Invader class doesn’t have to worry
about that.

public void Move(Direction direction) {
 // This method needs to move the ship in the
 // specified direction
}

Draw the ship - and the right animation cell
Each Invader knows how to draw itself. Given a Graphics object to draw
to, and the animation cell to use, the invader can display itself onto the game
board using the Graphics object the Game gives it.

public void Draw(Graphics g, int animationCell) {
 // This method needs to draw the image of
 // the ship, using the correct animation cell
}

Get the right Invader image
You’re going to need to grab the right image based on the animation
cell a lot, so you may want to pull that code into its own method.
Build an InvaderImage() method that returns a specific Bitmap
given an animation cell.

private Bitmap InvaderImage(int animationCell) {
 // This is mostly a convenience method, and
 // returns the right bitmap for the specified cell
}

There are five types of invaders,
and each of them has four
different animation cell pictures.

Each invader knows its
type. So if you give its
InvaderImage() method a
number for its animation
cell, it can return a
Bitmap that’s got the
right graphic in it.

Download at WoweBook.Com

698 Head First Lab #1

Invaders

The player’s ship can move and die
The PlayerShip class keeps track of the
player’s ship. It’s similar to the Invaders class, but
even simpler.

Animate the player ship when it’s hit
The Draw() method should take a Graphics object as a parameter. Then it checks
its Alive property. If it’s alive, it draws itself using its Location property. If it’s
dead, then instead of drawing the regular bitmap on the graphics, the PlayerShip
object uses its private deadShipHeight field to animate the player ship slowly
getting crushed by the shot. After three seconds of being dead, it should flip its Alive
property back to true.

public void Draw(Graphics g) {

 if (!Alive) {

 Reset the deadShipHeight field and draw the ship.
 } else {

 Check the deadShipHeight field. If it's greater than zero, decrease it by 1
 and use DrawImage() to draw the ship a little flatter.
 }

}

Draw(g: Graphics)
Move(direction: Direction)

Location: Point
Area: Rectangle
Alive: bool

PlayerShip
The Location and Area
properties are exactly like
the ones in the Invader class.

The Move() method takes
one parameter, a Direction
enum, and moves the player
in that direction.

The Draw() method just draws
the player’s ship in the right
location–unless the player
died, in which case it draws an
animation of the ship getting
crushed by the shot.

PlayerShip needs to take
in a Rectangle with the
game’s boundaries in its
constructor, and make
sure the ship doesn’t get
moved out of the game’s
boundaries in Move().

Waiting three seconds is easy—just use the Alive property’s set accessor to set
a private DateTime field to DateTime.Now. The first thing the ship’s Go()
method does is use a TimeSpan to check if three seconds have elapsed. If three
seconds haven’t elapsed, continue doing the crushing ship animation. As soon as
three seconds have elapsed, set Alive back to true so the game knows it should
continue gameplay. (You used a similar trick in the beehive simulator.)

When the ship’s hit with a shot,
the game sets the ship’s Alive
property to false. The game
then keeps the invaders from
moving until the ship resets its
Alive property back to true.

Download at WoweBook.Com

you are here 4 699

Invaders

public class Shot {
 private const int moveInterval = 20;
 private const int width = 5;
 private const int height = 15;

 public Point Location { get; private set; }

 private Direction direction;
 private Rectangle boundaries;

 public Shot(Point location, Direction direction,
 Rectangle boundaries) {
 this.Location = location;
 this.direction = direction;
 this.boundaries = boundaries;
 }

 // Your code goes here
}

“Shots fired!”
Game has two lists of Shot objects: one for the player’s shots, moving
up the screen, and one for enemy shots, moving down the screen.
Shot only needs a few things to work: a Point location, a method to
draw the shot, and a method to move. Here’s the class diagram:

You can adjust these to make the game
easier or harder... smaller shots are easier
to dodge, faster shots are harder to avoid.

The shot updates its own location in
the Move() method, so location can
be a read-only automatic property.

The game passes the form’s display rectangle
into the constructor’s boundaries parameter so
the shot can tell when it’s off of the screen.

Draw() handles drawing the little rectangle
for this shot. Game will call this every time
the screen needs to be updated.

Move() moves the shot up
or down, and keeps up with
whether the shot is within the
game’s boundaries.

Here’s a start on the Shot class:

Your job is to make sure Draw() takes in a Graphics object
and draws the shot as a yellow rectangle. Then, Move() should
move the shot up or down, and return true if the shot is still
within the game boundaries.

Shot

Draw(g: Graphics)
Move(): bool

Location: Point

Direction is the enum with Up
and Down defined.

Download at WoweBook.Com

700 Head First Lab #1

Invaders

Stars

Draw(g: Graphics)
Twinkle(random: Random)

private struct Star {
 public Point point;
 public Pen pen;

 public Star(Point point, Pen pen) {
 this.point = point;
 this.pen = pen;
 }
}

±

±

±

±

±

Twinkle, twinkle... it’s up to you
The last class you’ll need is the Stars class. There are 300 stars, and this class
keeps up with all of them, causing 5 to display and 5 to disappear every time
Twinkle() is called.

First, though, you’ll need a struct for each star:

Each star has a point (its location)
and a pen (for its color).

All Star does is hold this
data... no behavior.

The Stars class should keep a List<Star> for storing 300 of these Star
structs. You’ll need to build a constructor for Stars that populates that
list. The constructor will get a Rectangle with the display boundaries, and
a Random instance for use in creating the random Points to place each star in
a random location.

Here’s the class diagram for Stars, with the other methods you’ll need:

Draw() should draw all the stars in the list, and Twinkle() should
remove five random stars and add five new stars in their place.

You might also want to create a RandomPen() method so you can
get a random color for the stars every time you create a new star easily.
It should return one of the five colors stars come in, by generating a
number between 0 and 4, and selecting the matching Pen object.

Draw() draws all
300 stars...

...and Twinkle()
pulls 5 stars and
adds 5 new ones.

Game maintains an instance of Random that all the objects can use.

You can define the Star

struct inside Stars.cs, as
 only

Stars needs to use that
struct.

Here’s another hint: start out
the project with just a form,
a Game class and Stars class.
See if you can get it to draw
a black sky with twinkling
stars. That’ll give you a solid
foundation to add the other
classes and methods.

Download at WoweBook.Com

you are here 4 701

Invaders

And yet there’s more to do...
Think the game’s looking pretty good? You can take it to the
next level with a few more additions:

Add animated explosions
Make each invader explode after it’s hit, then briefly display a number to
tell the player how many points the invader was worth.

Add a mothership
Once in a while, a mothership worth 250 points can travel across the top
of the battlefield. If the player hits it, they get a bonus.

Add shields
Add floating shields the player can hide behind. You can add simple
shields the enemies and player can’t shoot through. Then, if you really
want your game to shine, add breakable shields that the player and
invaders can blast holes through after a certain number of hits.

Add divebombers
Create a special type of enemy that divebombs the player. A divebombing
enemy should break formation, take off towards the enemy, fly down
around the bottom of the screen, and then resume its position.

Add more weapons
Start an arms race! Smart bombs, lasers, guided missiles... there are all
sorts of weapons that both the player and the invaders can use to attack
each other. See if you can add three new weapons to the game.

Add more graphics
You can go to www.headfirstlabs.com/books/hfcsharp/ to find more
graphics files for simple shields, a mothership, and more. We provided
blocky, pixelated graphics to give it that stylized ’80s look. Can you come
up with your own graphics to give the game a new style?

This is your chance to show off! Did you come up with a cool new
version of the game? Join the Head First C# forum and claim your
bragging rights: www.headfirstlabs.com/books/hfcsharp/

A good class design
should let you change
out graphics with
minimal code changes.

Try making the shields last for fewer hits at higher levels of the game.

Download at WoweBook.Com

Download at WoweBook.Com

this is an appendix 703

I’m still hungry for more!

appendix i: leftovers

The top 5 things we wanted
to include in this book

The fun’s just beginning!�

We’ve shown you a lot of great tools to build some really powerful software with C#. But

there’s no way that we could include every single tool, technology, or technique in this

book—there just aren’t enough pages. We had to make some really tough choices about

what to include and what to leave out. Here are some of the topics that didn’t make the

cut. But even though we couldn’t get to them, we still think that they’re important and

useful, and we wanted to give you a small head start with them.

The fun’s just beginning!�

We’ve shown you a lot of great tools to build some really powerful software with C#. But

there’s no way that we could include every single tool, technology, or technique in this

book—there just aren’t enough pages. We had to make some really tough choices about

what to include and what to leave out. Here are some of the topics that didn’t make the

cut. But even though we couldn’t get to them, we still think that they’re important and

useful, and we wanted to give you a small head start with them.

Download at WoweBook.Com

704 Appendix i

#1 LINQ to XML

private static XDocument GetStarbuzzData() {
 XDocument doc = new XDocument(
 new XDeclaration(“1.0”, “utf-8”, “yes”),
 new XComment(“Starbuzz Customer Loyalty Data”),
 new XElement(“starbuzzData”,
 new XAttribute(“storeName”, “Park Slope”),
 new XAttribute(“location”, “Brooklyn, NY”),
 new XElement(“person”,
 new XElement(“personalInfo”,
 new XElement(“name”, “Janet Venutian”),
 new XElement(“zip”, 11215)),
 new XElement(“favoriteDrink”, “Choco Macchiato”),
 new XElement(“moneySpent”, 255),
 new XElement(“visits”, 50)),
 new XElement(“person”,
 new XElement(“personalInfo”,
 new XElement(“name”, “Liz Nelson”),
 new XElement(“zip”, 11238)),
 new XElement(“favoriteDrink”, “Double Cappuccino”),
 new XElement(“moneySpent”, 150),
 new XElement(“visits”, 35)),
 new XElement(“person”,
 new XElement(“personalInfo”,
 new XElement(“name”, “Matt Franks”),
 new XElement(“zip”, 11217)),
 new XElement(“favoriteDrink”, “Zesty Lemon Chai”),
 new XElement(“moneySpent”, 75),
 new XElement(“visits”, 15)),
 new XElement(“person”,
 new XElement(“personalInfo”,
 new XElement(“name”, “Joe Ng”),
 new XElement(“zip”, 11217)),
 new XElement(“favoriteDrink”, “Banana Split in a Cup”),
 new XElement(“moneySpent”, 60),
 new XElement(“visits”, 10)),
 new XElement(“person”,
 new XElement(“personalInfo”,
 new XElement(“name”, “Sarah Kalter”),
 new XElement(“zip”, 11215)),
 new XElement(“favoriteDrink”, “Boring Coffee”),
 new XElement(“moneySpent”, 110),
 new XElement(“visits”, 15))));
 return doc;
}

XML—or Extensible Markup Language—is a format for files and data streams that represents complex data as text.
The .NET framework gives you some really powerful tools for creating, loading and saving XML files. And once
you’ve got your hands on XML data, you can use LINQ to query it. Add “using System.Xml.Linq;” to the
top of a file and enter this method—it generates an XML document to store Starbuzz customer loyalty data.

there’s so much more LINQ

Download at WoweBook.Com

you are here 4 705

leftovers

Save and load XML files
You can write an XDocument object to the console or save it to a file, and you can load an XML file into it:
 XDocument doc = GetStarbuzzData();
 Console.WriteLine(doc.ToString());
 doc.Save(“starbuzzData.xml”);
 XDocument anotherDoc = XDocument.Load(“starbuzzData.xml”);

Query your data
Here’s a simple LINQ query that queries the Starbuzz data using its XDocument:

var data = from item in doc.Descendants(“person”)
 select new { drink = item.Element(“favoriteDrink”).Value,
 moneySpent = item.Element(“moneySpent”).Value,
 zipCode = item.Element(“personalInfo”).Element(“zip”).Value };
foreach (var p in data)
 Console.WriteLine(p.ToString());

And you can do more complex queries too:

 var zipcodeGroups = from item in doc.Descendants(“person”)
 group item.Element(“favoriteDrink”).Value
 by item.Element(“personalInfo”).Element(“zip”).Value
 into zipcodeGroup
 select zipcodeGroup;
 foreach (var group in zipcodeGroups)
 Console.WriteLine(“{0} favorite drinks in {1}”,
 group.Distinct().Count(), group.Key);

Read data from an RSS feed
You can do some pretty powerful things with LINQ to XML. Here’s a simple query to read articles from our blog:

 XDocument ourBlog = XDocument.Load(“http://www.stellman-greene.com/feed”);
 Console.WriteLine(ourBlog.Element(“rss”).Element(“channel”).Element(“title”).Value);
 var posts = from post in ourBlog.Descendants(“item”)
 select new { Title = post.Element(“title”).Value,
 Date = post.Element(“pubDate”).Value};
 foreach (var post in posts)
 Console.WriteLine(post.ToString());

The XDocument.Load() method has
several overloaded constructors. This
one pulls XML data from a URL.

The XDocument object’s Load() and Save() methods read and write XML files. And its ToString() method renders everything inside it as one big XML document.

The Descendants() method
returns a reference to an
object that you can plug
right into LINQ.

You already know that LINQ lets you call
methods and use them as part of the query, and
that works really well with the Element() method.

Element() returns an
XElement object, and
you can use its properties
to check specific values
in your XML document.

We used the URL of our blog, Building Better Software.
http://www.stellman-greene.com/

Stick a button on a form, make sure you’ve
got “using System.Xml.Linq;” at the top, type
this query into its event handler, and check
out what it prints to the console.

Download at WoweBook.Com

706 Appendix i

#2 Refactoring
Refactoring means changing the way your code is structured without changing its behavior. Whenever you write a
complex method, you should take a few minutes to step back and figure out how you can change it so that you make it
easier to understand. Luckily, the IDE has some very useful refactoring tools built in. There are all sorts of refactorings
you can do—here are some we use often.

Extract a method
When we were writing the control-based renderer for Chapter 13, we originally included this foreach loop:

 foreach (Bee bee in world.Bees) {
 beeControl = GetBeeControl(bee);
 if (bee.InsideHive) {
 if (fieldForm.Controls.Contains(beeControl)) {
 fieldForm.Controls.Remove(beeControl);
 beeControl.Size = new Size(40, 40);
 hiveForm.Controls.Add(beeControl);
 beeControl.BringToFront();
 } else if (hiveForm.Controls.Contains(beeControl)) {
 hiveForm.Controls.Remove(beeControl);
 beeControl.Size = new Size(20, 20);
 fieldForm.Controls.Add(beeControl);
 beeControl.BringToFront();
 }
 beeControl.Location = bee.Location;
 }

One of our tech reviewers, Joe Albahari, pointed out that this was a little hard to read. He suggested that
we extract those two four-line blocks into methods. So we selected the first block, right-clicked on
it, and selected “Refactor >> Extract Method...”—this window popped up:

Then we did the same thing for the other four-line block, extracting it into a method that we named
MoveBeeFromHiveToField(). Here’s how that foreach loop ended up—it’s a lot easier to read:

 foreach (Bee bee in world.Bees) {
 beeControl = GetBeeControl(bee);
 if (bee.InsideHive) {
 if (fieldForm.Controls.Contains(beeControl))
 MoveBeeFromFieldToHive(beeControl);
 } else if (hiveForm.Controls.Contains(beeControl))
 MoveBeeFromHiveToField(beeControl, bee);
 beeControl.Location = bee.Location;
 }

These four
lines move a
BeeControl from
the Field form
to the Hive form. And these four

lines move a
BeeControl from
the Hive form to
the Field form.

The IDE examined
the code that we
selected and figured
out that it uses a
BeeControl variable
called beeControl,
so it added it as a
parameter to the
method.

We typed in a name
for the new method.
We decided to call it
MoveBeeFromFieldToHive()
because that pretty much
describes what the code
does.

refactoring is a great programming habit

Download at WoweBook.Com

you are here 4 707

leftovers

Rename a variable
Back in Chapter 3, we explained how choosing intuitive names for your classes, methods, fields, and
variables makes your code a lot easier to understand. The IDE can really help you out when it comes
to naming things in your code. Just right-click on any class, variable, field, property, namespace,
constant—pretty much anything that you can name—and choose “Refactor >> Rename”. We did it
with “beeControl” in the code from the simulator. Here’s what popped up:

Consolidate a conditional expression
Here’s a neat way to use the “Extract Method” feature. Open up any program, add a button, and add
this code to its event handler:

 private void button1_Click(object sender, EventArgs e) {
 int value = 5;
 string text = “Hi there”;
 if (value == 36 || text.Contains(“there”))
 MessageBox.Show(“Pow!”);
 }

Select everything inside the if statement: value == 36 || text.Contains(“there”). Then
right-click on it and select “Refactor >> Extract Method...”. Here’s what pops up:

This window lets you
choose a new name
for the item. If we
renamed this, say,

“Bobbo”, then the IDE
would go through the
code and change every
single occurrence of it
to “Bobbo”.

The IDE does a really
thorough job of renaming.
If you rename a class, it’ll
change every statement
that instantiates it or uses
it. You can click on any
occurrence of the name,
anywhere in the code, and
the IDE will make the
change everywhere in your
program.

Every conditional
expression evaluates to
a bool, so the IDE will
create a method that
returns a bool and
replace the conditional
test with a call to that
method.

The expression uses two
variables called value and
text, so the IDE added
parameters to the method
using those names.

Not only will this make
the code easier to read,
but now you’ve got a
new method that you
can reuse elsewhere!

Plus, it’ll even
figure out that
it should create
a static method,
since it doesn’t use
any fields.

Download at WoweBook.Com

708 Appendix i

#3 Some of our favorite Toolbox components
This was a book about learning C#, not learning the
ins and outs of the components that ship with .NET.
Still, we’ve got our favorites, and we thought we’d
share a few of them with you.

BackgroundWorker is one of those non-visual

components (like Timer) that you can drag
onto your form that does something really
neat—it lets you easily build multithreaded
applications.

Just drag one on your form and double-click on it (or, if you want, instantiate it—but don’t forget to dispose it!). Then add an event handler to do the work that you want to run in the background.

When you call its RunWorkerAsync() method,
it fires off the DoWork() method—but the
catch is that it runs it in another thread.
That means it does its work in parallel with
the other stuff your program’s doing.

Your process can report its progress back
to you by calling the BackgroundWorker’s
ReportProgress() method—that causes it to
raise its ProgressChanged event.

We set up this
“Happiness” counter in
the “Feelings” category,
and fed it data using
PerformanceCounter.

explore the toolbox

Download at WoweBook.Com

you are here 4 709

leftovers

FileSystemWatcher pretty much does what it sounds
like it does—it watches your filesystem to see if
something’s changed.

You set its Filter property to the type of file it should look for (like *.txt), set the Path property to the directory it needs to watch, and you can tell it to look in subdirectories with its IncludeSubdirectories property.

Once you’ve set it up, it watches the directory for
any new or changed files. As soon as a file’s added,
changed, or deleted, it raises its Changed event.
It’s also got Created, Deleted, and Renamed events
to do more specific tracking.

When the FileSystemWatcher raises an event,
it passes information about the file that was
changed (or added, or deleted, etc.) usin

g a
FileSystemEventArgs object.

When you’re writing a program that runs

continuously, it’s really useful to monitor it.

And Windows ships with a nifty tool called

Performance Monitor (perfmon.exe) that lets

you monitor processes.

The PerformanceCounter component lets you make information about your program available to the Windows performance monitoring system. Use Increment() and Decrement() or set its RawValue property. As soon as you do, you can see the data in the Performance Monitor.

Windows keeps its performance counters in categories, so
you’ll need to create a category—there are methods in
System.Diagnostics that let you do that. Then just hook
up your PerformanceCounter to the category you created,
and start sending diagnostic info to your heart’s delight!

Download at WoweBook.Com

710 Appendix i

#4 Console Applications
Most C# books start with console applications. We thought that was boring. It’s a lot
more satisfying to build programs that look like, well…that look like anything at all. And
that’s what a console program isn’t. But sometimes you do need to write a command-line
application. Luckily, it’s pretty straightforward. Here’s how:

Create a Console Application project
Any project can be a console application. Go to a project, select “Properties” from the
Project menu, and change the “Output type” to “Console Application”. But it’s easier to
create one from scratch.

11

The IDE only adds one file—Program.cs
And it’s got an empty entry point... and that’s it.

class Program

{

 static void Main(string[] args)

 {

 }

}

22
Here’s a little project for you: Take the hex dumper you built in Chapter 9 and turn it into a console application. Have it read a filename that you pass it on the command-line and print it out as a hex dump. Have it take data from standard input (using the Console.ReadLine() and dump that.data out as a hex dump. Then look up the Unix command “od” and see if you can reproduce it in C#.

so that’s why that class is called Console

Download at WoweBook.Com

you are here 4 711

leftovers

Use the args parameter for command-line arguments
Your entry point takes one parameter, a string array called args that contains the command-line
arguments. You already know how to use the Console.WriteLine() method—there are some other
useful console methods, including ReadLine() and ReadKey().

class Program {
 static void Main(string[] args) {
 Console.WriteLine(“I got {0} arguments”, args.Length);
 for (int i = 1; i <= args.Length; i++)
 Console.WriteLine(“Argument #{0} is {1}”, i, args[i - 1]);
 Console.Write(“Enter some text: “);
 string input = Console.ReadLine();
 Console.WriteLine(“You entered: {0}”, input);
 Console.WriteLine(“Press any key to end...”);
 Console.ReadKey();
 }
}

33

Debug your program in a console window
When you debug your program, the IDE pops up a console window. The ReadLine() and
ReadKey() methods get their input from that window—just type into it. And instead of writing
to the Output window, a console application writes to this console window instead. You can set
the command-line arguments in the “Debug” page of the Project Properties window.

44

Download at WoweBook.Com

712 Appendix i

#5 Windows Presentation Foundation
Windows Presentation Framework, or WPF, is Microsoft’s next-generation platform for
building visual applications. It’s pretty amazing—it has XML-based layout, scalable controls,
a totally new system for controls, 2-D and 3-D graphics and animation, text flow and
document formatting, and there’s even a cross-platform web browser plugin that uses it.

Unfortunately, while WPF is a really cool and highly capable technology, it’s not a particularly
good tool for teaching C#. And that was our goal—getting C# concepts into your brain as
quickly and easily as possible.

Take a second and create a new WPF application. Just create a new project using the
IDE, but don’t create a new Windows Forms Application project. Instead, select WPF
Application. You’ll immediately notice a difference in the IDE:

Look closely at the
toolbox—it’s got
a whole new set of
controls.

WPF applications still use
classes, just like every other
C# and .NET program, so the
Solution Explorer’s the same.

The biggest difference you’ll notice is that the form
designer looks nothing like the one you’re used to.
We’ll take a closer look at it in a minute.

Here’s the familiar error list and output window that you’ve been using.

The properties look totally
different. That’s because you’re
using it to change attributes
in a XAML file, and not
properties on objects.

xaml is pronounced “zammel”

Download at WoweBook.Com

you are here 4 713

leftovers

When you get to the “Click=”button2_Click”” part of the
line, don’t type in the name of the event handler. Instead, use the
IntelliSense window that pops up to tell the IDE to add a new event
handler. As soon as you finish the line, you’ll see a new button appear
in the designer. Switch over to the Window1.xaml.cs tab, and you’ll
find a a new button2_Click method there.

That’s all the WPF and XAML that we can include here. But now
that you’ve got the tools to start learning about WPF, we definitely
recommend that you take a look at Programming WPF by Chris
Sells and Ian Griffiths. It’s available from the O’Reilly website:
http://www.oreilly.com/.

Drag a button out of the toolbox and onto the form. If this were a Windows
Forms application, the IDE would add code to Form1.Designer.cs to add a control to
the Form1 object. But WPF is different—it uses an XML-based language called XAML
to define how the user interface is laid out.

Go to the XML editor and add a second button by typing the bold line below into the XAML editor. You’ll notice
how the IDE’s IntelliSense does a good job of helping you enter all the XML tags.

<Grid>
 <Button Height=”23” Margin=”98,43,105,0” Name=”button1”
 VerticalAlignment=”Top” Click=”button1_Click”>Button</Button>
 <Button Height=”23” Margin=”5,5,100,20” Name=”button2”
 VerticalAlignment=”Top” Click=”button2_Click”>Another button</Button>
</Grid>

Drag this slider up
and down to zoom
in and out. When
you zoom in really
close, your user
interface still looks
good—it doesn’t
get pixelated. The designer gives you a lot

of control over the layout.

The IDE has a
really powerful
XML editor that’s
optimized for
working with XAML.

XAML stands
for “Extensible
Application Markup
Language,” and it’s
the XML-based
language that WPF
applications use to
determine where
all of the controls
go and other UI
elements go.

Download at WoweBook.Com

714 Appendix i

Did you know that C# and the .NET Framework can...

give you much more power over your data
with advanced linQ queries? serialize
objects to an xml file?
access websites and other network
resources using built-in classes?
let you add advanced encryption and
security to your programs?
create complex multithreaded applications?
let you deploy your classes so that other
people can use them?
use regular expressions to do advanced
text searching?

„

„

„

„
„

„

I had no idea! Where
can I learn more?

There’s a great book that explains it all!
It’s called C# 3.0 in a Nutshell by Joseph Albahari and
Ben Albahari, and it’s a thorough guide to everything
that C# has to offer. You’ll learn about advanced C#
language features, you’ll see all of the essential .NET
Framework classes and tools, and you’ll learn more
about what’s really going on under the hood of C#.

Check it out at http://www.oreilly.com/.

read this awesome book next

Download at WoweBook.Com

you are here 4 715

leftovers

Joseph Albahari
helped us out a
whole lot by giving
this book a really
thorough tech review.
Thanks so much for
all your help, Joe!

Download at WoweBook.Com

Download at WoweBook.Com

this is the index 717

Index

Symbols
!= operator 68

&& operator 68, 77

*= operator 64, 136

* operator 64

+= operator 64

+ operator 64
casting 129

-= operator 136

- operator 64

// (slashes) 66

/ operator 64

< operator 68

== operator 67, 68

= operator 64, 67

> operator 68

@ in front of filenames 389, 401

\n 15, 66, 401

\t 401

|| operator 68

A
abstract classes 278–285

Fireside Chat 284–285
usefulness 279–280

abstraction as principle of OOP 288

abstract keyword 281

abstract methods 278, 281

access modifiers 273–274
internal 273
private 273

protected 273
protected versus private or public 276
public 273
scope 274
sealed 273

Adventure Game program (see labs, #2 The Quest)

Albahari, Joe 706

allocate, defined 405

allocated resources 405

Anatomy of a program 52–53
.NET Framework 52
classes 52, 53
methods 52, 53
namespaces 52
parameters 53
statements 53
using lines 52

Anatomy of a query 660

AND operator 68

animal inheritance program 216–222

animation 566–567
building control 573
double buffering 608–613

AppendAllText() method 400

Appliance project 266–270
Appliance class 266
downcasting 268

interfaces 269
upcasting 267

interfaces 269
application design (see design)

applications
compiling 47
console 710–711
debugging 47

Download at WoweBook.Com

718 index

the index

applications (continued)
deploying 37, 38
running 36
running in IDE 36

architecture 531

args parameter 711

argument 130

arrays 148–149, 262
deck of cards 315–316
finding length 149
versus Lists 318–320, 325

assemblies 273

attributes 421

B
BackColor property 51

BackgroundWorker 708

backing field 193, 198

Baseball Simulator project 484–501
callbacks 507–509
Fan class 494–497
Pitcher class 494–497
subscription and public events 505

base classes 214, 217
colon (:) 222
constructors 233
extending 221
subclasses accessing with base keyword 232
upcasting 267
using subclasses instead 227

base keyword 232, 275

Beehive Simulator project 239–249, 252–265
adding new form 544
AnimateBees() method 613
animating with controls 566–567

building control 573–575
images 574–575
timer 575

Bee class 524–525
Go() method 533–535, 542–543

BeeControl 574–579
animating bees on form 580–581
creating button to add to form 576
creating from UserControl 578
disposing 577
implementation 579
ResizeCells method 591

BeeState enum 525–527
Bitmap class 593
building form 241
building Worker and Queen classes 241
class hierarchy with Worker and Queen classes 253
collection of bees 555
Color.Transparent 589
creating Bee class 246
DateTime class 548
Dictionary objects 569
double buffering 609–613
drawing picture on form 596–597
encapsulation 537
extending through inheritance 245–249
fixing transparency problems 601
Flower class 520–522
for loops 537
forms

adding hive and field  582
clearing out all controls 583
FieldForm 586–587
FormBorderStyle property 582
HiveForm 586–587
Location property 582
Reset button 587

Graphics object 592
Hive class 529–530

adding methods 532–533
exceptions 539
updates 540–541

honey production 246
interfaces 254–263

inheritance 263
references 260–261

making Queen class inherit from Bee class 247
making Worker class inherit from Bee class 247
NectarHarvested variable 523
number of bees 533

Download at WoweBook.Com

you are here 4 719

the index

object model 518
OutOfHoneyException 468
overview of what’s to be added 519
Paint event handler 602
performance issues 589–591
Point object 539
printing 616–619

code for the Print button 619
event handler for the Document’s PrintPage

event 618
PrintTableRow() method 618

read-only automatic properties 523
RemoveAllControls() method 583
removing dead flowers and retired bees 537
Renderer 568–569
Renderer class 583–585

DrawBees() 584
DrawFlowers() 584
GetBeeControl() 585
MoveBeeFromFieldToHive() 585
MoveBeeFromHiveToField() 585
RemoveRetiredBeesAndDeadFlowers() 585
ResizeImage method 591

resizing images 592–593
Show() method 587
timers 546

adding to program 548
disposing 577
events and delegates 547
Render() method 583

ToolStrip control, adding Open, Save, and Print 559
updating form to instantiate bees 247
using World to get statistics 545
World class 534–535

 code 536
behavior 12

Behind the Scenes
how forms and controls repaint themselves 605
LINQ using extension methods 657
The stack vs. the heap: more on memory 641
Unicode 424
visual components 576

binary and decimal, converting between 125

binary files 424
comparing 429
hex dump 431
working with 431
writing 427

BinaryFormatter 420
Deserialize() method 420, 423
Serializable attribute 423
SerializationException 454

BinaryReader 428

BinaryWriter 427

Birthday Party project 206–214
BirthdayParty.CalculateCost() 213
BirthdayParty class 207
CakeWriting method 212
CalculateCost() method 212
inheriting from Party class 234–238

Bitmap class 593

blank space 66

boilerplate code 44

bool type 63, 64, 124, 126

bound 32

boxed objects and structs 642, 644

boxed struct 645

breakpoints 450
knowing where to put 452

BringToFront() method 581

Brush object 606

Build menu 47

Build Solution 47

built-in features 55

Bullet Points
delegates 509
event handlers 509
exception handling 471
LINQ query statements 664
Lists 322

Download at WoweBook.Com

720 index

the index

Bullet Points (continued)
reference variables 154
statements 73
try/catch blocks 471
types 154

buttons 44
adding code to interact with objects 113
adding to form 51, 112
BackColor property 51
Name property 51
Size property 51
Text property 51

byte arrays 401
moving text around in 426

byte order mark 434

byte type 124, 126

C
C#

what you can do with 714
what you get with Visual Studio and 2
why you should learn 2

C# 3.0
automatic properties 195
object initializers 115

Calculator program 474–475
temporary solution 475

callbacks 507
versus events 510

call stack 453

camelCase 201

Candy Control System 102–108

capitalization 201

Captain Amazing 622–626, 635, 636, 645, 651

casting 128–130
+ operator 129
automatic 130
wrapping numbers 129

catch blocks 455, 457
followed by (Exception) 460
following in debugger 458–459
multiple 466
with no specified exceptions 462

chaining 491, 499

Character Map 424, 425

char type 125, 126

checkbox 75

class diagrams 90, 104, 106
moving up, not down 231
private fields and types 240

classes 52, 53, 73
abstract (see abstract classes)
adding 56
collection 317
concrete 278
copying 90
creating example 111
curly braces 66
declaration 54
defining 66
designing intuitive classes 116
finding out if class implements specific interface 262
instances (see instances)
internal 273
looking for common 219
members 273
message about adding components to my class 579
MessageBox 56
multiple in same namespace 61
naming 102–103
natural structure 104
never instantiated 277
organizing 106
partial (see partial classes)
private 273
protected 273
public 273
sealed 273
serializable 421

Download at WoweBook.Com

you are here 4 721

the index

similarities between 116
static 97
subscribing 489
using to build objects 92
versus structs 644
why some should never be instantiated 280
you can’t inherit from 647

class hierarchy 215, 220
Hive Simulator 253

Clone class
implementing IDisposable 630, 631

CLR (Common Language Runtime) 47, 153

code
avoiding duplication 217
blocks 73
boilerplate 44
copying 90
looking at auto-generated 15
renaming things in code 707
repeating 213
similar 214
unwanted code from IDE 11
using IDE to help write code 48–49

collection initializers 326–327

collections 317, 555
Dictionary (see dictionaries)
generic 325
LINQ 556–558
List (see lists)
performing calculations on 662
Queue (see queues)
Stack (see stack)
using join to combine two collections into one query

671, 672
versus tables 661

colon (:) 222

colon operator 256

Color.Transparent 589

colors 76

columns 20

command-line arguments 711

comments 66

CompareTo() method 329

compiler 47

compiler errors
interfaces 254
troubleshooting 49

compiling application 36, 47

compound operators 136

concatenation 130

concrete classes 278

conditional expressions, consolidating 707

conditional operators 68–70

conditional tests 68–70, 73

configuration files 37

Console.WriteLine() method 194

console applications 710–711

console window, debugging in 711

constructors 197, 198, 199
base class 233
building new with switch statement 415
exceptions in 459
subclasses 233

ContactDB.mdf 18, 29, 31

ContactDBDataSet 31, 32

ContactDBDataSet.Designer.cs 31

ContainsKey() method 581

controls
adding code 564
altering reexisting 587
animating Behive simulator 566–567
as objects 565
bound to database 32
clearing out all on forms 583
custom 564

animation 573
disposable objects 577

database-driven 32–33
disposing 577, 579

Download at WoweBook.Com

722 index

the index

controls (continued)
how forms and controls repaint themselves 605
redrawing themselves 602
removing 564
visual display elements 570

Controls collection 565

count ++ 64

count -- 64

count = 64

Create() method 400

CreateDirectory() method 400

CryptoStream 394

curly braces 66, 73

curly brackets 58, 111
single-line blocks 212

D
data

pulling data from multiple sources 656
storing categories of 310

database-driven controls 32–33

database diagram 26
saving 27

Database Explorer 18, 675

databases 3
adding table 20
adding to project 18
connecting forms to 17, 30

(see also data source)
connecting LINQ to SQL database 674–675
entering data 28–29
LINQ 673
LINQ querying SQL database 677
multiple tables 26
SQL 18, 19
SQL Server Express 7

data source
adding new 30
configuring 31
database-driven controls 32

Data Source Configuration Wizard 18

data storage 7

data types 20
generic 325

DateTime class 548

debugger
Break All button 449
Bullet Points 471
catch blocks

followed by (Exception) 460
following flow  458–459
multiple 466
with no specified exceptions  462

Continue button 449
exploring delegates 503
finally block 460
knowing where to put breakpoints 452
Restart button 449
Show next statement button 449
Step into button 449
Step Into command 450
Step out button 449
Step over button 449
try blocks 458–459
unhandled exception window 452
uses for 457
Watch window 449, 457

running methods in 452
(see also exception handling)

debugging 16, 47, 449
console window 711
Excuse Management program 450–451

Debug menu 47

decimal and binary, converting between 125

Download at WoweBook.Com

you are here 4 723

the index

decimal type 125, 126

declaration 54

delay 76, 79

delegates
Bullet Points 509
defined 501
exploring in debugger 503
hooking up to one event 507–509
in action 502–503
multiple events 499

Delete() method 400

deploying application 37, 38

deployment package 7

design 531
intuitive applications 34–35
intuitive classes 116
making code intuitive with class and method names

102–103
professional looking applications 35
user’s needs 5

destructor 628

dialog boxes 398–400
as objects 399
customized 401
popping up 397

DialogResult 397–399
excuse management program 410

dictionaries 335–337
Add() method 335
adding or removing items 336
ContainsKey() 335
getting list of keys 336
getting list of values 336
keys 335
keys and values 337
looking up values using keys 336
renderer 580

Dictionary objects 569

Dinner Party Planning project 174–185
CalculateCostOfDecorations() method 184
cost estimate 175

DinnerParty class
class diagram 176
exercise solution 178–179

fixing calculator 203–204
inheriting from Party class 234–238
numericUpDown control 183
recalculating new individual costs 183

directories
creating new 400
deleting 400
getting list of files 400

Dispose() method 406, 577
finalizers 632, 634
making object serialize in 633
using statement 630–632

DivideByZero error 443

DivideByZeroException 443, 448

dividing any number by zero 443

DogCompetition class 312

double buffering 608–613

double type 125, 126

downcasting 268, 269
failure 270

E
encapsulation 183–204, 435, 644

as principle of OOP 288
automatic properties 195
better 276
defined 185
example 192
ideas for 191
properties 193
Renderer 568

entry point 55, 58, 231
changing 56

enumeration 310–311

enums 311–315
big numbers 312
representing numbers with names 312
versus Lists 325

Download at WoweBook.Com

724 index

the index

equal signs 67

error handling 462

Error List 49, 58

errors
avoiding file system errors with using statements 406
compiler errors and interfaces 254
DivideByZero 443
invalid arguments 131
You must rebuild your project for the changes to show

up in any open designers. 579

escape sequence 66

EventHandler 488, 491
using methods that do match others defined by Even-

tHandler 491

event handlers 177, 188, 485
adding 491
automatic 492–493
Bullet Points 509
excuse management program 408
hooking up 498
how they work 486–487
printing 614
returning something other than void 491
types of 491

event keyword 488

events
callbacks 507–509
connecting senders with receivers 500
defined 485
delegates 499
forms 498
how they work 486–487
naming methods when raising events 490
raising 490
raising events with no handlers 490
reference variables 500
subscription and public events 505
versus callbacks 510
(see also event handlers)

exception, defined 444

exception handling 439–482
Bullet Points 471
catch block 455, 457
catching specific exception types 473
DivideByZeroException 443, 448
dividing any number by zero 443
exceptions in constructors 459
exceptions versus unhandled exceptions 462
Excuse Management program 477–478
FileNotFoundException 462
finalizers 635
FormatException 448
handling, not burying 474
handling versus fixing 475
IDisposable interface 472
IndexOutOfRangeException 448
IOException 460
NullReferenceException 443
OverFlowException 448
program stopping with exceptions 462
SerializationException 453, 460
simple ideas for 476
specifying particular kinds of exceptions 462
spotting exceptions 445
throwing and catching exceptions 467
try block 455, 457
unexpected input 456
unhandled exceptions 452
using exceptions to find bugs 447
using statement 471
why there are so many exceptions 445
(see also debugger)

Exception objects 444, 445
inheriting from Exception class 448
Message property 466
using to get information about the problem 465

Excuse Management project 407–411
binary files with serialized objects 436
building the form 408
code problems 453
debugging 450–451

Random Excuse button 461

Download at WoweBook.Com

you are here 4 725

the index

DialogResult 410
event handlers 408
exception handling 477–478
Folder button 408
Random Excuse button 411
Save As dialog 410
solution 410–411
unexpected user behavior 446–447
using debugger to follow try/catch flow 458–459

executable file 47

executing application 36

Exists() method 400

Expand Tables 28

extension methods 646, 647
LINQ 657
strings 648

F
Farmer class 192–198

constructors 197
fully encapsulating 195
testing 194–195

features 3
built-in 55

fields 98
backing field 193
initializing public fields 196
interfaces 255
lining up 34
masking 198
method’s parameter has same name as a field 198
private 185–188

constructors 197
declaring 201

public 191
versus methods 98
versus properties 276
with no access 188

File.Create() 429

File.OpenWrite() 429

File.ReadAllBytes() 425, 426, 434

File.ReadAllLines() 434

File.ReadAllText() 434

File.WriteAllBytes() 425, 426, 434

File.WriteAllLines() 434

File.WriteAllText() 434

File class
Close() method 434
ReadAllText() method 403
static methods 434
versus FileInfo class 434
WriteAllText() method 403

FileDialogs 403

FileInfo class 400
versus File class 434

filenames, @ in front of 389

FileNotFoundException 462

files
appending text to 400
finding out if exists 400
get information about 400
reading from or writing to 400

(see also streams)
where Visual Studio stores them 16
writing 412

FileStreams 387, 388
BinaryWriter 427
StreamWriter 389
versus StreamReader and StreamWriter 434

FileSystemWatcher 709

Filter property 398

finalizers 628
Dispose() method 632, 634
exceptions 635
fields and methods 635
garbage collection 629–631
references 632
stability 632
when they run 629

finally block 460

Download at WoweBook.Com

726 index

the index

Fireside Chats
abstract classes 284–285
Dispose() method and finalizers 634

Five Minute Mystery
The Case of the Golden Crustacean 506

mystery solved 511
flickering images 607

float type 124, 126
assigning 129

foreach loop (lists) 321, 358

for loops 65, 69

Form1.cs 8

Form1.Designer.cs 8, 45, 50
changing control properties 12

Form1.resx 14

Form1 form, programs without 231

FormatException 448

FormBorderStyle property 582

Form Designer 3

forms
adding buttons 112
adding method 113
adding variables 112
as objects 152–153
connecting to databases 17, 30

(see also data source)
CreateGraphics() method 594
database-driven controls 32
events 498
how forms and controls repaint themselves 605
OnPaint method 605
Paint event 605
PaintEventArgs 605
redrawing themselves 602
Refresh() method 605
(see also Beehive Simulator project, forms)

frames versus turns 549

from clause 664, 667

FromImage() 606

G
garbage collection 140, 153, 635

finalizers 629–631

GDI+ 594–595

generic collections 325, 355

generic data types 325

get accessor 193, 199
interfaces with get accessor without set accssor 259

GetFiles() method 400

GetLastAccessTime() method 400

GetLastWriteTime() method 400

Go To Definition 405

GPS navigation system 87

graphical user interface (see GUI)

graphics
drawing picture on form 596–597
how forms and controls repaint themselves 605
Rectangle 597
using keyword 606

Graphics object 592, 594, 606
CreateGraphics() method 595
DrawBee() method 601
DrawCircle() method 595
DrawString() method 595
FillCircle() method 595
Invalidate() controls 605
Paint event handler 602
printing 614
Update() method 605

green arrow button 16

GroupBox control 207, 606

group keyword 667, 668

GUI (Graphical User Interface) 94
labs, #1 A Day at the Races 170

guys (Two Guys project) 110–115, 117–118
building form

adding a method 113
adding buttons 112

Download at WoweBook.Com

you are here 4 727

the index

adding code to interact with objects 113
adding variables 112, 113

creating Guy class and two instances 110
sample code 111

GZipStreams 387

H
heap 100, 101

garbage collection 140
structs 637
versus stack 641

Hebrew letters 425

hex dump 431
StreamReader and StreamWriter 433
using file streams to build hex dumper 432

hexadecimal 431
working with 432

hierarchy 215
defined 221

I
IClown interface 258

access modifiers 274–275
extending 271–272

IComparable interface 329

IComparer interface 330
complex comparisons 332
creating instance 331
multiple classes 331
SortBy field 332

IDE
auto-generated code 73
behind the scenes 14
buttons 44
changing names of files 11
changing things in 50
compiler errors, troubleshooting 49
creating new projects 8
Error List 49
green arrow 16

helping users code 48–49
importing images 14
making changes in 45
New Project window 8
Properties window 44
renaming things in code 707
Reset Window Layout command 11
running program in 36
SQL statements 19
stored procedures 19
unwanted code 11
using tabs to switch between open files 48
visual tools 73
what it does in typical application 44–45
what the IDE automates 2
where data is stored 29
Windows Forms Application project 44
XAML 713

IDE toolbar
green arrow button 16
Save icon 15
Stop Debugging button 16

IDisposable interface 405, 473, 630
avoiding exceptions 472

IDs
auto-generated 21
unique 20

if/else statements 67

if statements 131

images
drawing picture on form 596–597
fixing transparency problems 601
flickering 607
performance issues 590
Rectangle 597
resizing 592–593, 606
TrackBars to zoom an image in and out 603–604

images, importing 14

index (arrays) 148–149

IndexOutOfRangeException 448

infinite loops 71

Download at WoweBook.Com

728 index

the index

inherit, defined 215

inheritance 213–250
as principle of OOP 288
avoiding duplication of code 217
classes you can’t inherit from 647
class hierarchy, Hive Simulator 253
class that contains entry point 231
looking for common classes 219
multiple 286
passing instance of subclass 231
subclasses 225–226
(see also interfaces)

InitialDirectory propery 398

initialization 115

InitializeComponent() method 198

installation, testing 39

instances 93
creating 94

example 111
heap 101
static keyword 99

defined 93
fields 98
keeping track of things 98
non-static methods 97

instantiation, interfaces 260

int 63

integers, using in code 137

IntelliSense window 577, 595
CreateGraphics() method 606

interface keyword 255

interfaces 254–276
colon operator 256
compiler errors 254
containing statements 270
downcasting 269
easy way to implement 270
example code 258
fields 255

finding out if class implements specific interface 262
get accessor without a set accssor 259
implementing 257–258
inheriting from other interfaces 263
is keyword 262, 265
like contracts 270
naming 254
new keyword 260
object references versus interface references 276
properties 255
public 255
public void method 259
references 260–261

why use 276
upcasting 269
void method 258
why use 270, 276

internal access modifier 273

int type 124, 126, 127
assigning value 137
declaring 137

invalid arguments error 131

IOException 460

is keyword 262, 265

J
join clause 671, 672, 677, 678

L
labels 75

lining up 34

labels for objects (see reference variables)

labs
#1 A Day at the Races

application architecture 168
Bet class 167
Bet object 169
Betting Parlor groupbox 171
dogs array 168

Download at WoweBook.Com

you are here 4 729

the index

finished executable  172
Greyhound class 166
Greyhound object initializer 166
GUI 170
Guy class 167
Guy object 169
guys array 168
PictureBox control 166, 168, 170
RadioButton controls 168
this keyword 167

#2 The Quest 363–384
Bat subclass 377
BluePotion class 380
Bow subclass 379
Enemy class 376
Enemy subclasses 377
form, bringing it all together 381–383
form, building 366–367
form, UpdateCharacters() method 382
Game class 370–371
Ghost subclass 377
Ghoul subclass 377
IPotion interface 380
Mace subclass 379
Mover class 372–373
Mover class source code 373
Player class 374
Player class Attack() method 375
Player class Move() method 375
RedPotion class 380
Sword subclass 379
using objects 368–369
Weapon class 378

#3 Invaders 681–702
additions 701
animation timer 687
architecture 684–685
designing the form 686–690
Form object 684
Game class 692
Game class, filling out  694
Game class methods 693
Game object 684–685
Game object’s Draw() method 691
gameOver event 689
game timer 689, 690

graphics 691
Invader class 696
Invader class methods 697
KeyDown and KeyUp events 688
LINQ 695
movements 683
Paint event handler 691
PlayerShip class 698
PlayerShip object 685
Shot objects 699
Stars class 700
Stars object 685
types of invaders 683

line break 15, 66

LINQ (Langauge INtegrated Query) 556–558
101 LINQ Samples 663
combining results into groups 667, 668
connecting to SQL database 674–675
databases 673
extension methods 657
from clause 664, 667
Invaders lab 695
modifying items 662
.NET collections 657
orderby clause 664, 667
performing calculations on collections 662
pulling data from multiple sources 656
queries 658, 663
querying SQL database 677
query statements 664
scouring comic collections 659
select clause 664
Take statement 664
to XML 704–705

reading RSS feed 705
using join to combine two collections into one query

671, 672
versus SQL 661
where clause 664

LINQPad 679

lists 317–334
Bullet Points 322
CompareTo() method 329

Download at WoweBook.Com

730 index

the index

lists (continued)
converting from stacks or queues 358
creating new 325
dynamically shrinking and growing 321
foreach loop 321
IComparable interface 329
IComparer interface 330

complex comparisons 332
creating instance 331
multiple classes 331

Sort() method 328
sorting 328–329
storing types 322
things you can do with 318
versus arrays 318–320, 325
versus enums 325

literals 125

Location property 582

logical operators 68

long type 124, 126

loops 65, 69
infinite 71
nested 77

lowercasing 201

M
Main() method 54, 55

masking fields 198

Math class 66

Maximize and Minimize buttons 35

MaximizeBox property 35

members (class) 273

memory 100

MemoryStreams 387

message about adding components to my class 579

MessageBox 56

methods 15, 52, 53
abstract 278, 281
adding for form 113

calling specific 221
curly braces 66
declaration 54
defining 66
entry point 54, 55
extension (see extension methods)
extracting 706
implementing interfaces 257–258
Main() 54, 55
naming 102–103
objects 92
overloaded (see overloaded methods)
overriding 218, 226
parameter has same name as a field 198
private 187–188
public 191

accessing private fields  188
capitalization 201

return values 88
set and get accessors 199
Show() 56
static (see static methods)
variables matching types of parameters 131
versus fields 98
with no return value 197

MinimizeBox property 35

multiple inheritance 286

N
Name property 51

namespaces 46, 52, 55
multiple classes in same 61
reserved 73

Navigation project 86–98

nested loops 77

.NET collections, LINQ 657

.NET Database Objects 6

.NET Framework 46
colors 76
Random class 150–151

Download at WoweBook.Com

you are here 4 731

the index

tools 52
what you can do with 714

.NET Visual Objects 6, 17

NetworkStreams 387

new keyword 91
interfaces 260

No Dumb Questions
@ in front of filenames 401
\n 15, 401
\t 401
Beehive Simulator project

BeeControl 579
for loops 537
Go() methods 533
Hive class exceptions 539
NectarHarvested variable 523
number of bees 533
Point object 539
read-only automatic properties 523
removing dead flowers and retired bees  537
Show() method 587

BirthdayParty class 207
boxed objects and structs 644
byte order mark 434
capitalization 201
catch block 457

with no specified exceptions  462
chaining 491
changing names of files generated by IDE 11
changing types 154
class diagrams, moving up, not down 231
classes 73

versus structs 644
Close() method 434
closing streams 401
columns 20
constructors 198, 199
controls, altering reexisting 587
converting strings to byte array 401
creating new Lists 325
curly brackets 58
customized dialog boxes 401
data types 20

debugger 457
Watch window 457

easy way to implement interfaces 270
encapsulation 188, 276
entry point 58, 231
error handling 462
Error List 58
errors, You must rebuild your project for the changes

to show up in any open designers. 579
EventHandler 491
event handlers 188

adding 491
returning something other than void 491
types of 491

events versus callbacks 510
Exception object 445
exceptions versus unhandled exceptions 462
extension methods 647
fields with no access 188
File class versus FileInfo class 434
FileStreams versus StreamReader

and StreamWriter 434
finalizers

exceptions 635
using fields and methods  635

forms as objects 153
frames versus turns 549
from clause 664
FromImage() 606
garbage collection 153, 635
generic collections 325
generic data types 325
get accessor 199
graphics, using keyword 606
Graphics object 606
guys (Two Guys project) 114
IDE

auto-generated code 73
where data is stored 29

IDE toolbar
green arrow 16
Reset Window Layout command 11
Stop Debugging button 16

Download at WoweBook.Com

732 index

the index

No Dumb Questions (continued)
IDisposable interface 473
instances, non-static methods 97
interface references, why use 276
interfaces

containing statements 270
like contracts 270
why use 276

join clause 677
knowing where to put breakpoints 452
line break 15
LINQ 663
LINQ querying SQL database 677
Lists versus arrays 325
Lists versus enums 325
message about adding components to my class 579
method 15
namespaces, reserved 73
new projects, Visual Studio 2008 11
null keyword 153
object references versus interface references 276
OpenFileDialog, changing properties 579
overloaded constructors 313
partial classes 73
patterns, callbacks 510
Point 644
private data 188
program stopping with exceptions 462
programs without Form1 form 231
properties

statements 199
versus fields  276

protected versus private or public 276
record data 29
reference variables, how they work 154
resizing images 606
select clause 664
select new clause 677
set accessor 199
setting structs equal to another 644
specifying particular kinds of exceptions 462
spotting exceptions 445
stack 644

static and non-static methods 97
static methods, when to use 97
StreamReader 401
StreamWriter 401
subclasses

and base classes 222
passing instance of 231

this variable 154
try/finally block 473
try block 457
unhandled exceptions 452
unhandled exception window 452
Unicode 434
unique IDs 20
unwanted code from IDE 11
upcasting, but not downcasting 270
UserControl 606
using methods that do match others defined

by EventHandler 491
using statement 473
using this keyword to raise event 491
virtual methods 231
Visual Studio Express 11
Watch window, running methods in 452
why there are so many exceptions 445
why use interfaces 270

null keyword 153

NullReferenceException 443

NumericUpDown control 89

O
object initializers 115, 196, 197

object oriented programming (OOP) 288

object references, versus interface references 276

Object Relational Designer window 675

objects 91
accessing fields inside object 185
accidently misusing 184
assigning value 137
as variables 137

Download at WoweBook.Com

you are here 4 733

the index

boxed 642
building from classes 92
declaring 137
encapsulation (see encapsulation)
event arguments 488
finalizers (see finalizers)
garbage collection 140
instances (see instances)
knowing when to respond 484
null keyword 153
reading entire with serialization 420
references 261
reference variables (see reference variables)
setting equal to value type 642
states 418
talking to other objects 152
versus structs 639

object type 125

Objectville Paper Co. logo 13

OOP (object oriented programming) 288

OpenFileDialog 579
changing properties 579
initialFolder property 403

OpenFileDialog control 398, 403

OpenRead() method 400

OpenWrite() method 400

operators 64
compound 136

orderby clause 664, 667

OR operator 68, 410

Oven class 266

OverFlowException 448

overloaded constructors
excuse management program 408

overloaded methods 313, 343

override keyword 226

overriding methods 218

P
PaintEventArgs 605

Paint event handler 602

parameters 53, 88, 89
capitalization 201
same name as a field 198

partial classes 45, 50, 53, 59–61, 73, 78

PascalCase 201

patterns
callbacks 508, 510

Pen object 606

PerformanceCounter 709

performance issues
Beehive Simulator project 589–591
images 590

PictureBox control 12
adding to form 50
double-clicking 15
labs, #1 A Day at the Races 166, 168, 170
transparent background 589
Zoom mode 13

PictureBox control 217

Point 581, 644

polymorphism 289
as principle of OOP 288

popping up dialog boxes 397

primary key 20–24, 27

Primary Key button 20

PrintDocument object 614–615

printing
Beehive Simulator project 616–619
Graphics object and event handler 614

PrintPage event handler 615

private access modifier 258, 273

Download at WoweBook.Com

734 index

the index

private fields 185–188
constructors 197
declaring 201

private methods 187–188

Problem Up Close, recalculating new
individual costs 183

Program.cs 8, 54

programs (see applications)

properties 98
automatic 195
encapsulation 193
initializing public properties 196
interfaces 255
public, capitalization 201
read-only 195, 196
statements 199
versus fields 276

Properties window 35, 44

protected access modifier 273

protected keyword 275

public access modifier 273

public fields 191
initializing 196

public methods 191
accessing private fields 188
capitalization 201

public properties
capitalization 201
initializing 196

public void method 259

publish/ folder 38

Publish Contacts 37

Publish Wizard 37

Q
queries 19

anatomy of 660
editing with LINQPad 679

LINQ 658, 663
using join to combine two collections into one

query  671
queues 355

converting to lists 358
enqueuing and dequeuing 356
foreach loop 358

R
Racetrack Simulator (see labs, #1 A Day at the Races)

Random class 150–151

randomizing results 150–151

read-only properties 195, 196

record data 29

refactoring 706–707

references
interfaces 260–261
objects 261
versus values 638

reference variables 138–140, 500
garbage collection 140
how they work 154
multiple 139
multiple references and their side effects 142
multiple references and unintentional changes 147
objects talking to other objects 152

Refresh() method 605

RemoveAllControls() method 583

render, defined 568

Renderer class 568–569, 583–585
animating bees on form 580–581
dictionaries 580
ResizeImage method 591

reserved words 154

Reset Window Layout command 11

Resource Designer 582

resource files 14

result += 64

Download at WoweBook.Com

you are here 4 735

the index

result = 64

return statements 88

return type 88

return values 53, 88

risky code 456–473

RoboBee class 264

robust, defined 454

RSS feed, LINQ to XML 705

S
SaveFileDialog control 399, 403

Title property 403

Save icon 15

sbyte type 124

scope 274

sealed access modifier 273

select new clause 671, 672, 675–679

select statement 664

semicolons 66

serialization 416–425
making classes serializable 421
making object serialize in Dispose() method 633
object states 418
reading and writing serialized files 429
reading entire object 420
serializing and deserializing deck of cards 422–423
serializing objects out to file 424
what happens to objects 417, 419

SerializationException 453, 460
BinaryFormatter 454

Server Explorer 18

Service-Based Database 18

set accessor 193, 199
interfaces with get accessor without set accssor 259

Setup executable 37

short type 124, 126, 127

Show() method 56

ShowDialog() method 397, 399

similar behaviors 214

similar code 214

Size property 51

slashes (//) 66

Sloppy Joe’s Random Menu Item project 150–151

solution (.sln) file 46

Solution Explorer 18, 46, 48

Sort() method 328

SortBy field 332

source code files 46

Spy project 186–188

SQL (Structured Query Language) 19
connecting LINQ to SQL database 674–675
LINQ querying SQL database 677
versus LINQ 661

SQL databases 18, 19

SQL Server Express
database 7
file 29

stack 355, 644
converting to lists 358
foreach loop 358
popping items off 357
versus heap 641

Starbuzz Coffee project 654–656
join clause 678–679

Start Debugging 47

statements 19, 53, 73

static keyword 97
creating instances 99

static methods 97
when to use 97

static void Main() 55

Step out button 449

Download at WoweBook.Com

736 index

the index

Step over button 449

Stop Debugging button 16

stored procedures 19

Stream object 386

StreamReader 393, 401
hex dump 433
versus FileStreams 434

streams 386
chaining 394
closing 401
different types 387
Dispose() method 406
forgetting to close 388
serializing objects 423
things you can do with 387
using file streams to build hex dumper 432
using statements 406
writing text to files 389

StreamWriter 389–393, 401
[0] and [1] 401
hex dump 433
versus FileStreams 434
Write() and WriteLine() methods 389

String.IsNullOrEmpty() 240

string literals 389, 401

strings 63
converting to byte array 401
extension methods 648
formatting 179
storing categories of data 310

string type 124, 126
concatenation 130
converting 130

structs 637
boxed 642, 645
Point 644
setting one equal to another 640, 644
versus classes 644
versus objects 639

Structured Query Language (see SQL)

subclasses 214, 221
accessing base class with base keyword 232
constructors 233
inheriting from base class 222
modifying 225–226
overriding methods 226
passing instance of 231
upcasting 267
using instead of base classes 227

subscription
how it works 486–487
public events 505
subscribing classes 489

switch statements 413–415
building new constructors with 415

syntax 66

System.Drawing 594

System.Windows.Forms 46, 89, 111

System.Windows.Forms.Control 576

System namespace, Math class 66

T
TabControl 207

Table grid 28

tables
adding columns 20
adding to database 20
finish building 25
multiple 26
saving 25
versus collections 661

Take statement 664

testing installation 39

Textbox control 89

Text property 51
changing 34

The Problem Up Close, recalculating new
individual costs 183

Download at WoweBook.Com

you are here 4 737

the index

this keyword 201, 274
labs, #1 A Day at the Races 167
using to raise event 491

this variable 154

Timer 579

timer 575, 583
disposing 577

timers 546, 548
events and delegates 547

Title property 399

Toolbox components 708–709
BackgroundWorker 708
FileSystemWatcher 709
PerformanceCounter 709

Toolbox controls, easier way to build 578

ToString() method 130, 179

TrackBars to zoom an image in and out 603–604

try/finally block 473

try blocks 455, 457
following in debugger 458–459

turns versus frames 549

types
object 125
(see also value types)

U
uint type 124

ulong type 124

unexpected input 456

unhandled exceptions 452
versus exceptions 462

Unicode 424, 434
converting text to 425

unique IDs 20

unwanted code from IDE 11

upcasting 267, 269
but not downcasting 270

Up Close, access modifiers 274–275

uppercasing 201

user’s needs 5

UserControl 578, 606

user interface 3
developing 12

ushort type 124

using keyword, graphics 606

using lines 52

using statements 406, 473
Dispose() 630
exception handling 471

V
values versus references 638

value types 124, 154
bool (see bool type)
byte (see byte type)
casting 128–130
changing 154
char (see char type)
decimal (see decimal type)
double (see double type)
float (see float type)
int (see int type)
long (see long type)
sbyte 124
short (see short type)
string (see string type)
uint 124
ulong 124
ushort 124
variables matching types of parameters 131

variables 62, 73, 126
adding to form 112
assigning 128
assigning values 63
declaring 66
matching types of parameters 131

Download at WoweBook.Com

738 index

the index

variables (continued)
naming 136
reference (see reference variables)
value types (see types)

var keyword 658

vertical bars 410

virtual keyword 226

virtual machines 47, 153

virtual methods 231

visual components 576

visual display elements 570

Visual Studio, what you get with C# and 2

Visual Studio 2008, new projects 11

Visual Studio 2008 Express 11
downloading xxxvi
setting up xxxvi

Visual Studio Integrated Development Environment (see
IDE)

void method
interfaces 258
public 259

void return type 88, 103, 113

W
Watch it!

= operator versus == operator 67
automatic properties 195
destructors and finalizers 628
event handlers, hooking up 498
exceptions in constructors 459
LINQ 658
LINQ queries 663
method’s parameter has same name as a field 198
object initializers 115

raising events with no handlers 490
SerializationException 454
Server Explorer versus Database Explorer 18
things looking different in your IDE 8
writing to files 429

where clause 664

while loops 65, 69, 73

white space 66

Windows calculator 125

Windows Forms Application project 44, 66

Windows installer 7

Windows Presentation Framework (WPF) 712–713

Write() method 401

WriteLine() method 401

X
XAML (Extensible Application Markup Language) 713

XML, LINQ to XML 704–705
reading RSS feed 705

Y
yesNo = 64

Z
zooming, TrackBars to zoom an image in and out

603–604

Zoo Simulator project 216–222
class hierarchy 220
extending base class 221
inheriting from base class 221
overriding methods 218

Download at WoweBook.Com

	Table of Contents
	Intro
	Chapter 1: Get Productive with C#
	Chapter 2: It’s All Just Code
	Chapter 3: Objects: Get Oriented!
	Chapter 4: Types and References
	Chapter 5: Encapsulation
	Chapter 6: Inheritance
	Chapter 7: Interfaces and Abstract Classes
	Chatper 8: Enums and Collections
	Chapter 9: Reading and Writing Files
	Chapter 10: Exception Handling
	Chapter 11: Events and Delegates
	Chapter 12: Review and Preview
	Chapter 13: Controls and Graphics
	Chapter 14: The Death of an Object
	Chapter 15: LINQ
	Appendix i: Leftovers
	Index

