GBA and DS Rom hacking guide - 2012 edition.

FAST6191
11th July 2012

Section

To do

Part 2

Section 1

PS3 iso unpacking links

More hardware documentation links

Section 2

3d matrices, viewpoint and polish rest of 3d

Tweak NSBMD palette finding

Polish NSBMD (tool) vertices decoding

YuGiOh example finish

Eragon example?

Section 3

Finish example reverse engineering El Tigre

Scripting- lua from El tigre and maybe puzzle quest

Improve standard text extraction/insertion

Section 4

Improve sseq looping

GBA sound- sappy hacks

Improve video section (castlevania and digimon)

Section 5

Finish items and start of levels worked example

Part 3

GBA tracing

DS tracing

Example hacks

Python section and basic batch files

Links and further reading

Part 4

Formats (all)

More glossary?

Index?

Abstract

ROM hacking for the purposes of this document will be defined as the
the editing of ROM images and ISO images (ISO being the traditional
term for images of optical media) with the intent of changing how the
code within or the assets of it function in a useful way. Simply changing
sections of an image without rhyme or reason is not ROM hacking as that
is usually the end result of a measure of reverse engineering.

The following document covers ROM hacking methods with a focus
upon GBA and DS hacking techniques but with occasional asides into
the other home consoles. Broadly speaking there are two main meth-
ods of producing useful ROM hacks with the most effective but initially
most complex being the traditional definition of ROM hacking (sometimes
called low level rom hacking) where formats and methods of interaction
are reverse engineered before being altered and extended where the other
type, most often associated with the pokemon franchise but far from ex-
clusive to it, revolves around using premade tools to change games ex-
tensively in a manner closer to more traditional text, graphics and level
editing but with the use of tools very extensive hacks can be created in
a short period of time by those with minimal knowledge of the underly-
ing processes. It should also be noted that in recent times a third and
possibly fourth type have arisen, especially on the DS, where developers
are seen to use formats from the SDK or some other development library
that brings aspects of low level hacking and tool driven hacking together
by allowing at least rapid decoding of formats and exporting them be-
fore conducting lower level operations to insert the modifications and the
potential fourth candidate has been seen in programs allowing plugins or
scripts to be created using simple often text or XML a like formats to do
similar things.

With regards to premade tools they will not be a focus of this document
although if ones exist they might be mentioned.

Categorisation can occur several more times with one in particular
forming the outline of this document. In short the four main categories
of ROM hacking seen today are graphics editing, text editing, multimedia
editing and game logic and each of those can be subdivided at least one
more time to say nothing of each of those drawing from the other categories
or having elements cross over (for instance in many puzzle games the text
is encoded as regular graphics formats). The other categorisation, in this
case of the hacks themselves, that will be thrown about a bit is translation,
improvement, alteration and spoof.

It is largely intended for those that do not know much about ROM
hacking or low level computing beyond maybe the command line interface
although all levels of computing and ROM hacking knowledge should be
able to get something from this.

Foreword

This is one of the several incarnations of my (FAST6191) rom hacking guide
that has been written on and off and had large tracts rewritten over several
years with this particular incarnation being an almost total rewrite. It was first
attempted a little under a year after I decided to take up rom hacking in earnest
which coincided with the rise of the dedicated DS flash cart although my first
real in was probably learning to shrink ROM images to fit on GBA era devices
that were not built to cater with file sizes seen in commercial DS titles. The
first version was little more than collections of forum posts I made on various
subjects and short overviews of the areas aiming to point people in the right
direction if they wanted to learn how to do something and the later versions
aimed to teach people some of the underlying principles. The sister document
to this which detailed the basics of device hacking has been sidelined for the
time being as there is still something of a line between device hacking and rom
hacking (at least while emulators exist) from the perspective of the rom hacker
although parts of it have influenced things in this document and it should be
noted rom hacking skills and mindsets will serve you well in such endeavours.

I have always pulled things apart and poked around in directories of pro-
grams in an attempt to see how they tick or tweak them to my liking but the
turning point came where I decided if something did not reveal itself via su-
perficial means (plain text or some minor markup, double clicking the files and
maybe a quick search of the program/extension) then I would attempt to drill
down into it to figure it out using knowledge of how things work from the ground
up or close enough to it gaining the knowledge and devising techniques as ne-
cessary. This was the start of an ongoing process I have been able to apply in
many aspects of life and has instilled a mindset that continues to serve me well.

Countless sites, hackers, conversations and tools have gone into getting this
document and the author to this point but special mentions go to the DS rom
hacking section of |GBAtemp), romhacking.net| and anybody I have held a dis-
cussion with on those sites, cearn who authored the GBA programming tutorial
Tonc, Martin Korth who is the author of the no$gba specifications that detail
very little of direct use to a lot of ROM hacking but without which most of
present GBA and DS ROM hacking would not have got off the ground and last
but not least those responsible for the Crystaltile2 program that ties together
several nice tools that allow me to tear about the ROM images at breakneck
pace in a manner that would be hard to do using basic tools (indeed it has taken
until 2011 and onwards for us to see other tools that rank up there with it) in
an attempt to figure out how a ROM works.

http://gbatemp.net/forum/41-nds-rom-hacking-and-translations/
http://www.romhacking.net/
http://www.coranac.com/tonc/text/toc.htm
http://nocash.emubase.de/gbatek.htm

Contents

I _Introduction|

(I Rom hacking concepts|

M Basics

[I.L1 Hexadecimall
1.1.1 Representation|
1.1.2 BCD (Binary coded decimal)|
[[13 Bigandlittleendian]
I1.1.4 Signed values, floating point and fixed point|.
1.2 Hex operations|

..............................
1.2. oolean Iogic] i

1.3 Patching and patch making|
1.4 File systems and operations|
[1.4.1 Non filesystem devices|

1.43 DOl

I1.7.3 Spreadsheet and command linel
I1.7.4° Compression| v v v v it

2 Graphics 64
2.0.1 Alasingl oo oo 65

2.0.2 Haloing| 0. 66

2.03 Bitdepthl 0 o . 66

21 Palettesand coloursl 66
2.1.1 GBA colours (15 bit)|. 66

22 Tiled o 67
Bppl. 67

4 Bpp| 68

P23 BBDDl. - - o o e 68
224 GBA3Xbppl 69
225 GBA2ABPPlo 71
............................ 73
227 Known formatsl oL 73
[2.2.8 Crystaltile2 export and import.|. 73
[2.2.9 Avoiding gradients, AA, lossy/noise and such things)]. . . 78

[2.3 _Layout, timing, OAM and special effects| 78
2.3.1 Introduction to the OAM and BG modes. 78
232 Timingl 79

2.3.3 GBA and DS OAM (sprites)| 80
234 GBA andDSBGmoded, 83
2.3.5 Basic animation|l 0L 87
2.3.6 Window featurel. oo L. 92
[2.3.7 Special features (lipping, affine transformation, alpha and |

[such)|. . . . Lo 92
[2.3.8 Basic DS layout formats and mapping] 94
2.3.9 Video memory handling and alignment|. 98
EAT3d . . 98
[2.4.1 Basic 3d (bones, coordinates, keyframes)|. 99
42 Viewpoints 101
2.4.3 Textures and material colours 102
RAZ Modeld 103
[2.4.5 Lighting/shadows | 104
P46 3dsmokeandfog. 105
247 Apimationslo 106
248 D5 3D bhardwarel oo o000 107
249 Theshiftofthe3DtoDS2dl 109
24,10 NSBMDI. oo 110
2411 Non NSBMDI 120

2.5 Notes and further reading| 121
B Textl 122
BITabled o oo 122
B.1.1 Relative searching| 0. 124
8.1.2 Corruption and alteration| 130
8.1.3 Memory viewing and corruption| 133

3.1.4 Frequency analysis| 135

3.1.5 Language analysis|, 137

3.1.6 Pointer and encoding/hex analysis| 138
317 Assembly tracing] 138
8.1.8 Font viewing| o 0oL, 139
[3.1.9 Language comparing] 139
[B.I10 Table creation toold 139

B2 Poinfers 142
13.2.1 Special cases and non pointer concepts|. 143
13.2.2 Example reverse engineering of pointers| 144

3.3 Markup, control codes and placeholders| 149
3.3.1 orked example|o Lo oL 149
BATFonts.o 154
BAT NFTRI . -« o oo oo et e e e 155
B42 Commonbacks 162

3.0 Scripting and layout|o 0oL 165
3.5.1 Layout and limits|. 173
[B.6_Text extraction and insertion] 174
B.6.1 Text extractionl Lo 175
B.6.2 ‘lextinsertionl. 178

3.7 Language detection in DS games| 179
3.8 Translation hacking| 180
[3:8:1 The types of Japanese characters and how they work -| . 181
[3.8.2 Japanese glyphs/characters and observations on the lan- |
guage| 184

8.8.3 On language|, 185

[3.9 _Japanese text editors and translation tools[. 186
3.9.1 eneral Japanese capable text editors| 186
8.9.2 Rom hacking tools| o000 186
B.93 CATtoolsl. 187
4__Multimedial 189
EISoundl o oo oo 189
4.1.1 SDAT (NDS)| 194
AT2 Others o v v 201
K13 dracker formatsl. oo 203
4.1.4 General rule of thumb for custom audio formatsl 203
4.1.5 Common DS SDAT audio hacks (undubbing, injection, |
tweaks and relinking)| oL 204

KM16 GBAaudiolo e 224
E27VAded © o oo e e 228
4.2.1 General video theory|. L oL 229

4.2.2 Mods/VX/act imagine by Mobiclip. |. 230
423 RAD/Bink] 230

A2 4 CHIWAel . o o o v v oo e 231

3 Cutscened. . .« v v oo oo 231

6 Game Togic|
b.1 Levels and Statsl o oL o
p.1.1 Exampletools] 0oL
.12 Tevel editing techniques|

5.2 Compression|

B2T Tossylo
B22 Tosslessl

[6-2.3 Basic theory of the actual implementations|
[6.2.4 Compression at hexadecimal levell.
5.3 Cheating|. e

31 General cheat making]
b.3.2 GBA cheat making|. o 000000

5.3.3 DS cheat making| Lo o o000
(.34 Basicmakingofacheat]
0.3.5 Cheat prevention methods and frustrations|
5.3.6 Instruction editing cheating|

[-4 Programming concepts|

p.4.1 Functions and procedural programming.,|

0.4.5 00PS| - - - o e e e e e e
p.4.6 Turing complete] L0000
477 TFundamentals of Assembly]
5.0 Assembly|
b1 ARM|
b.5.2 GBA Assembly specifics| o000
5.5.3 DS Assembly specifics|o
b.5.4 The GBA and DS compared|

O S

5.5.7 GBA cat as extra memory for DS hacks|.

5.6 on specific assembly discussion.|o
p.6.1 Language mod example|

9.6.3 Destructive vs non destructive assembly editingf.
[5.6.4 Polymorphic and dynamic code|
5.6.95 owdown and speedup|o .. e e oo
M Cryptography (encryption, checksums and signatures)| . .
6.7 Saveediting.
[6.6.8 TInterpreted languages|
0.6.9 Game Al, game logic and game theory|.
5. ash cart and emulator theory|

278
279

9.8 Rom hacking “protection”

(IIT Examples, oddities and techniques.|

|6

Crystaltile2 general usage guide)

7

GBA tracing|

[7.0.1 Worked examples|. oo

8 DS tracing

8.1 Cart read command| 0oL,
8.1.1 Basic lookup and methods foritf
8.1.2 Header reverse engineering/generated values|.

19

Reverse engineering various ROM 1mages|

9.1 Large archive on top of filesystem|.
9.1.1 Tony Hawk|

9.1.3 El Tigre Make my mule|
. OMPIESSION] .« o . v v v v e e e e e e e e e e e e e
9.2 C |

9.0 Fighting games| Lo

9.6 Role playing games|
07 Racing games|

9.8.1 Mahjong game| o oo
9.82 Tetrisl
9.9 Other genres| e

[T0 Developer Ieftovers|

[11 Workarounds|

112 Moving to a new system|

[I3 Developer tricks aka thinking like a game developer|

[13.0.1 Level and mechanism design|.
[T3.0.2 Sprite and palette reuses|.
113.0.3 Prerendering|o oL

113.0.4 Speed blurand fog|
113.0.5 Loading covers| oo
113.0.6 Optimisation of loadingf
13.0.7 3d imagery in general|

[13.0.8 Procedural generation|

113.0.9 Noise on images and sound. |

326
326

332
333

333
334
334
334

334
335
335
335
335
335
336
336
336
337
337
337
338
338
338

338
339

339

[13.0.10 Using the limits of the system/working to them[. 345

[[3011Network coding] 346

114 Game design and medial 346
115 Python, batch files and programming for rom hacking] 347
(5.1 ROMulan Data Extractor/Injector| 347
[15.2 Programming Tanguages| 348
[[53 Python| 348
116 PC program hacking| 349
............................... 350
116.2 Decompilation|o oo 350
[17 Version control and project management.| 351
17.1 Project and team management| 351
172 Version controll 353
|18 Interesting links and further reading.| 354
.................................. 354

118.2 Further reading|o Lo 354

IV File formats (specifications, methods and known |

formats).| 356
119 General things about the DS| 356
120 Generic DS nitro SDK formatl 356
|21 General file reverse engineering] 356
PTI Headerso oo v 357
PI2TFTESIZES . o o v o oo e e e e e e e 357
[21.3 Multiple versions of the game| 357
P14 File names and extensions] -o oo e e 357
21.5 Tile viewers|o 357
21.6 Pointers and suchl. L. 358
22 Sound 358
B2ISDAT] o 358
22.2 SSEQ| 359
P23 STRM . - o o oooeoe e e e e e e 359
R2ZASWAR] . - o oo e e e 359
B25 SWARI . . . o o o 360
P26 BANK o o e 360
22.7 Other formatsl. L. 360

23

xraphics

23T NCER . - o o ot e e
232 NANRI .« . o o e e e e
.................................
.................................
235 NMCRI. - . o oo e e
236 NETRI . - o o o oe e e e e e

23.7 NSBMD
23.8 NOBTX

124 Packing format)|

b

an

25 Text]
251 BMGL. . . oo

[V Glossary, index and such|

26

xlossar

10

361
361
362
362
362
363
363
363
364
364

365
365

365
365
367

367

Part 1
Introduction

Although the preceding sections have detailed some of what is to come and how
it will work the introduction is still necessary. Broadly speaking there are four
parts to this document including this introductory section although the bulk
of this document will be taken up with parts on the areas of ROM hacking
(graphics editing, text editing, multimedia editing and game logic) and a more
free form part where the reader is shown some examples of hacks, methods and
games in an attempt to convey some real world basis to a lot of the examples in
the more general section that it would have been too unwieldy to keep in that
part or too troublesome to categorise them as well as little curiosities discovered
over the years (it is these little curiosities that keep things interesting for many
ROM hackers).

Traditionally in such guides something borderline philosophical or general
tends to be said about now and I see little need to break from tradition right
now. To this end concerning the qualities that make for a good ROM hacker they
are arguably patience or perhaps a deep down acceptance that every problem
in computing can be solved and near boundless curiosity. Great ROM hackers
have come from all walks of life but most interestingly traditional education is
not necessarily a great indicator of how well a person will take to ROM hacking.

The tools of the trade are many and varied but they can usually be broken
down into five basics with only really the last being ROM hacking specific.

1. A hex editor. Unless quantum computing appears and takes over tomor-
row all computers you will deal with boil down to binary (covered later but
this is the 1 and 0 stuff) which is very simply abstracted to hexadecimal.
It is usually ill advised to do anything more than a simple change (be
it a simple edit of a line, a find and replace, a basic operation or insert-
ing something new) in a hex editor but those small changes can be the
thing that makes a ROM hack work. la could be said to be a compres-
sion handling tool as compression is quite often standardised and often
provides an immediate and (these days at least) simply worked around
barrier to seeing a format as the program itself will see it.

2. A spreadsheet or some method of being able to manipulate/do repeated
operations a large list of numbers (in hexadecimal or otherwise). Com-
puters are largely just tools for repeated manipulation of numbers with
anything more usually coming at a steep cost in terms of resources so
being able to manipulate large lists of numbers is useful.

3. A text editor. Related to the above two it is often beneficial to be able
to manipulate sections of text and hexadecimal and perform extended
searches upon them which is an arena text editors have long had serious
abilities in.

11

4. A web browser. Although you will often be pulling things apart that have
never been pulled apart before (and as high level programming languages
become more viable for systems of the day that can be more true than
ever) you will also be standing upon the shoulders of others all the time
so being able to see what others have done before you and research the
underlying methods is very much necessary. The doorway to the technical
world these days is a web browser.

5. A tile editor. Used correctly a hex editor will allow you to see patterns in
code and text but graphics are a huge part of nearly all games so being
able to see graphics is immensely useful. See also the note on compression
for hex editors as it can apply even more here (in a hex editor you can
reasonably still follow what is going on but anybody that uses a tile editor
for more than a few minutes will usually see how a mess of pixels can turn
into a viewable image very quickly and be broken just as easily).

A familiarity with the basic usage of the command line (running something from
one using some switches, the idea of piping and how to create a batch file at
the level of just a series of commands) and a spreadsheet (what cells are and
how to enter basic functions) will be useful but any specifics or more complex
concepts will be covered where appropriate.

Your computer to do all this does not necessarily have to be that powerful
by the standards of any day and especially in present times. Naturally there
are techniques like some of the high end searching, some compression related
activities and emulation of other consoles that push systems hard but a lot of
damage can be done with low powered systems. The added bonus of taking
up ROM hacking as opposed to pulling apart real world devices (although such
activities are also great fun) is that provided suitable backups are in place and
you should get into the practice of making regular and preferably incremental
backups of your work (some mention of methods by which you can do this is
made in part 3) any damage can be undone by pressing undo or copying and
pasting something else in with the further bonus of it allowing you to take
many branching paths in an attempt to solve your problem. However many will
suggest that if you can get a machine with at least two monitors of reasonably
high resolution you will be doing well.

On jargon. Without going back to the philosophical pondering elsewhere in
this part or if you prefer moving into the extreme areas of physics there comes
a point where describing something becomes needlessly long winded so it is
abstracted to a term or series of terms at the cost of having someone somewhere
{semewhen?} lack a frame of reference for it. Hopefully any technical terms
encountered will be explained in the paragraph, before it or are not of immediate
relevance to the matter at hand. Note that this definition differs slightly from
The Jargon File’s definition.

12

http://www.catb.org/~esr/jargon/html/distinctions.html

Warning

Much of what you are about to read will train you in how to pull things apart
and eventually this leads to you being able to pull things apart just by looking
at them and it will become instinct to do so (you have probably seen variations
on this in others that spend their days or have had training in a field and will
constantly notice problems where others have attempted to do something in said
field). There are ways for creators of works to lessen this but they are costly to
do and most people do not spend their time pulling things apart so they tend
not to be done. This means you will quite often see just how things work and
moreover exactly how they have failed which can ruin things you might have
previously enjoyed and if you are not careful turn you into a snob/art critic
(although the better side of this is you will possibly be able to see the worth
and enjoy just about anything and conversely make you the sort of person those
that need stuff done will want to always have around). To this end be warned
of this possibility.

13

Part II
Rom hacking concepts

An attempt has been made to divide sections up but you are advised not to
pay that much attention to them or at least do not consider them indivisible
if for no other reason than just about any of these is the worthy of being the
subject of a document longer than this one. Although it is the default position
of this guide anyway this will focus more on the hardware underpinning things,
any dominant formats and some basic techniques rather than simple tool usage
(although much of that is covered too) with the next part being given over
to fully worked examples rather than the simplistic techniques or overviews
favoured in this section.

1 Basics

This section contains some of the basic terms, concepts and ideas that will make
ROM hacking and this document a bit easier to grasp. Before this starts though
there are three equally important truths to know

1. Any problem as far as “what does this represent?” goes can be solved.

2. The bits you are looking at can mean anything and it is only with context
you will figure out what they do in that instance.

3. The bits might represent anything but any modern non trivial system will
layer things on top of each other in a process known as abstraction. Drill
down or drill up as far as you need but there will usually be a limit where
going further is just for intellectual curiosity and not much more.

1.1 Hexadecimal

As you might know all current computers are binary machines which is to say
they operate on the idea of a reasonably continuous feed of of 1 and 0 values
to various pins to do what needs to be done. 1 and 0 get very hard to read so
these are stacked up 4 deep to form hexadecimal (a very similar logic to writing
things like 1x10°9 instead of 1000000000). 4 things each with the ability to be
one of two different states means 16 combinations and it is then desirable to be
able to display each combination as a single character so the letters A through
F join the Arabic numbers (0 through 9) to make 16 (A=10 decimal, B=11 and
so on to F=15 at which time it wraps around and 10=16 decimal).
A quick reference table

14

Decimal | Hexadecimal | Binary

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
14 1110
15 1111
The thing to remember about binary is that it is much like the number 1567
means 1 count of 1000, 5 counts of 100, 6 counts of 10 and 7 counts of 1 or
in words it is a list of counts of ten raised to a power. For binary rather than
ten you use 2 so 1110 means one count of 8, one count of 4, one count of 2
and one count of 1. There are all sorts of tricks and things you can learn here
many of which will be covered before long and some are almost as essential as
hexadecimal when it comes to understanding the document to come.

You can learn to convert it and do maths with it in your head if you like
and it is certainly a useful skill but most of the time you will just be finding the
value (in which case a program will probably be doing it) and everything from
windows bundled calculator (in scientific mode) upwards will convert between
the various bases (basel0= decimal, base2= binary, basel6=hexadecimal) and
be able to perform maths with it.

There is a fourth method called Octal aka base 8 that uses 0 through 7 and
represents 3 bits but 3 is a terrible number to work with and multiply with (it
being a prime number and all) so it tends not to be used outside of specific
applications. There are further variations on this theme in things like Base64
but that is an encoding scheme for transmission of data and will be covered
later in text hacking.

In summary hex(adecimal) is just a numbering scheme that works better
than regular decimal for computing purposes and nothing more. Quite often new
hackers are seen to assign a near magical status to hexadecimal when it really
deserves nothing of the sort (the magical stuff is assembly hacking). Certainly
it is very hard to take a look at an entire rom and edit it just from a hex
editor which is why nobody does it from scratch and if they appear to it is
almost certain they either did a lot of work to get to that point (there are many
programs that will spit out locations and interesting values). Putting in the time
to reverse engineer the original work is what ultimately allowed for the simple

[
D S0~ o w k| w = o

—
[\

—
w

= | D Q| | ©| o | o o I | W o= O

15

edit and/or that the file conforms to a known standard (open up any proper DS
rom and the first line will be a ASCII encoded text string of the internal name
of the rom and there are similar things for most DS files/formats) or enough of
a standard that a basic edit is possible.

1.1.1 Representation

There is a very overdone computing joke along the lines of there are 10 kinds of
people in the world (those that know binary and those that do not).

As said “joke” just illustrated it is hard or even impossible to know what set
of numbers is being used and as you can take down an entire system with an
errant bit let alone a complete misinterpretation there needs to be a way to in-
dicate what is being used. In mathematics a subscript decimal value of the base
you are using but that is awkward to write in a basic text editor so various nota-

Most people are quite happy to accept a bit of redundancy in exchange for a
lack of confusion here.

Stick two hexadecimal numbers together (sometimes called nibbles/nybbles)
and you have a byte. From there it can stack further although it can get a bit
tricky as it varies between computer architectures (32 vs 64 bit for instance),
operating systems and sometimes programming languages. In general most
people will stick to the 32 bit C interpretations of all this and that is what this
document will be using unless otherwise stated.

Going further the terms halfword, word, double word (dword), quad word,
short, long and int are what is interesting and are probably worth knowing.

Most of the time it follows on from bytes with half word being 16 bits aka
2 bytes, words being 32 bits aka 4 bytes, dwords being 64 bits and so on with
few people using the terms short or long in rom hacking and especially not int
as the “bit” of the processor in question unless they are defining a format in a
similar manner used in a programming language (in which case uint for unsigned
integer, u8, ul6 and similar things appear). If you do go looking “typedef” is
the usual catch all term to describe this sort of thing and many programming
tutorials will quite rightly spend a lot of time covering these concepts. In many
ways it is not that useful to ROM hacking until you get to analysing what might
have happened in the original source to get here at which you probably already
know the/a programming language.

An important extra term when discussing this is boundary /alignment. You
probably do not have to make your sentences a given number of letters/words
but computers tend to like it more if the data starts on a multiple of a given
value (sometimes it might be "byte aligned" but more often it is word aligned
or even higheIEI) or involves manipulating a given length of memory (various

IThere are hardware limits on the GBA and DS depending upon what you are doing (it

16

internal functions of the DS and GBA prefer to only operate on similarly aligned
sections of memory).

One link that has some good stuff if you want to go further is the art of
assembly| but if things are preferred a little closer to conventional maths grin-
nell.edu have a nice page.

1.1.2 BCD (Binary coded decimal)

Mentioned mainly as it is a nice example on how binary and hex mean very
little without context. It is seen in one place on the DS in the firmware and
things stemming from it (mainly the clock and calendar functions) as well as
older programs but it is rarely seen when hacking ROM images these days.

There some minor variations here (the standard 8,4,2 and 1 can make every
combination between 0 and 9 but so can 5,3,1 and -1) but they are not commonly
seen. As mentioned the standard method is the same as the translation of binary
to hexadecimal so bringing back the table with only the relevant entries.

] Decimal \ Hexadecimal \ Binary ‘

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
) i} 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001

Using the clock example if you wanted to represent the time 15:30 you could
figure out a way to encode it or just use BCD

0001 0101 0011 0000 has a decimal equivalent of 5424 (not 1530) but can
quite happily represent the time.

For a quick example of the 5,3,1 and -1 scheme also mentioned

will be covered in graphics and compression later) but in theory nothing needs to be word
aligned. Most things will be word or larger aligned though so unless you can demonstrate
otherwise and certainly for the initial passes of most files assume at least byte alignment.

17

http://webster.cs.ucr.edu/AoA/DOS/ch01/CH01-2.html#HEADING2-1
http://webster.cs.ucr.edu/AoA/DOS/ch01/CH01-2.html#HEADING2-1
http://www.cs.grinnell.edu/~rebelsky/Courses/CS152/97F/Readings/student-binary.html
http://www.cs.grinnell.edu/~rebelsky/Courses/CS152/97F/Readings/student-binary.html

Decimal | Hexadecimal Binary

0 0 0000
1 1 0010
2 2 0101
3 3 0100
4 4 1001 or 0110
5) 1000
6 6 1010
7 7 1101
8 8 1100
9 9 1110

15:30 once more

0010 1000 0100 0000 which has a decimal equivalent of 10304 but according
to the scheme above will decode as 1530

There have been cases of things using it to display fractional values which
can be useful as there are certain common things hexadecimal struggles with

1.1.3 Big and little endian

Absolutely vital when dealing with the GBA and DS in any real depth is the
concept of endianness. Historical reasons are the main reasons for it existing in
the first place although it does have value still and as many systems use it the
aspiring ROM hacker has to know about it. In short where the conventional
maths and devices with X86 family chips (most PCs) display the most significant
number first devices using ARM chips (and many others) which include the GBA
and DS display the least significant bytes first.

In practice it means some locations/lengths might be written as something
like A036 0104 when in fact they read 0401 36A0. Although many hex editors
will support a change between big and little endian the process by which most
of it is rendered readable is usually a flip across so many bits (32 bit flip means
32 bits as above will be flipped, 16 bit flip means only two bytes will be flipped).

1.1.4 Signed values, floating point and fixed point

There is also the matter of signed bytes and (floating) point values for much like
not being able to easily write subscript computers tend not to have provisions
for negative symbols and values after the “decimal” point.

Signed values Various methods exist here with popular ones including ones
complement, twos complement and excess 7. Each have advantages and some
disadvantages depending upon what you are doing although the biggest disad-
vantages to some of the simpler methods are the inability to do simple maths
without conversion and the existence of two values for 0 which makes comparing
and acting on the results tricky.

Signed numbers are also one of the reasons for some stats ending at 511 or 127
or similar (it should become apparent why this is very shortly) with the other

18

big reason (assuming the first bit is not simply ignored) is that programmers
frequently like using the first bit to encode something/act as a flag of some form
(for instance the DS file format NARC uses it so signify a subdirectory). For
another source on the subject jgrinnell.edu’s CS152 has a nice version,

Sign and magnitude Here the first bit of a value is given over and called
a negative flag which is also another name for the method (although the term
can be used more generally when dealing with signed numbers), another name
is signed magnitude.

Here the first bit is given over to being a sign with the rest of the numbers
being interpreted as usual. It is the most similar method to conventional count-
ing/maths. 0 means positive while 1 means negative. 0000 0001 equals 1 and
1000 0001 equals -1

Ones complement For the ones complement a bitwise NOT operation
(covered in more detail later but in short it changes every 0 into a 1 and every
1 into a 0) is applied to a positive number making the negative counterpart. It
has problems as basic maths can not be done so easily and it has the problem
of two values for 0.

0001 becomes 1110
0010 becomes 1101

0011 becomes 1100

Twos complement Marginally more complex than the others mentioned
so far is twos complement but as it does not have the pitfalls of the other numbers
(two representations of zero and simple maths is possible) it is popular. Here
the ones complement is made (bitwise NOT to all the digits) and then 1 is added
to the result using conventional binary addition. 0000 becomes 1111 and then
0001 0000 but the other part is ignored.

Examples

-1

0001

NOT gives 1110

adding 0001 gives 1111

Example

-3

Positive three is 0011

A bitwise NOT gives 1100

Adding one 0001 gives 1101

Maths example

Similar to the example of 0 above 2 decimal (0010) added to -1 (1111) which
gives 0001 0001 and has the leftmost “spillover” ignored.

19

http://www.cs.grinnell.edu/~rebelsky/Courses/CS152/97F/Readings/student-binary.html

“Excess 7’ Although twos complement and the others will for the most
part serve you well and form the bulk of everything you come into contact with
there is another common method although it is a bit more complex. It can
vary a bit depending upon your implementation (the technical /concept name is
excess 2”(m-1) where m is the number or binary digits you have to work with)
but excess 7 will be used for now.

It becomes more complex and somewhat more important when fractional
numbers arise (covered in the section below). In practice it is a kind of combin-
ation of the basic signed magnitude idea and twos compliment. As mentioned
this is sticking for excess 7 for the example but scaling up is fairly logical.

In this system the the first bit is used to indicate the sign (although not
necessarily the sign of the number) leaving the remaining 7 (excess 7) to do
what needs to be done. So far not very different to anything covered but this is
where the trick happens although an example before it is covered in earnest.

In years past you might have been encouraged to just make numbers huge
as a workaround for having to deal with negative numbers

The equation

8—1-3+6+9=19

A simple equation but with a calculator or in your head it is quite possible
to make a mistake and mess the whole thing up.
Adding in this case ten to all the numbers makes them all positive

18+9+74+16+19 =69

Five numbers all 10 larger makes the result “out” by 50 but plain addition
is far easier to avoid making a mistake in.

The reason for the digression to simple maths tricks is a similar principle
gets used for excess 7.

In the case of the excess 7 (also called 8 bit excess 127) this is usually
01111111 or 127 in decimal. Here the value you want to encode is either taken
(positive numbers) or added to (negative numbers) from this value. In theory
and so probably somewhere in a game out there the excess does not have to be
127.

If you prefer it could be seen as counting starting at the lowest possible
number which would be “~(-1 +2"m)” or for 8 bits “-(-1 + 27 7)” which is negative
127 and call that the starting / “zero” value. 0 (as in nought) is then the bias
value. It has the advantage of being easily compared with other numbers so it
is worth knowing about.

Examples

Number to encode -7 or (-) 0000 0111

0111 1111 - 0000 0111 = 0111 1000

Number to encode 18 or 0001 0010

0111 1111 + 0001 0010 = 1001 0001

Examples

20

0000 0000 -127

0000 0001 -126

0000 0010 -125

0111 1111 0

1000 0000 +1

1000 0001 1111 1111 +128

In practice/the real world this is covered by the near universal standard IEEE
754 which is more commonly seen when dealing with floating point numbers (you
could make another method but nobody really does and hardware is built to
use it so nobody does again although they can use fixed point numbers). Here
32bits or more can be used with the first being the sign, the next being the bias
value and the rest being the encoded number in question. Speaking of fractional
numbers though

Fractional numbers and real numbers Fractional numbers are usually
done using a so called “floating point” although the GBA and DS do make
extensive use of fixed point numbers for various parts of the hardware including
2d transformations and 3d and will be covered shortly. The idea of leaving
things as values and only calculating them at the last moment is encouraged in
programming but in hardware or the final representation this can be tricky and
as that is where ROM hackers spend most of their time it will be noted and
nothing much else said on the subject.

Floating point On the face of it it appears related to the excess 7 method
of displaying signed numbers although in practice it is closer to the standard
scientific notation for displaying large numbers. The concept of this then is the
idea of floating point numbers, in essence they are a sign value and a multiplier
(actually an exponent) to make sure the “decimal” point gets where it needs to
as well as the number itself but without the 1 part as that is assumed (much
like you would never write 0.31x107-3 unless you are an engineer it is always
assumed the first bit is 1 and as you are working in binary meaning that is the
only value it can be you can leave it out of the number that is transmitted and
have the method reconstruct it).

It probably does not take a great leap of imagination to see how this gets
very complex to operate multiple values (different “powers” or not) very fast
and although most software development kits and systems will feature abilities
to handle such things their use is ideally saved for when there is no other op-
tion (indeed newer/high performance systems often have their computer power
compared by how many flops aka floating point operations per second or indeed
criticised on their lack of support for various versions of floating point). In
practice although being able to decode it is useful a tool to do it for you is more
useful.

There is a class of compression based on this idea known as arithmetic coding
for the file might represent something but it is still a number and some numbers
can can be represented shorter by encoding them as a floating point.

21

The short version

32 bits long the first bit is the sign of the multiplier, the next 8 bits are the
value of the exponent of the multiplier in excess 7 notation and the final bits
are the basic value that needs multiplying save for the “hidden” 1 value which
the fractional part gets added to.

That is a bit wordy so examples

Decoding 40adcccd hex

The binary representation is as follows

0100 0000 1010 0100 1100 1100 1100 1101

0 starting means it is positive.

The excess 7 bits

1000 0001

Taking the remaining section and adding the invisible 1

1010 0100 1100 1100 1100 1101

Much like binary is powers of two this goes the other way and decreases in
powers of two so taking that pattern and checking off the pattern against it.

100.25 0 0 0.03125 and so on

Using just the numbers there 1.28125

Multiplying by 4 gives 5.125

Short of the actual number it is supposed to represent which is 5.15 but if
you continued adding numbers from the binary pattern it would get very near
there.

Representing 3.14

Positive so first is 0

Dividing by 2 renders it as 1. something and 271 = 2

2 in excess 7 is 10000000

0.57 is the number that needs representing.

0.5 4+ 0 + 0 + 0.0625 and so on

For now stopping there

10010000000000000000000

Working back through leaves it at

01000000010010000000000000000000 binary or 4048 0000 hex

Decoding that though gives 3.125 so the pattern should have been continued
further

In practice it ends up as

10010001111010111000011

Which combined with the rest gives

4048£5c3 hex.

The slightly longer version

Single precision (32 bits) and double precision (64 bits) are the most com-
mon versions of floating point with anything beyond that (save perhaps quad
precision in some hardware) usually being relegated to (very slow) software
methods.

22

Also the exponent values in theory at least range from -126 to 127 (00000001
and 11111110) meaning the all 0 and the all 1 values are not available. In
practice these are used as follows All

0 All 0 indicates exact 0 or more accurately values smaller than the lowest
feasible value.

1 All 1 indicates either positive or negative infinity for the all 1 values assuming
the mantissa section has nothing in it. If the mantissa does have something
in it then it means an error like divide by 0 or something similar (NaN
aka not a number).

For more IEEE floating-point representations of real numbershas a basic over-
view and What Every Computer Scientist Should Know About Floating-Point
Arithmetichas a far more in depth discussion and historical analysis. If you just
want something to toy with to get it sorted in your head FloatConverter is quite
good.

To make up for some of the shortcomings of the method there are two com-
mon functions that are used when dealing with such things

Ceiling In short round up to a given value (or multiple thereof) regardless
of what a conventional round would do. Not necessarily limited to fractional
numbers either.

Floor In short round down to a given value regardless of what a conven-
tional round would do. Also not necessarily limited to fractional numbers.

Fixed point values Floating point is used everywhere in computing (espe-
cially in 3d and mapping of things in 3d which is a fairly popular thing for
games to do) and it is quite costly in terms of resources so fixed point appears.

Fixed point attempts to work around some of the issues with floating point
at the potential cost of some accuracy and some flexibility. It is seen in parts
of the DS 3d system among other things where 4 bits “natural number” 12 bits
“fractional” is often of the order of the day. That is to say the computer assumes
all numbers after a given binary digit are fractional. Some instead prefer to view
it as a range type function with 0000 to 1111 representing the difference between
two whole numbers (or in the case of sine and cosine -1 to 1).

Timers are quite commonly made like this although they can also just be
a multiple with the “timer” used for the DS SSEQ audio format being a good
example of the latter.

What the numbers mean is usually either the logical extension of the binary
“powers” (27°-1=0.5 decimal, 2°-2 = 0.25 decimal.....) or they count again and
the number after the point is effectively assumed to be a normal number. Binary
coded decimal almost invariably in the 8421 arrangement can also appear here.

As with signed values their use prevents the number from being read as a
simple integer and used in simple maths although with a bit of shifting, rotating

23

http://www.math.grin.edu/~rebelsky/Courses/152/97F/Readings/IEEE-reals.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://www.h-schmidt.net/FloatConverter/IEEE754.html

and such you can get quite a bit done and even do some basic comparing and
maths. Speaking of shifting and rotating

1.2 Hex operations

Hexadecimal is just numbering but there are common things done to it that
file formats use, the internal logic of the computer will use and can be used to
quickly and easily sort something that needs sorting.

1.2.1 Shift

Right hand and left hand shift then and useful when you need to chop off a bit
from a value. In practice 32 bits allows for a lot of address and 31 bits can still
quite easily handle most GBA and DS addressing needs so the upper bit can be
used to indicate things as indeed NARC files do so as to indicate a subdirectory.
Moreover lots of the DS internals only need a few bits for things they do so they
are combined with other sometimes unrelated things which you might need to
lose to see what is going on.

A shift can be right hand (you shift the numbers to the right losing the
leftmost piece of data) or you shift to the left losing the rightmost piece of data.

It is also useful as a quick multiplier (think how you technically shift the
numbers when you multiply or divide by 10 in decimal).

There is also the distinction of logical shift and arithmetic shift where in the
case of the latter you do not lose the data if you shift left and then shift right.
You can also do block shifts but they are just a special case which usually means
a given number of bits are shifted.

1.2.2 Rotate

Related to shift but where you lose data if you shift it appears in the other side
when you rotate.
1011 rotates left by 1 bit makes 0111

1.2.3 Flip

Flip is most useful when you are working around big and little endian. It was
already seen when big and little endian were covered above but a 32 bit flip of
A036 0104 reads 0401 36A0.

In some cases it can be useful to flip larger or smaller values like for instance
although many formats will use a full 32 bits for a length the file might be very
short and only need the first 16 bits. More useful (and not often a function
of hex editors) the GBA 4BPP image format uses 4 bits per pixel but will flip
them between storage and being on the screen.

In the picture you can see the hex that represents the highlighted tile (it is
the icon from the wifi version of Yakuman DS, a competitive Mahjong title).
In the first line you can see 0000 DODD where the pink (in practice they would
be transparent but more on that when graphics are discussed) pixels which are

24

represented by 0 in this case run for 5 pixels, in the next line you can see 4
pink pixels as they are but then the grey pixel (in this case D) is after the
F value which represents the white pixel and in the next line you can see the
cream coloured pixel (E) be second to last as opposed to actually last. It it
done because that is how the hardware works/expects things but it can make
it tricky if you are trying to simply edit it.

QOO0 (0000 pODD
Q004 (0000 FDFF
Q008 (0000 FDEF
QDOC (0000 FDEE
Q010 (0000 FDEE
0014 (0000 FDEE
Q01& (0000 FDEE
Q01C (0000 FDEE
0020 |DDDD DODDD
0024 |FFFF FFFF
0025 |[EEEE EEEE
O0ZC |[EEEE EE4G
Q030 |[EEEE 3633
0034 |[EEGE B3FA
003& |[EEIL F333

LTk

1.2.4 Boolean logic

Often a more useful set of techniques than basic shifts and the other operations
covered already. There are several types although you will probably see patterns
soon enough (mainly that the NAND, NOR and XNOR are just the inverse of
their counterparts). Boolean logic exists in two big areas affecting ROM hacking
and related pursuits; one is programming and the other is electronic logic where
they perform identical functions in some ways are thought of a bit differently.
Here is probably useful to discuss high and low and in the vast majority of
cases (especially software and rom hacking) you should always assume this unless
otherwise stated a high value corresponds to 1 and a low value corresponds to 0.
This is unlike some other things in this section where you will usually want to
seek clarification for things (what method of negative or point numbers you are
using for instance). There is however a variation on this called negative edge
logic (referring to certain chips that change on the falling edge of a clock pulse)
that can be described with the opposite where 0 is high and 1 is low.
Examples will be done in binary.

25

NOT aka inverse Does what it says and flips every bit.
1001 1110 becomes 0110 0001

AND Here you take two numbers (preferably of equal length but if not the
shorter sequence is repeated as appropriate in most cases) and combine the
outcome so that only if both inputs are high the result is high

1100 1111 AND 1010 0100 becomes 1000 0100

NAND Much like AND you take two numbers and put them together but
rather than if both are high this is if both are low. It is most useful as it is a
fundamental (you can stack NAND operations or indeed NAND gates in such
a way that you can make any other Boolean operation).

1100 1111 NAND 1010 0100 becomes 0111 1011

OR Again two numbers but if any one of the inputs it high the result is high.
1100 1111 OR 1010 0100 becomes 1110 1111

NOR Two numbers but only high if both inputs are low
1100 1111 NOR 1010 0100 becomes 0001 0000

XOR Two numbers but only high if only one input is high. Useful as encryp-
tion by itself although there are serious downsides when it comes to actually
being used as it (done properly it is one of the few that can not be broken but
in practice it is has serious flaws that mean that will probably never happen)
and the basis of many more useful encryption methods. Also where the others
can easily have multiple inputs in electronics multiple input XOR is tricky at
best.
1100 1111 XOR 1010 0100 becomes 0110 1011

XNOR Two inputs, only high outputs when none or both inputs are the same.
1100 1111 XNOR 1010 0100 becomes 1001 0100

Discussion of Boolean logic. The most useful in day to day rom hacking
are probably NOT, AND, OR and purely because of the encryption XOR.

NOT aka inverse is useful on many occasions for many things especially in
graphics (it might not be quite that simple in practice but inverting colours is
quite common). Also useful to corrupt data and recover it easily (you just invert
it back).

AND is useful to remove certain bits, for instance if you want to remove the
highest bit in a byte just AND the result with 0111 1111 and whatever the rest
is will stay the same but the highest bit will be 0 regardless.

OR is useful if you want to set a certain bit high, for instance to set the
highest bit in a byte high just OR the result with 1000 0000 and the first bit
will be set high regardless but the rest will only be high if they were to begin
with.

26

XOR is also used a few times in the internals of the GBA and DS and is
used extensively as simple protection at points in cheat devices and things like
the GBA e reader.

An aside on logical /relational operators They share the same name and
broad function as the boolean logic but here they are used as checks to see if
both inputs meet a given condition. In C type languages it runs as follows
AND checks to see if both inputs are non 0 and returns true if it is the case
OR checks to see if just one input is non 0 and returns true if it is the case
NOT merely reverses the output of the other functions.
As far as most of ROM hacking is concerned this will usually be interpreted
closer to assembly where compares and branching will be used instead.
Equally a right hand logical shift is different from a conventional right hand
shift in that it will retain the most significant bit
1000 1110 right shifted by 1 makes for 1100 0111

1.2.5 Hex Mathematics.

Some people can operate in hexadecimal but most of the time the maths re-
sembles long division and long form maths. It is quite useful to know as quickfire
round what is 9 + 3 in hex

The answer is C but courtesy of probably using decimal all your life your
immediate thought might well have been 12 which could well mess your entire
hack up if you put that into the rom.

Subtraction works much the same way until you get to negative (signed)
numbers in which case you get to figure out what method you are using for it.

Multiplication is easy enough

1IDx09is 10x9 + 0D x 9 or 90 4+ 75 = 105

Division is a pain and more importantly depends on the programming lan-
guage function used (many basic methods will chop off the stuff after the
“decimal” point where others will turn it into a floating number which again
might not be that accurate as hex is in somewhat less capable of displaying the
results of common divisions not to mention it will be rounded at some point.
Such a trick is often used to confuse and so teach new programmers and even
catches out older ones (finance packages are especially troubled by this for if
they miss a couple of rounding points it can result in big amounts of money not
going where it needs to go). There are however a few concepts worth noting as
they crop up in programming languages and the processors they run on

Mod As mentioned some basic hexadecimal divide functions will leave you
with just the whole number part of the result (99 divided by 6 is 16.5 but many
divide functions would just give you 16). Mod is then a function that gives you
the remainder as a whole number (99 divided by 6 is 16 remainder 3) which
you can leave in the hope it will be multiplied back later or feed to another
command (many divide functions struggle with large numbers and prefer small
ones).

27

Abs(olute) Potentially confusingly this is also known as modulus with the
shorthand sometimes being mod although this is more common in regular maths.
Depending upon how far you want to take maths it can get quite complex but
the short version is abs value of a number is just the number (always positive)
without the sign. It is then quite useful to feed into functions so you can simplify
them or the resulting maths.

1.3 Patching and patch making

ROM hackers change ROM images which are by and large copyrighted code.
Even edited code still has protections so the differences between the versions
are found and made into a patch file which usually have the very nice bonus
of being far smaller and easier to transmit. Patch files then allow someone to
take the original ROM, apply the patch to turn it into your changed version
and then play it. As with most concepts you can use a computer to help out
in there many methods by which you can create and apply patches but unlike
most other formats there is more to it than token differences and vendor lock
in. Each type is linked to the best example/implementation at time of writing
with a couple more at the end if there are others worth noting.

o IPS. The original rom hacking patching method of choice. It is a truly
basic format (it contains a magic stamp/value, a list of patches to apply
(which consist of a location, length and payload) and a signal for the end
of the file) although there are a few custom versions that are not widely
supported. It can not handle location changes which is not a problem
for older consoles but with consoles that have filesystems (which is to say
most optical media and post GBA consoles) it is a dealbreaker. It is also
limited to files 16 megabytes in size or less which again is not a problem
on older consoles but even the GBA allowed code up to 32 megabytes to
be run.

e [UPSL Made as a direct successor to IPS it has found some use in older
consoles and later GBA patches but came a bit too late and the patching
methods below had stolen the spotlight. Upset, [Tsukuyomi UPS and
NUPS| are all good tools for UPS.

e PPF. Made originally to patch PS1 games (Playstation Patching Format)
it went through a few revisions and as such some are wary but it saw
some use on the Wii and continues to kick around. Size limits are not
really a problem (unknown what the upper limit is) and shifts are handled
OK. PPF-O-Matic|is a nice GUI patching program and the original PPF
program should provide a nice multiplatform patching and patch making
alternative.

e Xdeltaand BSDiff. Both general patching formats (indeed they tend to
position themselves as rival formats) that got used for the DS and newer
consoles (ROM hackers have tended to favour Xdelta where BSDiff saw

28

http://home.arcor.de/minako.aino/ipsXP/
http://www.romhacking.net/utilities/519/
http://www.romhacking.net/utilities/677/
http://www.romhacking.net/utilities/519/
http://www.romhacking.net/utilities/606/
http://www.romhacking.net/utilities/514/
http://filetrip.net/pc-downloads/applications/download-ppf-o-matic-30-f29416.html
http://www.romhacking.net/utilities/353/
http://xdelta.org/
http://www.daemonology.net/bsdiff/

more use in the form of Scene trainers and patches). Shifts are handled
well enough (although they might not be perfect) and sizes are not likely to
get to a limit any time soon although some implementations of BSDiff are
rather low. Features some support for original file checking and hashing.
The current version of Xdelta was linked but there is an lolder version! that
was used for a while and there have been some compatibility issues.

Ninjal An earlier candidate to replace IPS and fell out of favour for various
reasons. Some patches have been seen to use it and in many ways it works
quite well.

PAR2. Not a patching method per se and more of a corruption detection
and data recovery format. Changed data is no different to corrupt data as
far as it is concerned so can patch programs although it has some trouble
with data shifts. Better yet though assuming you have enough redundancy
you can be certain your patch will make the original rom into exactly what
you need which is quite useful when there are various corrupt or otherwise
modified dumps out in the wild (headers on SNES ROM files for instance).

Custom. There were some other formats made for various things (Jump
super stars for instance) and others aimed at more specific things (Fire-
flower is a patching format aimed at certain graphics hacks for instance)
but those will not really be covered here. Some people decided to unpack
the ISO/ROM files, patch those individually and build a ROM/ISO af-
terwards. This made for the smallest patch sizes, usually got around the
issue of file relocation, made for some of the best compatibility with vari-
ous ROM versions and the gave the option to have various options for the
patch (for instance a graphics translation might translate graphics that for
the most part are decorative which might not be ideal for everybody or
in text translation decisions have to be made on how to or if to translate
certain terms and if you can just make an option in the patch everybody
goes away happy). The main downside is that it might well be platform
specific, require multiple batch files to be made or require runtimes to be
installed.

Some people took this custom format concept a step further on the Wii and some
other consoles and made a kind of jump loader using a dashboard/menu level
console hack to apply a patch to games with data held in memory ostensibly
allowing those with the original game and an otherwise unhacked Wii to play
the hacked game. Nintendo would do a similar thing to patch a bug in Wii
sports resort as the Wii lacks a real patch management option like the 360 and

1.4 File systems and operations

This section will detail the tools and general methods of operation of said tools
to pull apart/unpack/extract rom images. It will probably also be the only

29

http://www.evanjones.ca/software/xdelta-win32.html
http://www.romhacking.net/utilities/329/
http://www.quickpar.org.uk/

section to cover systems other than the GBA and DS in any real detail. The
general form of this section is device name, name of method by which hacked
code can be run and whether it can be emulated, the names/extensions/types
of binaries, any hardware documentation and finally techniques to parse file
systems. For additional information or information on systems not covered here
homebrew developers, those wishing to run various flavours of linux on consoles
and emulator authors are the main sources of hardware information.

1.4.1 Non filesystem devices

Method- usually flash carts of various forms which may not exist in an up to
date form or be quite expensive if they do exist. Emulation is usually available
and very high grade if you want it to be and beyond that everything up to the
late 16 bit era and slightly beyond can usually be emulated on newer consoles
and handhelds at some level.

The GBA is a focus of this guide so it does get a proper section but in
general devices that are older than the DS or do not use optical media will tend
not to have a filesystem meaning you get to employ various techniques covered
in the GBA section below. They are frequently directly accessible in memory
but other than the GBA often have quirks you have to address (mappers in
the NES, hirom and lorom in the SNES and Memory Bank Controllers on the
original gameboy and GBC).

Today other than the GBA you will tend to only encounter a lack of a
filesystem when editing the executables for things (although that is not a cer-
tainty) and if you get into editing the security/secondary processor/hypervisor
programs for the consoles (things like I0S on the Wii and security code for the
PS3 Cell coprocessors).

romhacking.net maintains a database of hardware information for older con-
soles and some newer ones.

1.4.2 GBA

Method- flash cart or emulator.

The GBA is self contained but the executable location (or start thereof and
start of the useful stuff) is easily found.

GBAtek and CowBite| are usually considered to be the top hardware docu-
ments.

Homebrew aside the GBA does not really feature a file system meaning there
is not really such a thing as exploding the ROM image into a group of files it is
composed of. There is an advanced technique known as tracing though that can
find where any data is located in the ROM and a simpler few variations on the
theme (BIOS SWI call logging and pointer field searching) that will be covered
in the appropriate sections.

Some tools like those seen in Atrius’ Golden sun editors contain searching
routines for subfiles, compression can be searched for with various tools, the
GBA “sappy” audio format such that it is can be detected in some cases and

30

http://www.romhacking.net/?page=documents&category=12&platform=&game=&author=&perpage=20&level=&title=&desc=&docsearch=Go
http://nocash.emubase.de/gbatek.htm
http://www.cs.rit.edu/~tjh8300/CowBite/CowBiteSpec.htm

more general tools for games like pokemon will also contain a listing of the
location of various game components (or the things that point at them) as
might some other games. Other than flash carts, some undumped ROM images
and some 30 in 1 carts you find in tourist traps all the cart is visible in memory
at all times and means the space limit is 32 megabytes.

1.4.3 DS

Method- flash cart or emulator. DS and DS lite run GBA code natively if you
have a GBA slot cart.

The executable formats for the DS are ARM9, ARM7 and overlay files that
usually come with the extension .bin and sometimes SRL.

GBAtek! is the main reference document for hardware for the DS.

NDStool Filetrip download Command line and very quick and easy but fails
to rebuild certain ROM images properly (most still work).

Nitroexplorer Nitroexplorer filetrip Built to make up for shortcomings in ND-
Stool methods. Short of manual editing the go to tool for most.

NDSTS |No-Intro tools page| Able to extract files and insert files of the same
size (you can pad them if you want), if it crashes when you have edited it
where it worked before with this then it is definitely your fault.

Crystaltile2 |Crystaltile2 filetrip| Able to parse the DS file system as well as
extract individual files. Support at this level for compression as well as
certain container files as well as support for all sorts of known formats and
additional functionality. Click the DS icon on the the icon bar to open
the viewer.

Tinke |Google code link| A tool similar in capability to Crystlatile2 and also
supports decompression in rom among extensive support for other formats.

The DS filesystem is well known and well understood so you have many more
options here and it is usually the first feature aspiring DS ROM editing tools
gain. DSi compatible roms can usually be parsed by standard tools and DSi
specific code should now how relevant keys to help things there although it can
not really be run. Most games will have archive formats for a handful of files
stacked on top but a handful of DS games have been observed to use large single
archives for all or most of their files with the files not put into the archive usually
being download play components, sound or video.

Most usage will be covered or fairly obvious save for ndstool which has a
basic extraction command like

“ndstool x *.nds -9 arm9.bin -7 arm7.bin -y9 y9.bin -y7 y7.bin -d data -y
overlay -t banner .bin -h header.bin”

Replace the -x with -c and the *.nds with a valid name and you can recon-
struct a ROM. Not that useful for end stage hacks but quite useful for quick
tests. ndstool -1 *.nds will make a file listing of the files inside a rom and their
locations.

31

http://nocash.emubase.de/gbatek.htm
http://filetrip.net/nds-downloads/utilities/download-nintendo-ds-rom-tool-ndstool-1501-f29352.html
http://filetrip.net/nds-downloads/utilities/download-nitroexplorer-2b-f7301.html
http://www.no-intro.org/tools.htm
http://filetrip.net/nds-downloads/utilities/download-crystaltile2-20100906-f23649.html
http://code.google.com/p/tinke/

1.4.4 GC (gamecube)

Method- mod chip and miniDVD/modded case and regular DVD, SD loader,
IDE adapter. Emulators increasingly viable.

boot.dol is the main executable format.

Hitmen YAGCDis generally considered the better gamecube hardware doc-
ument.

GC tool

GCM utility(mainly multiboot rather than iso handling).

Gamecube ISO tool

1.4.5 Wii

Method- Softmod loading from external USB. Modchips and some softmods
support gamecube. Emulation increasingly viable.

Wiibrew/houses the main collection of hardware information and information
on software internals although there are others that move more into formats and
editing of internal software.

.dol is again the main format although ELF appears in homebrew.

Wii games and files come in two original flavours and one used by some iso
loading types.

Discs Several tools available but Wii scrubber will be the method of choice
here

Wii scrubber filetrip download

You might however also consider Wiimms ISO Tools| for a nice command
line alternative and support for some of the custom formats that became quite
popular on the Wii.

Virtual console and Wiiware aka WAD files Not to be confused with
doom wad files.
One of the former tools for this was WWpacker but better examples exist in
libwiisharp example binaries. Simple tools but can unpack things well.
showmiiwads. A GUI tool featuring the ability to unpack wad files and deal
with common things done to the files they contain after that.
Many titles also nest things in a format known as u8 (and often combine
it yaz0 compression) but both of those tools can extract, decompress and deal
with that as well.

HDD Most people do not use whole iso images or the minor tweaks to them
any more and will instead use a USB hard drive and maybe a custom format.
These come in various formats and layers of support but WBFS is the main
method that is often stacked on top of FAT or NTFS filesystems. Wiimms ISO
Tools linked above have a measure of support for some of this.

32

http://hitmen.c02.at/files/yagcd/yagcd/frames.html
http://filetrip.net/wii-downloads/other-files/download-gc-tool-120-beta-f818.html
http://filetrip.net/wii-downloads/other-files/download-gcmutility-05-f606.html
http://filetrip.net/wii-downloads/tools-utilities/latest-gamecube-iso-tool-f28774.html
http://wiibrew.org/wiki/Wii_Hardware
http://filetrip.net/wii-downloads/other-files/download-wiiscrubber-kit-with-multiloader-140-f4399.html
http://wit.wiimm.de/
https://code.google.com/p/libwiisharp/
http://code.google.com/p/showmiiwads/

1.4.6 Xbox

Method- Softmod and internal hard drive or copied DVDs. Emulation not really
game playing grade for most things but getting better, the 360 does feature a
measure of xbox game support when properly hacked.

The executable format for the 360 is xbe files.

As with most things here there are several options although three go head
to head here.

C-Xbox tool

Qwix

Craxtion

Filetrip download (all three)

1.4.7 Xbox 360

Method- no real softmod. DVD mod (does not allow altered games, XBLA or
DLC unless combined with following method), JTAG (required older hardware)
and RGH (can be done on most hardware provided it has not been updated in
early 2012) lead to onboard and USB loading. Emulation nowhere near.
Free60 features a lot of hardware information.
Xbox 360 games come in two broad flavours with a third method mentioned.
The executable format for the 360 is .xex files. These can be extracted further

(they are based on the Windows PE/portable executable format used in exe
and dll files).

Xex Xextool and xextool GUI are tools that can help here. They can unpack
the format, apply various patches both to the files themselves and apply the
title update patches.

Xextool filetrip download

XextoolGUI filetrip download

Discs Various programs will extract things including ABGX360 but that is
unwieldy so e-xiso is the main go to method.

Extract xiso homepage

Filetrip download

GOD and NXE/hard drive installs have come from discs and have but a few
bytes difference between each other. They can be made back into more or less
unusable isos with GOD2ISO.

XEX files are the binaries of the 360, there can be several. Patches exist in
the form of title updates and can be applies to the XEX files if you really want.

XBLA/DLC PIRS, LIVE and CON. PIRS are signed by MS and can be
installed on any 360 without issue. They are mainly sourced from Bethesda
game of the year and Borderlands double pack games but there are several
more.

33

http://filetrip.net/oldies-downloads/xbox/iso-hacks-tools/
http://free60.org/Main_Page
http://filetrip.net/360-downloads/iso-tools/latest-xextool-f29383.html
http://filetrip.net/360-downloads/iso-tools/latest-xextool-gui-f29384.html
http://alecsis.free.fr/Extract-xiso/
http://filetrip.net/360-downloads/iso-tools/download-e-xisogui-1007-f28976.html

LIVE is the format of XBLA and DLC. XBLA demos are full games but a
little string is swapped to allow play of the full one (naturally this breaks signing
and needs a developer or JTAG/RGH box to run it).

A related set of formats and usually handled by all the same tools. Le Fluffie
is one of the main ones.

Le Fluffie download page

Filetrip download

USB Not really a format but one of the main methods of access so it is noted.
Later in the life of the 360 Microsoft added support for a custom USB format
(in practice it was a reserved section of a USB drive). XTAF.

Supported by several tools but USBXTAF is the main method.

Filetrip download

1.4.8 PS1 and PS2

PS1- modchip. Emulation long available.

Playtown has a lot on the PS1 (mainly in Japanese). The romhacking.net
link from other systems has a bit of information and [psx.rules.org has some
more.

PS2- modchip and some softmod driven network/USB loading possible.
Emulation demanding but viable.

philvaz.com| has some good information on the graphics hardware and some
internals. scee.net (warning PDF link) has a nice introduction as well.

ISO 9660 was for many the order of the day but later games on the PS1
and many on the PS2 added a dummy setup to that and instead made a new
filesystem later on and/or read addresses directly from discs.

For the most part the PS2 was also a standard iso 9660 image that countless
tools from the likes of 7zip upwards can open but certain games (most notably
Square Enix games for music) used raw LBA reads or a custom file system to
read certain parts of the iso images in question. There are a few tools that
attempted to detect the signature of the music files and occasionally within the
whole image.

LBA reads were also used in anti piracy protection for many of these games.

Both use a version of the executable formats known as ELF as their execut-
ables.

1.4.9 PS3

Method various- softmod (maybe with hardware trigger) leading to USB and
hard drive loading, unviable for many newer games at present. Emulation
nowhere close.

Technically the PS3 uses a version of ELF for the executables.

ISO

PUP files (updates)

DLC and PSN content.

34

http://skunkiebutt.com/?page_id=362
http://filetrip.net/360-downloads/other-files/download-le-fluffie-690025-f28975.html
http://filetrip.net/360-downloads/hdd-tools/download-usb-xtaf-xplorer-44-f23780.html
http://www.geocities.co.jp/Playtown/2004/psx/
http://psx.rules.org/psxrul2.shtml
http://www.philvaz.com/games/PS2.htm
http://research.scee.net/files/presentations/agdc2002/PS2forPCprogrammers.pdf

1.4.10 PSP

Method- softmod loading from memory card (official Memory Stick PRO Duo
or microSDHC adapters available) or loading from onboard storage (PSP Go).
Emulation more possible than before but undeveloped.

PSP MIPS R4000 processor (warning PDF) is a system developer level break-
down of the PSP processor.

Executable format pbp format (usually called eboot.pbp).

There are a few tools here but UMDGen is the dominant one and there is
little reason to use another. It supports extraction, insertion of any length,
rebuilding the file locations table and relinking files as well as creation of com-
pressed images.

Filetrip link

1.4.11 Saturn

Method- Modchip for the most part. Emulation surprisingly good if demanding
for the relative age of the system.

Yabause (one of the more popular emulators for the Saturn) has a fair bit
of hardware information.

A slight variation on the iso format although doable with standard tools.

Guide involving the manipulation of saturn files

1.4.12 Dreamcast

Method- Simply insert copied disc or use a disc loader known as “Utopia”. Emu-
lation not bad for some games.
dextremes.com| has links to some information.

1.4.13 Amiga

Method- copied discs. Emulation well developed.

ADF images are the most common (ADZ are just zipped versions of ADF)
but being sourced from floppy discs they tend to have a filesystem.

amigadev has a lot of top quality information.

UnADF should allow you to unpack ADF images.

Unadf homepage

Filetrip link

1.4.14 PC and related hardware.

Method- you control the hardware so disc emulation, cracked executables or
method emulation (see Steam emulation).

Various executable formats depending upon computer language and operat-
ing system.

A tiny bit more on PC hacking is mentioned later but for simple unpacking.

35

http://groups.csail.mit.edu/cag/raw/documents/R4400_Uman_book_Ed2.pdf
http://filetrip.net/psp-downloads/tools-utilities/download-umdgen-400-f6743.html
http://wiki.yabause.org/index.php5?title=Main_Page
http://www.rockin-b.de/saturn-patching-enemyzero.html
http://dextremes.com/dc/data/index.html
http://amigadev.elowar.com/
http://lclevy.free.fr/adflib/unadf.html
http://filetrip.net/pc-downloads/applications/download-unadf-10-f25764.html

PE Windows main format is the PE format which is usually known by the
extensions exe and dll. This can be unpacked with many things including
the likes of 7zip.

ELF Used as the basis for a lot of executable formats (including many of the
consoles covered elsewhere).

Iso Broad term for images of optical discs (and sometimes other things) and
there are various formats for it (many things will be called iso and burn
as one but be unable to be extracted). Can be extracted by many tools
including |7zip| and Ultraiso (paid software)

Batch/bash Most operating systems provide a command line where commands
can be typed and layered on top of this is are the concept of small text
scripts that can do fairly extensive things but in practice are just a list of
commands with a few extras.

Scripts (Python, lua, Java visual basic and many more). Many programming
languages operate outside the realms of the standard executable (or have
it for a wrapper) and can have their original code or something close to it
recovered by various means.

1.5 Finding the object of your interest.

Games come as ROM images or if they come from optical media originally then
ISO images but common to both is that they are one large lump of code. The
previous section tool care of methods to pull apart these initial files but that is
only the start of things as you will want to find the file or section that houses
the thing you want to look at or change.

There are techniques here ranging from the obvious to the subtle, from the
basic to the complex and from the crude to the precise and many of which
will be useless to you without knowing several other things as detailed in this
document. On the DS and most other file system sporting devices the main
method people use to find the files they want is perhaps surprisingly the file
names (most games feature them even if they do not use them directly), file
sizes and extensions either directly (English.bmg might well be the text in a
DS rom) or indirectly (sound data.sdat will probably be the sound so you can
eliminate that chunk from your search for the text for a game which is doubly
nice as sound is usually a good portion of space in a ROM) with a quick look
at directory names alongside that (sound will probably contain sound, 3d will
probably contain 3d and dwc\utility.bin is probably download playE[).

Alongside this there are several known extensions and header values for vari-
ous formats where the first few bytes decode as a known ASCII or hexadecimal

2The download play component of a ROM sometimes acts as a cut down version of the
main game but pulling it apart and using data gleaned there to attempt to reverse engineer
the main rom is not that useful. It can sometimes net nice artwork maybe provide a few more
example files but it is not the first port of call when reverse engineering a ROM for most.

36

http://www.7-zip.org/
http://www.ezbsystems.com/ultraiso/

string. Many more examples later but for now sdat is an extremely common
sound format on the DS and bmg is a fairly common text format. It should
be noted that extensions can often give away the presence of compression with
common examples being if a file ends with .1, .Iz . or something along those
lines, especially if it has another known extension before it, then it might well
be compressed and you can act accordingly.

ROM corruption should also be mentioned here. It gets a bit costly to do
if you have to burn discs each time but when emulators and flash carts are
available you can corrupt a part of the rom, run it and when it errors or crashes
you get, to see what parts do what. The simple method is to use one of the hex
operations you learned about earlier but there are dedicated corruption tools
and the technique might either need to be refined for certain things as things
like graphics can only use a select series of values that the corruption tool might
inadvertently use. You can also refine the concept to a point where alteration
is probably a better term (for instance when trying to figure out how text is
encoded it can be useful to repeat a value or sequence rather than using random
garbage).

After this you start heading towards more programming level techniques like
relative searching which uses the fact that in Roman character using languages
A is followed by B which is followed by C and so should you know the word
CAB is in a rom you can search for a string what has one value followed by a
value two less than it and that followed by a value one less than the opening
value (although in practice a longer term is more useful).

Tracing is understood to the be the ultimate method and although it is not
that hard to follow along with the basic idea it is still quite different to simple
hex analysis and file names. In tracing you find the thing you want to look at
in the memory, find what put it there, find where that was told to look and
so on until you have the location of the file in the ROM or enough data to
find it which naturally is quite an involved technique but very accurate and
very reliable. When dealing with PC games and to a lesser extent with some
emulators you can observe which files are open and loaded when running the
game but this is not always available/viable for the consoles although there is
the lesser method of watching BIOS calls (BIOS often being used to handle
compression can lead you right to the location on the GBA) and you can do
things like search for a field of pointers (on the GBA this often means a list of
08 with 3 bytes afterwards as the most common GBA address is of the form
08X XXXXX).

1.6 Abstraction

Certainly a topic worthy of a document all to itself the main idea here is related
to the jargon earlier where at the cost of not being immediately accessible to
all (or in this case the computer in question) you build a method by which
to interpret something into a format understandable by a target (in this case
usually the console in question which translates it to a usable format) which
has speed penalties. The bonus however is that you can use a simpler method

37

to store and deal with and hopefully change your chosen item as necessary.

Programming languages are all about this as they all attempt to move away
from feeding the computer a string of 1s and Os but a nice example might be to
compare the GBA and DS for if you recall the GBA lumps everything into one
file where the DS can explode a ROM into a series of other files. Now if you
want to add a section of code to the GBA you either change all references to
everything after the section you are increasing in size accordingly (a very tedious
process that nobody ever does) or add to the end of the ROM (or some other
blank space) where on the DS your rom rebuilding tool simply adds the extra
to the locations of the subsequent files (and other sizes as necessary) and as the
files are not tied to each other as whole (obviously files can work together on
occasion) nothing is troubled but it does mean the DS will have to do an extra
step when it comes to running the ROM to figure out where to point the read
command. Much like a unified theory of physics there exists a theoretical but
perfect level of abstraction that you could feed an initial value into and have it
run accordingly but much like physics you occasionally want to get some actual
work done so you cut it off and possibly simplify/restrict things so as to get
something done.

Related to this is that not all the data you see in a rom will be used in it.
For instance any file names contained within subfiles or occasionally even the
files themselves might be irrelevant as might be some of the pointers. Generally
though it pays to know and understand what each value might mean and account
for it as you edit the files unless you can demonstrably prove it does not matter.

This also applies in reverse with some developers choosing to hardcode val-
ues somewhere despite not having to or it even being all that good from a
programming quality standpoint (as a rom hacker you might well have to fix
several bugs introduced in such a manner); remember that game programmers
are people too and are no strangers to the hack something together and knock
off for lunch routine.

If a rule of thumb has to be made it would be understanding the level just
above the thing you are trying to do will tend to be beneficial and such a logic
underpins a lot of the content of this document.

1.7 Tools of the trade continued

The following simply lists some example tools as there are usually several more
options for a task, some very basic usage and where necessary some screenshots.
In the case of large tools or area specific tools proper usage will be covered in
other parts of this document where there may also be other little tools to help
out things. Basic usage of programs to parse relevant filesystems was already
covered and will not be covered here. With the exception of the paid hex editors,
a couple of audio programs and no$gba developer version (the sole truly notable
exception) all the programs covered are open source or freeware and everything
can be done with the open source/freeware programs.

38

1.7.1 Hex editor

As part of the underlying project this document is part of several hex editors
were tested and rated for their usefulness to come up with a shortlist. Most
ROM hackers will have several at their disposal for different tasks but if you
can pick a paid one, get the four freeware suggestions and get a rom hacking
specific one most things can be done with relative ease. In short though a
hex editor is a hex editor and everything else is so much extra that could one
day make your life slightly easier. The GUI for most of these is extensively
customisable although for the most part the images are that of the stock editor
with a few menus displayed as appropriate.
The features that make life easier for ROM hackers are

e Bitwise operations

e Boolean

e Byte flipping

e Search and search all

e Search and replace

e Operations on selected areas (some are whole file only)
e Scripting

e Format/structure listing support

e Variable width windows

e Hex distribution

e Undo/Redo

e Insert

e Hash values including custom options

e Custom character encoding support

e Compare files (including size differences/inserted section support)

Raw disk editing, program/memory editing, X86 disassembly, base64 decode
and similar things are other features that an editor might be sold as having
they have been of limited use to ROM hackers in the past for even program
editing is usually taken care of by specialist programs as you will see when
cheats are discussed.

39

Paid The freeware editors in many ways provide a more than adequate re-
placement for the commercial tools but many still like the commercial offerings.
The two best ones are quite pricey and are roughly equal in ability.

Hex workshop Hex Workshop homepage
Probably the most popular paid editor among ROM hackers.
o]

File Edit Disk Options Tools ‘Window Help _|51|

ESH&| s =2mo o v v @ |[mmBs1 0D @65 |- 5
Se«»E2ER A |5 v - =g ldb Al | [BEE % SE

0000000000 (5344 4154 FFFE Q001 400 C201 4000 0400 |SDAT. ... @. . .G, .. fj
0000000010 (4000 0000 2569 0000 6869 0000 3C34 0000 |@...%1..hi..<4..
0000000020 (449D 0000 AcZE 0000 50C9 0000 FO16 C201)..... +.o P
0000000030 (0000 0000 0000 Q000 0000 0000 0000 0000 vt
0000000040 15359 4p42 2869 0000 4000 0000 1005 0000 |svyMBC..@.......
0000000050 (CO08 0000 F40C Q000 BC1L 0000 FOIL 0000
0000000060 (6412 0000 6C12 QOO0 QOO0 0000 0000 0000 |d...1....
0000000070 (0000 0000 0000 Q000 Q000 0000 0000 0000 |.
0000000030 (3301 0000 ECLlZ Q000 FE1Z 0000 0313 0000 |3......,
0000000090 (0013 0000 1813 0000 2913 0000 3913 000O0|........ DI
00000000A0 (4913 0000 5913 0000 6913 0000 7313 0000 |I...v...7...5...
0000000080 |7D13 0000 8813 0000 9213 0000 A013 0000 |3.... ... eut.
00000000C0 (AB13 0000 B613 0000 €113 0000 CC13 0000 ... o vnnn.
0000000000 (D713 0000 EZ13 Q000 F213 0000 FELZ 0O0ODOQ|.....
00000000E0 (0D14 0000 1F14 0000 3014 0000 4514 0000 0. E...
00000000F0 (5114 0000 5F14 Q000 6814 0000 7814 0000 |Q..._...k...x..
0000000100 (8514 0000 9114 0000 9F14 0000 ACl4 0000 |.
0000000110 (BAl4 0000 C914 Q000 D914 0000 EAL4 000D ...t
0000000120 |Fal4 0000 0B15 0000 1315 0000 2415 0000|............ 5...
0000000130 (3415 0000 4315 0000 5115 0000 6915 0000 |4...C...Q...1...
0000000140 |7E15 0000 8B1S 0000 9615 0000 A315 0000 |~o eut.
0000000150 (8415 0000 BCLY Q000 CE1S 0000 D415 0000
0000000160 (EOLS 0000 ECLS QOO0 FD15 0000 0616 000DO|.........
0000000170 (1116 0000 1al6 0000 2cl6 0000 3B16 0O0O|........ e
0000000180 (4816 0000 SEL6 Q000 GEL16 0000 8316 0000 |H...A ..n.......
0000000190 (9916 0000 AF16 0000 cO016 0000 D216 0000 |.
0000000120 (E316 0000 F316 Q000 0317 0000 1317 0000 ..., ..
0000000180 (2317 0000 3417 0000 4517 0000 5617 0000 |#...4...E...v...
000000010 (6717 0000 ¥YE17 Q000 8917 0000 9917 0000 |g...x...........
0000000100 [A917 0000 B91/ Q000 €917 0000 DALY 0O0DO|.ovunn.. =

sound_dala....l

ﬂPFFsat: f"‘??GD inskances of ‘strings' found in sound_data,sdat x
4 4
W1 Signed Byle 63 - | Length | |
88T Unsigned Byte &3 oon
1587 Signed Shart 17491 Q0000006 SYMEBC
V%BIT Unsigned Short 17491 0000132C 00000008 BGM_RESULTL
3ellSigned Long 1413563475 00001338 00000004 BiGM_SADLYZ
328l Unsigned Long 1413563475 00001343 00000009 BEM_GMAPL
MBI Signed Quad 72337966621606. .. 00001340 00000004 BaM_HARPY 1
E4BIT Unsigned Quad 72337966621606. .. 00001358 00000010 BGM_MODE_SELECTL =
3201 Flnat 332029994012 4| « | 2
%, Data Inspactor fi_ Strucre Wiewer % Compare y Checksum } Find { Bockmarks # output
Finding all strings... |offset: 00000000 [¥alue: 17491 |29548608 bytes OVR MOD [RE Lz

40

http://www.hexworkshop.com/

010 editor |010 editor homepage
Another paid editor on a par with hex workshop
=

Eile Edit Search Wiew Scripts Templstes Tools Window Help

ID-2-HaLBo & E ol EAB DOl 2l enn
E el Y 1EERETR LD e |
R © < -

sound_data.sdat & |

Gpen Files I 0 1z 3 4 5 6 7 B o & B € D E F 0123456780ABCDEF
- [M Edsound_data.sdat 0000h: 53 44 41 54 FF FE 00 01 40 EO C2 O1 40 00 04 00 | SDAT....R...R...
¥ Favorite Files 0010h: 40 00 00 00 25 69 00 00 68 69 00 OO0 3C 34 00 00 | B...%1..hi..<4..
2 Recent Files 00zOk: &4 9D 00 00 AC 2B 00 00 50 €9 00 00 FO 16 €2 01 .P..

= Backmarked Files 0030k: 00D 00 00 00 00 00 00 00 OO0 00 00 OO0 00 00 00 OO0
0040R: 53 59 4D 4z 28 69 00 00 40 00 D0 00 10 05 00 0O
0050R: €O 08 00 00 F4 OC 00 00 BC 11 00 00 FO 11 00 0O
006OR: 64 12 00 D0 6C 12 00 OO OO0 OO0 D0 0O OO0 00 00 0O
0070R: 00 00 00 D0 00 00 00 00 OO 00 00 00 00 A0 00 00
0080R: 33 01 00 00 EC 12 00 00 F& 12 00 00 03 13 00 00

[Files Explorer 0020h: 0D 13 00 00 15 13 00 00 25 13 00 00 35 13 00 oo

——— —— |00i0k: 49 13 00 0D 59 13 00 00 69 13 00 OO0 73 13 00 OO
e e = % | oEOR: 7D 13 00 00 88 13 00 00 92 13 00 00 A0 13 00 00

Type i |=[|oocon: 4B 13 00 00 B 13 00 0O €1 13 00 OO €C 13 00 0O
0OpOR: D7 13 00 00 E2 13 00 00 F2 13 00 00 FE 13 00 an

Sigred Fyte =
InsgredByie o3 QOEDR: OD 14 00 D0 1F 14 00 0D 30 14 00 00 45 14 00 a0
Signed Short 17451 OOFOR: 51 14 00 D0 SF 14 00 00 6B 14 00 DO 78 14 00 OO
Unsigned Short|17481 0100k: ©5 14 00 D0 91 14 00 0D 9F 14 00 DO AC 14 00 OO .
Signed Int 1413563475 011i0k: BA 14 00 00 ©9 14 00 00 D9 14 00 OO0 EA 14 00 an
Unsigred Tnt 1413563475 01z0n: FA 14 00 00 08 15 00 00 13 15 00 00 24 15 00 0O
Signed Inte4 72I3TIEE6ZLENEIIS 0130kR: 34 15 00 DO 43 15 00 00 51 15 D0 00 &3 15 0O 00
Unsigred Ink64 | 72337956621 606995 0140m: 7E 15 00 D0 55 15 00 0D 96 15 00 00 43 15 00 a0
Float 3.3203e+12 01S0k: B4 15 00 00 BC 15 00 00 €8 15 00 DO D2 15 00 OO ..
Double 7.74503242183074e-304 0160k: EO 15 00 00 EC 15 00 OO FD 15 00 OO0 O6 16 00 0O
String SDATED 0170k: 11 16 00 00 14 16 00 DO 2C 16 00 00 3% 16 00 0O
ChiEods OmdADk @ 0180k: 48 16 00 D0 SE 16 00 00 6E 16 D0 00 83 16 0O 00
DOSDATE 0z]15/2014 0190m: 93 16 00 D0 AF 16 00 0D €0 16 00 00 D2 15 0O a0
Eﬁ?mi ggfggﬁgann:smz 01k0k: E3 16 00 00 FZ 16 00 00 03 17 00 DO 13 17 00 OO0 .
CE 01BDR: 23 17 00 0D 34 17 00 00 45 17 00 OO S& 17 00 AN
e 10/7 2014 163115 01cOR: 67 17 00 00 7& 17 00 00 &9 17 00 OO0 99 17 00 a0
01pOR: A3 17 00 D0 B9 17 00 0D €8 17 00 00 DA 17 00 a0
01EOR: EB 17 00 D0 F3 17 00 0D 07 18 00 00 15 18 00 a0
01FOR: 23 18 00 00 31 18 00 00 3F 18 00 DO 50 18 00 OO ..
0200R: 50 18 00 00 6D 1% 00 00 7E 18 OO0 DO 90 18 00 An
0210R: A2 18 00 00 B4 1% 00 00 €& 1& 00 OO D9 18 00 a0 | .
—J|0zzom: EC 12 00 OO FF 15 00 00 12 19 00 OO 25 13 00 00 | «eevnen.on 4.
[Z] Auto |Iﬂ Yariables I@ Baokmarks T >

[[Pos: 0 [oR] [val: 83 53h 010100110 [Size: 29548608 [1CZE040R] [ASCII LT [w [ns ¢|

41

http://www.sweetscape.com/010editor/

Freeware Unlike some other areas the freeware offerings are not on a par
but with a different GUI but when the suggestions in the freeware category are

combined it makes for all the functionality of the commercial offerings.

ICY Hexplorer

Sourceforge page
Almost at the level where you could drop it in as a replacement for the
commercial offerings. Needs some setup to get the GUI functioning well but

once done it is suitable for use as a day to day editor.

ICY Hexplorer - [

sound_data.sdat]

=10l

Fle Disk | Edit View Structures Crypto Macro Help
U Chrl+2 -y T
+*

2 e 2+ 0 « »
00000001 copy ctrlec | 0001 4DED C201 4000 0400 SDAT & @3k, @ ! i’
00000011 copy as y| 0000 BB EI 0000 3C3I4 0000] %i hi <4
00000020 oo e cisy | 0000 50CY 0000 FOle C201 5] -+ PE &rAr
00000031 e ,|oooo oooo oooo oooo oooo
0000004 0000 4000 0000 1008 0000 SYHB{i @ 4|
00p0ops) Pasts external text "loooo BC11 oooo FO11 0000 A B1 Ha4 o 34
ooooongl Delete Del 0000 0000 0000 0000 0000 dr 1t
00000071 Select Al ctrl+4 | 0000 0DOD 0000 0000 0000
nooooos - oooo F812 0000 0313 0000 -5 ST
noo0gogr Faste Chan.., nnnn 9@49 annn 2043 0000 S I I V'
0000004l Reset Selection iz 0000 I ¥n in =
0oo0oooB Fill Selectian. .. 12 0000 i 1 il 1
ooooooct e ks Pseuda Random Mumbers 12 0000 « W TN G
000000D! R_ED‘C"CE--‘ %OR Selection, .. 13 0000 w0 &N ph oz
soooes e S S e . 00 | U

1 ind Previous . q _1 q =1
00000100 TES T 0TI 9T 14 ;“c'?;i:f';;;('s) e B¢ 0000 B IEEY BT Y|
00000110 |BA14 0000 C9 14 14 0000 1 EQ E1 29
00000120 |FA14 0000 0F 15 Decrement Byte(s) F& ls oooo &1 ol owi s
00000130 | 3415 0000 4315 Megate Selection 15 0000 LR o T
00000140 | 7E15 0000 BB1S o 5 0000 R
00000150 |B415 0000 BClg CHERRResLiedl 15 0000 | S o A 1
00000160 |E01S 0000 EC15 Swapbytes(32bit 16 0000 T T
00000170 1116 0000 1416 Swap bytes (64 bit) iz 0000 LR T
00000180 | 4816 0000 GE 16 Flpbytes 16 0000 Hr "t nr It
00000190 9916 0000 AF 16 OOO0 COIE 0000 D216 0000 r Es Ar M-
00000140 |E316 0000 F316 0000 0317 0000 1317 0000 N N R
000001BO (2317 0000 3417 0000 4517 0000 G617 0000 #HooH O EOW
noopoico | 6717 0000 FE17 0000 £917 0000 9917 0000 al o= ™y
0o0o000iDo | A917 0000 B917 0000 €917 0000 DA17 0000 @ 4 E Sy
0O00001ED |EB17 0000 F917 0000 0718 0000 1518 0000 el M et 4
0O00001FD (2318 0000 3118 0000 3F18 0000 SO18 0000 # 1t 7t Pt
00000200 6018 0000 D18 0000 FELE 0000 9018 0000 toomt~vt ot
00000210 |A21% 0000 B418 0000 €618 0000 D918 0000 «t 1t Et Et
00000220 |EC18 0000 FE18 0000 1219 0000 2519 0000 gt Tt th o Hb
00000230 |3819 0000 4B19 0000 SF19 0000 7219 0000 8t Kb _F ozt
00000240 |[8619 0000 9419 0000 AE19 0000 CO19 0000 Tk B A
00000250 |D319 0000 ES19 0000 FE19 0000 OB1a 0000 G AF ub -
00000260 |[1E1A4 0000 3114 0000 4414 0000 5&1& 0000 +« 1+ D+ X~
00000270 | 701A 0000 FELA 0000 8614 0000 90 1& 0000 M S T B
00000280 |A114 0000 B31A& 0000 C41& 0000 CF1a 0000 1« '+ &+ I
00000290 |DC14 0000 E914& 0000 FE1la 0000 OS1B 0000 L T
nnnanzan | 1R1R_NNNN 29 1R 0000 4N1R_ANAN G2 1R_N0070 e e @ R =l
Cwerwrite |Pos: Oh (o) Byte: 83 Size: 29,548,608 bytes |Not saved v

42

http://hexplorer.sourceforge.net/

XVI32 Homepage

Still being actively developed and it is mainly here as it features a powerful
scripting language which can accomplish most tasks the paid editors and func-
tion heavy freeware sport and a bit more after that owing to it being a true
scripting language.

ﬂf X¥I3Z - sound_data.sdat _(of

File Edit Search Address Bookmarks Tools #WIscript Help

DE R X & 2EQ @ & K

-54441541?17FEDDDl‘lDEDCZDlﬂlDDDD&DD DalT¥b reR&akipe
10 [i hii

40 00 00 00 ZE €3 00 00 €2 &3 00 00 3C 34 00 00] <4
z0 |4 90 00 00 AC 2B OO 00 50 C9 00 00 FO 16 CZ 01 a0 -+ rE a1 A
20 (00 00 00 00 0D 00 00 00 OO0 00 00 OO0 00 00 00 00

40 |53 59 4D 47 28 £% 00 OO0 40 00 00 00 10 05 00 00 |8 YME (i]]
50 |Co 08 00 00 F4 OC 00 OO0 BC 11 00 00 FO 11 00 oo (& 0 &0 104 L]
&0 |64 12 00 00 &C 12 00 OO0 00 OO0 00 00 00 00 00 00 |d 1 11

70 |00 00 00 00 OO0 00 OO0 OO0 OO0 00 00 00 00 00 00 00

20 |22 01 00 00 EC 1z 00 OO FE 12 00 00 02 13 00 00 |z il % 1 L
a0 (0D 12 00 00 18 13 00 00 29 13 00 00 33 13 00 00 I T y gl
A0 |42 12 00 00 55 12 00 00 €2 12 00 00 72 12 00 0o |I ! bl il =l
E0 |70 13 00 00 88 13 00 00 92 13 00 00 &0 13 oo oo |3 U =l [I
CO |AB 12 00 00 B6 13 00 00 CL 1% 00 00 CC 13 00 00 |« I ! all i
oo |b7 13 00 00 E2 1% 00 00 F2 1% 00 00 FE 13 00 o0 |« U all ol Bl
E0 |0D 14 00 00 1F 14 00 00 30 14 00 00 45 14 00 00 1 1 ofq E 1
FO |51 14 00 00 EF 14 00 00 6B 14 00 00 7& 14 00 00 (g 1 M k1 =1
100 |85 14 00 00 91 14 00 OO 9F 14 00 00 AC 14 oo oo [. 7 =1 1 -1
110 |BA 14 00 00 C5 14 00 00 DS 14 00 00 E& 14 00 00 [= 1 B Lkl a
120 |FA 14 00 00 08 15 00 00 13 15 00 00 24 15 oo oo [a 7 gt (RS $4
120 |34 15 00 00 ¢2 15 00 00 51 15 00 00 69 15 00 00 [¢ L cld ot il
140 |7E 15 00 00 &E 15 00 OO0 & 15 00 00 &% 15 00 00 [~ 4 oL -4 gL
150 |B4 15 00 00 BC 15 00 00 C8 15 00 00 D4 15 0o oo |+ 4 a1 L 4
180 |ED 15 00 00 EC 1E 00 OO FD 15 00 00 06 1& 00 00 [&d id 5L -7
170 |11 16 00 00 14 16 00 OO0 2C 16 00 00 3E 16 00 00 |4 T -~ T , T
120 |48 16 00 00 5E 1& 00 00 6E 16 00 00 £% 16 00 00 [H T ~lr BT T

=

|Adr. dec: 0 |Char dec: 83 |Overwrite

NN

43

http://www.chmaas.handshake.de/delphi/freeware/xvi32/xvi32.htm

Tiny Hexer Filetrip download

A discontinued editor but has some very impressive features the equal of and
in some ways greater than the commercial offerings.

e mirkes.de Tiny Hexer - [E:ysound_data.sdat] - |EI|5|
File Edit Wiew | Tools ©Options Bookmarks Window Help - |ﬁ'|5|
D ME [come BB
B Uniited) [s g Seripts '
Configure tools. .. 7 080% 0a0E OCOD OEOF O01Z234547859ABCDEF ﬁl
O internate E—— 1 40E0 CcZ01 4000 0400 SDATy}Io. o @?A. @...
Ol = . 0 &86% 0000 3C34 0000 @...%1i..hi..<4..
== Struckture viewer = =
20 ; [50C% 0000 FOlé 201 =] ..-+..PE..&.A.
| Walue editor
xa[@%statuswindow 0 0000 0000 0000 0000 ..o enin oo e nnn
ng[dFindeditor 0 4000 0000 1005 0000 SYME(i..@..
0x50 = oy 0 Bcll 0000 FO11 0000 A...&...%4.
|;| Position lisk
Oxi5 0 0000 0000 0000 0000 d...1.. ..o
|_—| Calculator
0z7(0000 0000 0000 0000o o e n o
O=x8I(Maera *D FEl1z 00D0DO0 0313 0000 3. i c@ooooooo
DxQ[M Execute script... 0 2913 0000 39213 0000 Dooo0a
Ry £913 0000 7313 0000 T...¥...1i...8.
Rescan scripts directory e . -~ .

\ x
Led Add offset to file data J X
JS} Concat file F.ragmen.ts I¥ Fized raw size: l?j Column size: |2—j Block. size: I‘I—j
Eﬂ Copy selection to clipboard as Form
Eﬁ Copy selection to clipboard as raw ¥ Show gridines [~ Gutter has 30 borders [~ Fixed file size

J;f DisplayiModify custom File properti | Sl b

J;f Extract strimgs From binary file

[~ Swap half bytes [Mybbles)

Fant... |

Text: Ii Blue j

Lb Fill file with calculated data - Calars:

J;f Fill file: with random data Do ol
1 Jump backward v Tl
ﬂ Jump Forward L Ddd_[_:olumn

Leb List file differences Modified

Grid
o

L2t Resize file
= Set OFfset for Jump commands
J;f Show checksums {Suma, CRC16, C

Current data in ¥ alue edit
File compare differences
[| Synchronize: Inactive cursor

Back: ||:| Customn...

0&07
0&07

080% 0AODE OCOD
020% 0AOQE OCOD

OEOF
OEOF

-

L Split file into Fragments

Leb %OR File data |
A

Active Field Background
L IOl T T LT

0x20 zZ0zZ1 ZZE3 2425

"4
1819 1a1B 1C1D 1E1F
2829 ZAZE ZCEZD ZEEZF

. 2

1617
2627

TF L

O0x01c0 &717 001

Oz=01p0
0x01EOD
0x01F0

A917
EEL17
2318

ool
oo
oot

[~ Default

[Apply to all

&) Help | 0K I 3 Cancel |

Size: Dx01CZEQ40

|Pos: 0xDE |— |— l_ |— |Insert H |— |

44

http://filetrip.net/pc-downloads/applications/download-tiny-hexer-1816-f29009.html

HxD Homepage
Filetrip download

Probably the simplest editor on this list but the go to freeware editor for a

lot of people.

EAHxD - [E-\sound_data.sdat] 10| x|
JE_.‘!] File Edit Search Wiew Analysis Extras ‘Window ? _|5|5||
[- E| e d||es e - | amst = [hex -
) sound_data.sdat |-L;|. Statisticsl
Offset(h) 00 02 04 08 0O 0Oh 0OC OF ﬂ
00000000 5344 4154 FFFE 0001 40E0 €201 4000 0400 SDATh. .B&i.0..
00000010 4000 0000 2569 0000 6569 0000 3C34 0000 @...%i..hi..<4.
00000020 A49D 0000 ACZE 0000 50CS 0000 FO16 C201 ®=...-+..PE..&. 4.
00000030 0000 0000 0000 0000 0000 0000 0000 0000 eeeceewaeeennn
00000040 5359 4D42 2869 0000 4000 0000 1005 0000 SYMB(i..@.......
00000050 CO08 0000 F40C 0000 BC11l 0000 FO11 0000 A...d...4...&.
00000060 6412 0000 6C1Z 0000 0000 0000 0000 0000 de..leoveease....
00000070 0000 0000 0000 0000 0000 0000 0000 0000 .ovieeevnaeen.nn
00000080 3301 0000 EC1Z2 0000 FS12 0000 0313 0000 3...i.c..@.......
00000050 QD13 0000 1513 0000 2913 0000 3913 0000 1...9.
00000040 ||s.
000000ED : ..
aqooaoco General I Format — Yiew | ..
000000D0 Lavaut b..
000000ED ayad bt] E..
[& group siZe
000000F0 I~ Adapt to window width r‘f 13 . '3 - bt X..
00000100 e VLes _—
00000110 Bt ey sy * 2 bytes 16 bytes ? .
00000120 = " 4 bytes ..
00000130 IlE' J i..
00000140 £..
00000150 charset . a..
00000160 arse =ethase .
oooooi7o &+ AMST ¢ hexadecimal (18] i
0o00o0o1s80 " DOSIBM-ASCIT - o fo.
ecimnal (10
0oooo1s0 ¢ Macintash Q..
00000140 ...
000001ED " EBCDIC » ol (B v, .
000001co m
000001D0 ..
000001ED ..
000001Fo P.
oo0ooozoo e
00000z10 u..
0o00o00zzo ! S 5.
Q0000230 |7 Apply bo existing windows, too -
000o00z40 i.
00000z s0 oK I Cancel | -
00000z 60 .. -l
[FFset: O | [o

45

http://mh-nexus.de/en/hxd/
http://filetrip.net/pc-downloads/applications/download-hxd-hex-editor-1770-f12907.html

Rom hacking specific As wonderful as the commercial editors above are
they lack things like high grade table support (most of the above will support a
measure of custom characters but nothing truly custom like that which is seen
in hacking) which is fairly essential for text hacking purposes.

Crystaltile2 [Filetrip download

Supports many character sets out of the box and more importantly supports
table files.

Lacks boolean manipulations along with the standard hex operations seem-
ingly fixed to 16 bytes per line

Has a very good relative search (perhaps not quite as friendly as monkey
moore but it works and goes right to up 4 byte/32 bit search as well as many
other text grade featured covered later)

Has a compression search (mainly type 10 LZ and lesser support for type 11
LZ and huffman).

CRC 16 and 32 are available and can be focused on a selection.

DS filesystem support and header viewing, top flight tile editor/viewer, full
ARM9 and ARMY7 as seen on the DS diassembler

Support for a fair few SDK and common formats (NARC, SDAT, NFTR,
DS 2d formats, some general archive formats)

CrystalTile2 - [sound_data.sdat] =10 x|
or File Edt Search TEL Wiew Took Bookmark Flugin Window Help =& x|
[DEdE9 &« aax @6 Ednozs|EEe
Properties | pajetre | Favorites | Settings | pesr | #[address 100101 62 (03704 05 (06 (67 (08 09 [on (0B 6C (6D [0E [OF [fectern Ewopean (findows) [Courier Hewl [«
= default settings 60600000 £ 41 41 55, | (00,0140 E0|C2| 01,4000, 04,008 o 5yetem references(o)

offset o 00000010 40:00: 00.00:25 69 :00: 00:65:69:00:00:3C:34:00:00:8 |code code page1200
~ Editor's praperty Hex COLLELEGH L DO I B0 00, SEAeS ““!W 02!“1 !‘ Uricode (gig-Endian) - code page1201

Use TEL system code 800000300000, 00 00,0000 00,00 00,0000 00,0000 ““IMII Central European (Windows) - code pagel250

A — e 0B08OOK0 53150 10 42128 (69 00:00:40.00.00.00.10:05:00.00.5 Lo e

00OOBESE | L0 08 08 0B FL OC 08 0B 0C 11 00 00 Fo 11 08 08 0 T~ VR

SystemLanguage _System defaul: 00000060 611200, 00, ¢C 12 00| 00|00, 00, 00 00 00 00,00 00,2 50 s § i a5

Sort 1byte PEAOG070: G0 00 0O 000000 00 00 B0 0900 00 00 60:09:00:.) -EEbpEE

Colour 16 bit sctive 66660080 /33 61/ 00/ 00/ |12 06/ 00 80/00! 09113 00/ggls Turkish (Windows) -

DATA->Palstts conver 80060090 00,00, | (B9 89,20 17 00,00 80,09, Fisbrew (Windows) SEE S

Palette - DATA corm 000000A0 00:00; 0000 00: 00 80:88;1 Arabic (Windows) = 2 e

G00000B 0 o0l oo . - - mmiemt ot iemiet Baltic (windows) - code page1257
™ sound_data.s: B .
000006C 0 00,00 = Wistnamese (Windows) code page1258
9000A0D D 0:00;| File Sound Your(SPACE) Stop Cyrillic (KOTE-R) - code page20866
000000ED oD |14)00/ 0o |- sound files | absohat... | size | listinfor... | Cyrillc (ko184 - code page21866
BO00AOFA 51 14 08,88 ! ? Sequences\000... 0000CS60 | 4672 000-000... Central European (1507 - code pagezB592
BOBBB188: 85 14 88:88:! ? Sequences\ODL... 00DODBAD | 5056 001-000.. Baltic (150) - tods page28594
80080110 BA |14 /00 BB 7 sequences\002... OO0DEFED | 5536 002-000, Cyrilic (150} - code page2B595
00000128 | FA 1488 88| 2 sequences\003... 00010500 5184 003-000. Greek (150) - tode page?8597
80006130834 115 100001 9 sequences\004... 00011940 | 3008 004-000. Korean (ELC) - code page51943
800001408, 7E 115 100,801 5 oo cncecioos,.. | 00012500 | 2944 005-000... Unicode (UTF-8) - code pagesSa01
8009015054 15 09,08 ||
BBBBB160 E0 15 00 001 7 Sequences\i0e... 00013080 | 2080 00E-000.. Central European (DOS) - tode pageds2
eoepe178! 11 /16 g8l g ? Sequences\007... DOD138AD 3040 007-000... Cyrillic (DOS) - code pagedan
BBBBB188 48 16 B8l pe. - STMEnCes\OB.. OOD14480 | 9624 00G-0OO.., Thai (Windows) - code page&T4
80808198 0898 | 7 Sequencesiing... OO016AED | 4032 00S-000.. Japanese (Shift-112) - code pagedEz
00088186 £3 116 | pplppl| 7 SequenceslDIn... OODIFAAD 3712 010-000... Chinese Simpified (GB2312) - code page936
BO0BO1BE 2 1/ Be ge, - cequencesiOll.. OODIEDE) 6304 011000 Korean - tode paged4d
AeevA1CeH 90088 ? Sequences\0iz... 00D1ALCO 3936 012-000... Chinese Traditional (Bigs) - code pageds0
peoeeipe! | lpplpp! P Sequences\D13.. 00016120 3488 013-001... . — T
BOOBO1ED, | |B0,00; 7 Sequences|0id.. DOOIBECO | 3136 014-001. i o o
BOBBB1FD;23:18.00:080:: 7 Sequences\015... 0001CEOD 6272 013-001... L. 2 . P
000082080 60/18 /88! 801 7 Sequences\016... 0001380 2976 D16-001.. mo. - i
00006210 A2 |18 80,001 ? Sequences|017... OO0IEF20 | 6363 017-001.. g & U
= = = BO00R220 EC 18 100 0881 2 sequences\018... 00020800 4704 018-002... o . % .
Sz‘tuhﬁlﬂhltfzhytesettlnms(uluureda(tnrd\nglnlts I]I]I]I]I]Z:il]!:iﬂ!19!l]l]!l]l]!l 2 Soeniceloto,, DOMZIAGD | 4224 DIo-0DL... . il -
888062408619 100,88} 9 cequencesizo... 000228E0 | 1600 020-001... | e . L
“““““Hui”iwi““i““' 2 Sequences\zl.. 00023120 | 3904 021-001.. 4. 5 . -
gggggggg;m;m;gg;g D Seouences|0z2... 00024080 | 4224 022-001.. o Dog 28 g
“““““Z”!M !m!uu'uu! ? Sequences|0Z3.. OO0ZSOEQ 3328 023-001... S g i i u
ﬁ I]I]I]I]I]Z9[|! ! !ﬂﬂ!ﬂﬂ!l éSaquEn(Es\DZ‘t.‘ 00025DED 5934 024-001... . . b= oy
‘f.ifé.—‘ﬁ i i iu“i““i: éseauences\uz&.‘ 00027540 4928 025-001... LI) - B . R .
ARARA?RA AR nn Seouencesi0ze,., 00026680 979z 026-001.., oL . v LI
https{fbg.cnitgb.com [system resource utlization: 1203368KE] lo1010011/{oooooo00)

46

http://filetrip.net/f23649-CrystalTile2-2010-09-06.html

Windhex32 Not to be confused with disk forensics grade hex editor win-
hex which is not in the paid list owing to a lack of bitwise features and similar
things (it is very good at disk forensics though).

Rombhacking.net page

Great table and text support (including multitable support you can switch
between), some SNES specific memory mappings and SNES/NES tile editor.
Mainly just a very nice text capable hex editor with table support and some
tools to complement that. It lacks undo support and some GUI choices are a
bit odd which prevents it from being a drop in replacement for HxD.

ﬂ"_l WindHex for Windows - "sound_data.sdat
File Edit Tools | search Option Help

Text Search Crrl+F
Hex Search Chrl+H
Kana Szarch Chrlk
Relative Search Chrl+R

Search Again F3

Goko bo Offset Chrl+G
Jurnp Offset List Chl+3

Execute Relative Jump F9
Return ko Last Offset Shift+Fo
Relative Jump Settings FS

Dec: 083 Hew: 53 Bin: 01010011 Cftset: 00000000 [000%] Asc "A'=41

A
Fle Edt Help
| Table Data [10=p
ER ;Il(-‘h:u':alﬁéns;“mm Kana ASCI C Hisgana C Kaiskana
. e K Tl TR
sl EIE I e L N
~ e L pepopgd
TopoAfr P #s [ra R g+ e °
Hl=|z|=|=[=2]|z]| |72 Tl¥
Gle|&|%|#|&|x]|@|§ & [X|C|®]|S([<] 6
Om|a|a|v|w|x|T|=|(1]!]= -
. - |- BB EEEEEERNE
J‘ Bk Alv=1=l=[+]=
| 5 N S 4 Y i =1

47

http://www.romhacking.net/utilities/291/

Goldfinger Romhacking.net page Not to be confused with the common
translation of the Chinese term for cheats or cart pins or the GBA assembler

Goldroad.

Support for 9 tables at once although it does not come with ASCII readout

as standard as. It does feature some table editing abilities.

Although not quite suited to full text display unlike most other editors is
not necessarily bound by the end of the line making it a nice choice for text
editing without having to make a custom tool or dump the text and attempt to

get something done in a more conventional text editor.

File Edit Rom Options Help

Offset: ’3_(‘3) Offsat: © Current table: |—1 |EOL—>CR W
Size: [1c2e0d0 (Z3548608) Section: Edit Mode: [HEX CR-=CR [Unknown
Char: ’m T Changes: |E Para

534-441FFFE000140EDC201400004 ‘I

40 00 00 00 Z5 &% 00 00 &3 &% 00 00 3C 34 00
A4 30 00 00 AC ZE 00 00 50 C3 00 00 FO 16 CZ
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
53 5% 4D 42 IF 6% 00 00 40 00 00 00 10 05 00
€0 05 00 00 F4 00 00 00 EC 11 00 00 Fo 11 00
&4 1200 00 &C 1Z 00 00 00 00 00 00 00 00 00
0 0000 o0 Qg o000 00 g a0 0000 g0 a0 o0
330100 00 EC 1Z 00 00 F3 12 00 00 03 13 00
0D 15 00 00 1§ 13 00 00 % 13 00 00 3% 13 00
4% 4500 00 5% 43 00 00 &% 13 00 00 T3 13 00
TOOA5 00 00 && 13 00 00 2 13 00 00 A0 13 00
AE 13 00 00 B& 13 00 00 C1 13 00 00 CC 13 00
D7 15 /00 00 EZ 13 00 00 FZ 13 00 00 FE 13 00
0D 14 00 00 1F 14 00 00 30 14 00 00 45 14 00
51 14/ 00 00 5F 14 00 00 &E 14 00 00 75 14 00
G5 1400 00 31 14 00 00 3F 14 00 00 AC 14 00
BA 1400 00 C9 14 00 00 D9 14 00 00 EA 14 00
Fa 14 00 00 0F 15 00 00 13 15 00 00 Z4 15 00
3415 00 00 43 15 00 00 51 15 00 00 &% 15 00

?'E1SUDUDSB150000?6150000&315?
1I I »

D
#
#
#
Y
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

HEHEFEHEEEEETE RS R
T R T R R R AR R R W TR TR T R 09 IE e
OHEEHHEEEEE<EEE " EERESR
FEHHTEEE T TR
HHEHHE TS
HHHHEEEEEE ST
AT O T T HEOT
HEHEHHEEEEEE R ET R
B N o R R R R e
HHEHHEHEE TR E RS
TrHE AN MY O T
HEHEEFEHFETEFEET RS
HHEHHEHEEEE TS
T T

S
#
#
#
S
#
d
#
3
#
I

#
#
#
#
0
#
#
#
4

48

http://www.romhacking.net/utilities/204/

Translhextion Romhacking.net page
New fork/version Romhacking.net forum thread
For many the standard rom hacking hex editor for a long time now (although
crystaltile2 is edging it out a bit).
Adjustment of hex window size possible via editor but not grouping.
Jump including relative jump support available and can manipulate bits
Can search using tables and relative search support is available.
No undo support but a nice read only option by pressing tab.

: =101 x]
File Selection Offset Insert Search Bookmarks Script Oplions Wiew Help

OOO00000 55 44 41 54 FF FE 00 01 (40 EC ZZ OL |40 00 04 00 EbATyb..@aﬁ.@..-
00000010 40 00 00 00 25 6% 00 00 68 8% 00 00 3C 34 00 00 H...%i..hi..<4.
00000020 A4 SO0 Q0 00 AC 2B 00 00 50 C9 00 00 FO 16 C2 01 d°...-+..PE..0.F
O0O0030 00 00 00 00 00 00 00 00 00 00 00 00|00 00 Q0 00
00000040 53 59 40 42 (28 62 00 00 40 00 00 00 10 05 00 QO sSyMmMB(i..®......
00000050 CO 08 00 00 F4 OC 00 00 BC 11 00 00 FO 11 00 00 A...G...%...0.
00000060 64 12 00 00 6C 12 00 00 00 00 00 00 00 00 00 00 de..Teeeeennnns
OOOO00F0 00 00 00 00 00 00 00 00 00 00 00 0000 00 00 00 Lol eee e
OoO00E0 33 01 00 00 EC 12 00 00 F8 12 00 00|03 13 00 00 3.0.7...0.... ..
Goooo0s0 o0 13 00 00 18 13 00 00 2% 13 00 00|39 13 00 00 L..o..... J...9..
000000A0 49 13 00 00 5% 13 00 00 6% 13 00 00 73 13 00 00 I...¥...J7...=5..
Q000000 0 13 00 00 88 13 00 00 92 13 00 00 A0 13 00 00 F....... e .
0O0000CO ABE 13 00 00 BG 13 00 00 <1 13 00 00 CC 13 00 00 «...f...A...I.
000000Dp0d DY 13 00 00 E2 13 00 00 F2 13 00 00 FE 13 00 00 x...4...0...p.
GOOOO0ED 00 14 00 00 1F 14 00 00 30 14 00 00|45 14 00 00 L.o... .. O...E..
000000F0 51 14 00 00 5F 14 00 00 6B 14 00 00 78 14 00 00 S..._...k...x..
Q0000100 85 14 00 00 91 14 00 00 9F 14 00 00 AaC 14 00 00 L...%. -
00000110 BA 14 00 00 |C9 14 00 00 DB 14 00 00 EA 14 00 00 °...E...U0...E&.
OOO00120 Fa 14 00 00 08 15 00 00 13 195 00 00|24 15 00 00 Meoieeeaeas 5.
00000130 34 15 00 00 (43 15 00 00 51 15 00 00 69 15 00 00 4...C... Q... T,
oooold4n FE LS 00 00 8B 15 00 00 96 15 00 00|a3 15 00 00 ~ ... o... £.
00000150 B4 15 00 00 BC 15 00 00 C8 15 00 00 D4 15 00 00 Y. . E.. 0
00000160 EC 15 00 00 EC 15 00 00 FD 15 00 Q0|06 18 Q0 00 3 I
Oo0001F0 11 16 00 00 1a 16 00 00 2C 16 00 00|38 16 00 00 ..., PR
OOOO01E0 48 1a 00 00 SE 16 00 00 6E 16 00 00|83 148 00 00 H.e.. A . ofee.. ..
00000190 9% 16 00 00 aF 16 00 00 CO 16 00 00 D2 16 00 00 A ..D
000001A0 E3Z 16 00 00 F3 16 00 00 03 17 00 00 13 17 00 00 &...0..........
OOO001ED 23 17 00 00 34 17 00 00 45 1¥ 00 00|56 17 00 00 #... 4., E...W
000001LC0 ey 17V 00 0078 17 00 00 89 17 00 00 599 17 00 00 gu.eXeeeeennnas
000001D0 A% 17 00 00 B% 17 00 00 C9 17 00 00 DA 17 00 00 ®...'...E...0O
O0Q001IEQ EBE 17 Q0 00 F% 17 00 00 07 18 00 00 15 18 00 00 A.welliverennens
o000l FD 23 18 00 00 31 18 00 00 3F 18 00 00|50 18 00 00 #. .. 1...7...F
00000200 60 18 00 00 6D 18 00 00 | 7FE 18 00 00 90 18 00 00 "L .M. .mena..
iI | Ile
|OFfsetU=DxU Bits=01010011 Unsigned: B:BSJW:1?491,L:14135634?5| AMSI] OVR L | Size: 29548608 o

49

http://www.romhacking.net/utilities/219/
http://www.romhacking.net/forum/topic,14373.0.html

1.7.2 Tile editor

Although you can edit anything with a hex editor as mentioned it gets very
complex to do anything other than the most basic editing using one and the
first thing to move to a higher level tool is 2d graphics which get a tile editor.
There are several available although only a handful will be focused on here.
Various homebrew development kits have some nice programs as well aimed at
conversion from common formats to the somewhat odd formats used by the
handhelds and other consoles.

Crystaltile2 [Filetrip download

Features one of the best tile editors out there (support even for the odd cus-
tom hardware display formats and a tile editor capable of being set to arbitrary
widths) and has support for various DS image formats on top of the DS file
system itself. Exporting and importing images is also possible.

CrystalTile2 - [t.nds] =10 ﬂ
&r Fle Edit View Tools Bookmark(C) Plugin Window Help — & x|

[EE IR A =
Properties | pajette | Favorires | Settinns | Rese ¢ [
~ default settings

offset: 29B0400

™ Tile property
scale 0]
linked ta move 1
MAPOAM address 0
byte jumnp 0
width 256
height 192 —
Tile Format GBA 8bpp
image pattern Tile
Angle Angle:0i&
left burn inactive
Flip harizontal inactive
Flip wertical inactive
2/4 inactive

~ Tile Fant Editar
Sort LeftTop
transparency inactive
shadow effect inactive
Font Courier Mew
Alpha blending 255

1=

[Mapmode] [LUK-PAININTR-ASIPIEUR | 1024MBITS Victor Interactive Software|

a0

http://filetrip.net/f23649-CrystalTile2-2010-09-06.html

TileEd2002 Homepage

Filetrip download

A GBA vintage editor but as the GBA and DS hardware are largely the same
it can do basic sized tiles in the two most common hardware formats and has
a nice palette fiddling option (one colour at a time if you want) which some of
the others lack and is useful when trying to figure out what amount of padding
a palette format uses. Lacks support for highly custom tile sizes (it will crash if
you try on GBA format imagery) although it does support loading of savestates
to get palettes directly from those. Note also the use of imagery to display text
as opposed to a text rendering engine as it is very common in smaller puzzle
games without much need for actual text and menus in general.

& TilEd 2002 0.64 =1l x|

Browser Edtor Tie Help

Browser Control

File

e v

Ap3)

Address

1=" ™1 L LS|
=, T AT b N T PP

ASHES P PR
TGS A T L

Browser Size
L v 32

4 v| 32

Color Set

Bitmap Mode £ e -
S e |
e w0 1 d
T m—
T —r

= visualBoyAdvance-

Flle Options Cheats Tooks Help
MAKE YOUR CHOIGE!

(&) :

) 2PDRILLER
RECORDS

i

- - OPTIONS

) BUTTON: OK /(3 BUTTON: CANCEL

o1

http://home.arcor.de/minako.aino/TilEd2002/
http://filetrip.net/gba-downloads/tools-utilities/download-tiled2002-064b-f7846.html

Also the palette as held in the GBA.

Il Palette Yiew

Click an a calar for maore infarmatian

— Background

W alle;

[Automatic update

Save BG.. |

Refrezh Cloze

92

TileGGD Google code page

Although the above two should do for most editing purposes this program
has hugely customisable support meaning most conceivable hardware formats
should be covered (from 1 to 32bpp with big and little endian support) and in
some ways has a slightly nicer user interface than crystaltile2. Unlike the other
two there is no editing capability built into the program but there is export and
the information can be used to direct an editor of another program.

i Tiled GGD

File Image Palette Other

Graphics Data:
Source File:
Offzet:

Fanel Size:

Tile Size:
Format;
Endiarness:
Mode:

Skip Size:
Width Skip Size:

Height Skip Size:

MP_004_BS000.ntx
0=0

256 % 1038

256 % B4

8 bitsApixel

Little Endian

Tiled

1 Bytes

1Tile

8 pivel:

Palette D ata:
Source File:
Offzet:

Tile Size:
Format:

Calour Order:
Endianness:
Mode:

Alpha Location:
Skip Size:

MP_004_MMO00. ntfp
00

g1

2 Bytez/colour

BGR

Eig Endian

Tiled

Start, but ignored

1 Calour

33

http://code.google.com/p/tiledggd/

1.7.3 Spreadsheet and command line

The following is a few basic tools that can be used to help out when ROM hack-
ing when existing tools fall short and before/instead of jumping to programming
a game/format specific tool.

Libreoffice usage |Office suite homepage

Calc usage/help page

Calc is the libreoffice spreadsheet program and it supports hexadecimal after
a fashion. It is certainly no substitute for a fully realised programming language
but it has proven quite valuable when making quick and dirty scripts or reverse
engineering formats.

There are seven main operations that get done beyond the basic addition
and subtraction.

Pasting At least one of your hex editors should have a text export option
that when you have set the appropriate amount of columns can export a text
list of the hexadecimal (effectively making an array) and equally a search option
should be able to export the results. Either way you will need to paste this into
the spreadsheet which for the most part is fairly intuitive and automated but
you will occasionally have to import as a fixed width or as a delimited set of
text (usually a space or tab doing the delimiting). Merging cells (say for a 32 bit
value spread across 2 columns assuming you do not want to change your editor
behaviour) can be done but the quick and easy way is to paste the columns into
a text editor and search and replace for the delimiting value.

If you must though you are better off abusing a maths function and mul-
tiplying by the appropriate hexadecimal value (65025 and 255 to shift the hex
equivalent by 2 and 1 bytes respectively) and the reverse using mod, floor and
other functions.

Bitwise, boolean and flipping operations are best done in a hex editor and
given the option you will also want to import as text (all the functions will still
work) as numbers have a habit of being parsed to something.

Fill A basic command/option but not one everybody knows about. In the
bottom right corner of a given cell when selected there will be a small square
which you can click and hold before dragging down or up (or across) and the
cells have the contents replicated in the cells covered by the drag range. If you
have a pattern it will tend to be continued and if you have a formula that will
tend to be continued but the cell contents aligned to the same thing (if the
original was c4 - ¢3 the next will likely be ¢5-c4), it is not foolproof and some
of the more advanced things you want want to do can be tricky to pull off but
it has worked far more often than it has not.

Dec2hex and hex2dec Although calc does support hexadecimal and you

can combine items into one function it is usually easier to have the initial hexa-
decimal values, the decimal equivalents and the conversion back again.

o4

http://www.libreoffice.org/
http://help.libreoffice.org/Calc/Welcome_to_the_Calc_Help

In calc the commands are dec2hex to convert from decimal to hexadecimal
and hex2dec to do the opposite.

Differences Granted this is more of a technique than an actual function
but it is the most used concept that actually changes/generate data. If you have
a field of pointers (covered later but the general idea is a value that contains
the location of another value) and the results of a search for something that
indicates the start of a value you might need them to line up but it might not
be readily apparent. Most of the time with pointers values change between them
(if the data is a fixed distance apart there is no need to incur the time penalty
for looking up the pointer and maybe doing some operations upon it) and this
can give things away. To do this simply take the next pointer value and subtract
the current one. The result will be the difference and if you do it for an unknown
pointer set you can quite easily match things up and determine if they are “out”
by a given amount. You can do a similar thing in reverse to generate new file
lengths to save calculating and changing an entire pointer table by hand but by
this point it is probably better to build a proper program.

Rounding function As mentioned data tends to like to be found at 8,16
or 32 bits or some other interval (several file formats on the DS have been
observed to align to an address that is a multiple of 100h). CEILING is the
main function here although remember it takes decimal input for the number
to round to. MROUND can also be used in a pinch but remember it can also
round down which would be bad so best to add an amount if you are going to
use that.

Sort function Not quite so useful in ROM hacking as it is day to day use
is the ability to sort by a value (either letter order or number order)

True/false queries and parsed data Humans are not so good at re-
cognising and interpreting numbers at pace but nice coloured squares are quite
useful but if you must use numbers 1 and 0 are easier to account for than lengthy
values. Spreadsheets can then help with this. The basic method uses the IF com-
mand and is typically formed IF(some value/cell, equals/is less than/is greater
than, then FALSE/TRUE) deleting as appropriate.

Filecutter |crackerscrap.com (click on downloads)

Usage: filecutter file.in length file.out <-s start>

As windows lacks the ability to slice up files from the command line you have
this program. Once you have your list of addresses you can use this to generate
a batch file with the addresses as the arguments and although it will be specific
to that incarnation of the file you have just built an archive unpacker. If you
need to couple it with a decompression tool you can do that as well in just a
few extra steps back in the batch file stage.

Input is in decimal.

39

http://crackerscrap.com/

Romulan Project homepage

Where the above two are tools that can be used in ROM hacking this is built
from the ground up for it. Some basic/example usage is covered in part 3 but
in general it is a scripting tool that comes close to being a full programming
language but stops short of having to actually program something. Your hex
editor might support scripting of a form but this potentially more powerful and
is useful to send to people and build basic tools in.

Getmyhex Romhacking.net download

Filetrip download

A simple tool to get the hexadecimal readout of various short sections of
text.

1.7.4 Compression

Compression was once the bane of rom hackers but it got a lot easier to manage
on the DS and to a slightly lesser extent the GBA. At this point it might
even have reduced to making an extra step using a known tool when extracting
something from a rom or putting it back in but not much else.

DSdecmp |Google code page
Supports compression and decompression of LZSS formats seen on the GBA
and DS (type 10, 11, 40 and binary/BLZ), RLE and huffman.

Cues GBA DS compressors (GBAtemp thread

Filetrip download

Also supports compression and decompression of LZSS formats seen on the
GBA and DS (type 10, 11, 40 and binary/BLZ), RLE and huffman as well as
LZE (used in Luminous arc titles).

Crystaltile2 |Filetrip download

Has a measure of compression support built into the file manager (type 10,
type 11, binary decompression support some RLE and maybe huffman) and
support for some compression searching options.

GBA specific BIOS and to a lesser extent general LZ compression can be
searched for as it makes fairly distinctive changes to the hex. There are also a
few tools geared towards being able to deal with GBA roms directly and work
around issues stemming from a lack of a filesystem.

GBA Multi DeCompressor romhacking.net download

Can be directed and fed VBA SWI logs (SWI being the name for the BIOS
calls and as mentioned the BIOS in the GBA and DS feature decompression
functions).

96

http://stealth.hapisan.com/ROMulan/
http://www.romhacking.net/utilities/504/
http://filetrip.net/pc-downloads/applications/download-getmyhex-1500-f29200.html
http://code.google.com/p/dsdecmp/
http://gbatemp.net/topic/313278-nintendo-dsgba-compressors/
http://filetrip.net/nds-downloads/utilities/download-cues-gba-ds-compressors-10-f29010.html
http://filetrip.net/f23649-CrystalTile2-2010-09-06.html
http://www.romhacking.net/utilities/431/

NLZ-GBA Advance romhacking.net download
Ostensibly a graphics editor but one with compression support and compres-
sion searching.

unLZ-GBA romhacking.net download
A slightly older tool but one of the few ones capable of compression searching

Lz77restructor2 |Filetrip download
A newer tool with abilities in graphics and text extraction and insertion/edition
on top of the ability to search for compression and restrict those searches.

GBADecmp romhacking.net download
A simple tool to decompress and recompress data from/to a known location.

Crystaltile2 |Filetrip link
Supports type 10 LZ which is the same as the GBA BIOS LZ compression.
Also supports compression searching.

GBACrusher Filetrip link

A tool to compress files using GBA BIOS compatible compression methods
like the 8 and 4 bit Huffman compressions, Differential, Run length encoding,
LZ (type 10) for VRAM and for WRAM. Command line version included.

-ioix

Fil= Help

Filename | Path | Size | | AddFilefs)...
gbacrusheroutput. bt E:\ ha3

|| Eemove Filelz]

Tatal Size: 583
Compression———
" None

" Differertial, 16-bit
" Differential, 8-bit

' Run-Length

" Huffman, &-bit

" Huffman, 4-bit

© 1Z77

 LZ77. VRAM safe

CRUNCHIT!

1.7.5 Music
Format and console specific tools will be covered in the relevant sections. How-

ever a few high level tools are useful to have.

Wave editing - Audacity Audacity Sourceforge page
Imports most wave, PCM and ADPCM variations and features editing, some
mixing ability and filters.

a7

http://www.romhacking.net/utilities/529/
http://www.romhacking.net/utilities/362/
http://filetrip.net/gba-downloads/tools-utilities/latest-lz77restructor2-f29641.html
http://www.romhacking.net/utilities/433/
http://filetrip.net/f23649-CrystalTile2-2010-09-06.html
http://filetrip.net/gba-downloads/tools-utilities/download-gba-crusher-010-f28823.html
http://audacity.sourceforge.net/

Tracker format - Open MPT Open MPT homepage

A fairly advanced program with support for playing, editing and exporting
various tracker formats. Should have a measure of DLS support although it
can be problematic. Formerly known as ModPlug Tracker which is what some
tutorials written before then will refer to it as.

Midi specific - Anvil Studio [Anvil studio homepage
A freeware program that several of those editing audio for the GBA like to
use.

General editing - Awave studio |Awave studio homepage

A largely paid piece of software that can help convert files and deal with less
than perfect implementations of some audio formats various game specific tools
might output. Midi and DLS support is available.

1.7.6 ASM

Usage is often as extensive as ASM itself but some tools none the less

Emulators (debugging/hacking grade) The following is a list of emulators
that possess debug functions of a grade that is useful to ROM hacking without
going to abstract methods of debugging.

DS there are a handful of emulators available but only three have any real
support for commercial roms and debugging.

Desmume

Desmume download page

The developers and regular version feature memory viewers, diassemblers,
VRAM, OAM and other such viewers.

no$gba

no$gba developer version page

The freeware version of no$gba features very few debugging features (al-
though there are some memory editors that interface with it) but there is a paid
version available with extensive debugging abilities. Unknown if it can still be
obtained from the link above. Note that ROM images may well need to have
their secure area encrypted to run but eNDryptS Advanced| should be able to
handle that.

iDeaS

iDeaS homepage

Slightly less developed than Desmume from the commercial roms front it
does however support something closer to breakpoints as seen in no$gba and
the GBA emulators as standard although the function logs and run to selection
command are more prominent in the debugging section.

a8

http://openmpt.org/
http://www.anvilstudio.com/
http://www.fmjsoft.com/awframe.html
http://desmume.org/download/
http://nocash.emubase.de/gba-dev.htm
http://www.no-intro.org/tools.htm
http://ciacin.site90.com/ideas.php

GBA The GBA has a somewhat larger and more featured collection of
debugging grade emulators.

VBA-SDL-h

VBA-SDL-h Homepage

VBA-SDL-h sharesource page

Filetrip download

Version of the popular GBA emulator reworked to add debugging support
like the ability to set breakpoints.

VBA-h

Filetrip download

VBA-sdl-h above is geared towards assembly hacking and lacks much in
the way of a GUI where VBA-h is geared towards memory viewing and cheat
making.

no$gba

no$gba developer version page

Along with the DS the GBA is well supported in the debugging editions of
no$gba.

BoycottAdvance

Filetrip download

Some prefer this to VBA-SDIL-h and it certainly is a bit more GUI happy
friendly. It can take a bit more to get some ROMs working and some of the
features are not as extensive but it does have breakpoints which counts for a
lot.

File ‘Window Options Debug Help
G7FFFFFC | 0008 T ANDEQ RO, RO, RO 2| ~Hemory—
1B
MAKE YOUR GHOICE! 080006804 | S1AEFF24 - MOUPL PG, R4, LSR #30 Segup

. 88600608 21A200692 ; HOUCS R2, R9, ROR H#20
8360066C BAS2843D : BEQ 8701188 Pgup

886080610 ADOYELEL - UNKMOWMN OPCODE

1PDRILLER 08000014 | 988B2411 : STHIALS R11,{RO,R4,R10,5P} up
08000618 | 217F81CO : UNKNOWN OPCODE
o 0800061C | 19BE5203 : UNKNOWN OPCODE
l l 2PDRILLER a 08000020 | 20CE0993 : SBCCS RO, LR, R3, LSL RY
'.-\‘_‘___H). 08000024 | LALANG10 : BHI 0929186C Down
‘h " 08000028 | EC3127F8 : UNKNOWN OPCODE
¥ v 0800062C | 33EBC758 : MUNCC R12, 415608008 PgDn
RECORDS 08000030 | BFCEE382 : SWILT CEE382
‘ 08000034 | 9MDFF485 : LDRLSB PC, [PC], #485 Sgbn

830600638 C10894BCE : UNKNOWN OPCODE j
- m > OPTIONS Breakpoints Command line Disassembly
(Display ‘ ’7Nut yet inplemented [ARM | THUMB| TRACK

E el |l ke

) BUTTON: OK /{Z) BUTTON: CANCEL

= ﬁn
RO RS BP Address 93000500 : 60 00 00 60 0O 00 60 02 64 63 64 40 00 00 00 00 | [€My
T 93000510 : 00 16 8O 00 00 6O 00 00 §0 BE €1 02 0A 3C 00 00 Sequ|
R Jesomzoc R9 |onanonen 80 - 6x08006F00 93600520 : 62 00 0 60 00 03 67 62 00 00 00 00 00 00 00 00 20
R2 RiD o1 - : 90 00 00 6O 00 00 BO 0O F8 §0 29 €8 00 0O 0O 00 PqUp
o - 03000540 : 00 00 GO 0O 00 BO 00 00 §0 02 00 00 06 41 7F D5
R3 R11 63 - 03000550 : 00 00 00 00 00 00 00 02 64 63 64 40 00 00 00 00 wp
- R12 ; B4 — BxFEFFFEFF 93000560 : 00 16 8O 0O 00 6O 00 00 00 0O 00 00 OB 3C 00 00 _I
o5 - 93000570 : E4 57 69 08 00 6O 09 00 00 00 00 00 00 00 00 00 —
R5 [06000608 R13/SP [63007DF8 B6 - OxEEFFFEEF 03000580 : 00 00 BO 0O 00 6O 00 00 50 &1 29 03 00 00 00 00
o7 - : 90 00 60 BO 00 00 BO 0O 80 02 0O 00 06 2A 6C DS Down
R6 R14/LR 680807 6F 88 - OxFEFFFEFF 030005A0 : 00 00 00 00 00 00 00 02 64 63 64 4O 00 00 00 00
o7 R15/PC 59 - 90 16 60 B9 00 00 6O 0O 00 BC 01 62 80 00 00 00 Pgbn
10 - OxFFFFEFFF 030005C0 : 88 4C 69 0 00 6O 00 00 00 0O 00 00 00 00 00 00
11— OxFFFFFFFF 93000500 : 00 00 BO 0O 00 BO 00 00 AC &1 29 03 00 00 00 00 Sgbn
[svsTEm — [RUNNENG 030005E0 : 00 00 6O 00 00 BO 00 00 §0 02 00 00 06 24 7F D5
oot | ETF NN S0 LIS Breakpoints 030005F0 : 00 00 6O 00 00 B0 00 02 64 63 64 40 00 00 00 00 yiarn
Flags [z cT__ VLine [Ey 03000600 : 00 16 8O 0O 00 6O 00 00 00 0O 00 00 01 00 00 00
Set Clear 83000610 : 60 6O 00 60 00 60 6O 00 00 DO 00 OO B0 00 DO 00 BYTE
63800620 : 00 60 68 B8 80 60 68 08 DE 52 29 05 60 00 00 60
Erase All | - 80 90 0@ OO 60 60 AA 00 G0 B0 B0 00 00 80 OO 00 WORD
63800640 : 00 60 66 08 80 60 06 08 60 6O 00 00 6O B0 00 60
63800650 : 00 60 66 08 60 60 68 08 60 B 00 00 6O A0 00 60 e
+/- add/sub 16 bytes PGUP/PGDOMN add/sub 256 bytes =

99

http://labmaster.bios.net.nz/vba-sdl-h/
http://sharesource.org/project/vbasdlh/
http://filetrip.net/gba-downloads/emulators/download-vba-sdl-h-r070904a-f28914.html
http://filetrip.net/gba-downloads/emulators/download-vba-h-172-f28913.html
http://nocash.emubase.de/gba-dev.htm
http://filetrip.net/gba-downloads/emulators/download-boycottadvance-028-windows-f28912.html

Disassemblers Disassemblers are tools that can be directed to turn machine
code and related information back into assembly code. They are pretty dumb for
the most part and their output will tend not even to be able to be reassembled
as is but if you can direct one to where you need it to be they are invaluable.

GBA and DS Emulators will usually provide some disassembly and as
they know what mode the processor is running in at the time and have viewers
they can be even more useful but standalone disassembly tools do exist.

e Crystaltile2Filetrip downloadl Has a basic disassembler for ARM9 and
ARMY built into the program and the ability to interface with other pro-
grams.

e NDSDIS2 [NDSDSI2 homepage| Filetrip download. A basic standalone
disassembler aimed at the DS.

e IDA DA homepage| Paid software although the freeware edition should
just about do for GBA. This is the go to general purpose disassem-
bler/debugging tool and one all new disassemblers and debugging plu-
gins/tools for various platforms tend to be written for.

Assemblers The processors in the GBA and DS are quite similar so you can
usually go from one to the other. Developer no$gha and crystaltile2 feature
single instruction editing and IDA has some abilities in this arena too. Also
tending to be 16 or 32 bits in length you can often edit instructions by hand. This
will focus more on hacker grade assemblers as programming grade assemblers
have great features like the ability to create variables/human readable references
and similar things by default where hacker grade ones tend to require more raw
input (although armips does have a lot of niceties here).

The GBA ARM7 and DS ARM9 are very similar and provided the added
instructions (all of three not all that commonly used ones) you can live danger-
ously and switch between them.

Again assembly will be covered later (including some links to the official
specifications) but in the meantime [imrannazar.com ARM Opcode Map has a
full listing in a more readable form.

armips

romhacking.net download

program homepage

A relative newcomer in the rom hacking assembler world (the first release
was back in September 2009). Geared towards GBA and DS rom hacking (also
MIPS R3000 for the PS1) it has the option to use macros, labels (global and
local), can load tables so as to be able to load custom strings and something
closer to C/C++ family maths than the average assembler. Owing to the way
it works it has pretty good support for overlays as well.

ARMeabitoolchain

60

http://filetrip.net/f23649-CrystalTile2-2010-09-06.html
http://hp.vector.co.jp/authors/VA018359/nds/ndshack.html
http://filetrip.net/nds-downloads/utilities/download-ndsdis2-223-f28977.html
http://www.hex-rays.com/products/ida/overview.shtml
http://imrannazar.com/ARM-Opcode-Map
http://www.romhacking.net/utilities/635/
http://aerie.wingdreams.net/?page_id=6

ARMeabi deals with the underlying assembler for the GNU development
toolchains (although for the GBA /DS specific stuff you will want to be looking
at devkitpro)).

As part of an earlier hacking project a kit was made to assemble small file
fragments into things that could be dropped into the ROM. Two main methods
aimed at hacking here

cracker’s ARM ASM kit

crackerscrap.com (click on projects)

gbatemp download (older version)

Garmy

romhacking.net download

goldroad

romhacking.net download

For quite a while the main assembler available for the GBA as far as rom
hacking was concerned. It is not the cleanest tool out there but can get things
done and for some xkas replaced it but the above tools are now the preferred
method.

armish

Project homepage

Written in lisp and aimed more at homebrew programming it is another
assembler for the ARM processor family.

arm sdt

More of a programming assembler and features some very nice functions to
help with program development. Many of the GBA homebrew emulators and
some versions of moonshell were coded using this in preference to the GNU
toolchains which made maintenance more difficult in some cases.

61

http://devkitpro.org/
http://crackerscrap.com/
http://gbatemp.net/up/cr-dstmt.zip
http://www.romhacking.net/utilities/456/
http://www.romhacking.net/utilities/343/
http://common-lisp.net/project/armish/

1.8 Basic file format concepts

Much of the rest of this guide revolves around being able to pull part file formats
and it will be covered and related back a bit to the underlying hardware and
the concepts the area is based on but there are things to look for when pulling
apart a file.

Identifiers also known as magic stamps these are small lengths of usually AS-
CII text or hexadecimal that are “unique” to the start of a given file format,
section thereof or command.

Lengths most times the lengths of a file or the files contained within an archive
format are very important to have. It need not be present if you can
calculate the lengths otherwise.

Pointers as well as lengths the locations of the files are useful to have as are
the sub sections of a complex file format and these will tend to have values
that state the location of them (point if you will).

Header the start (or sometimes end) of a file that often houses information on
the rest of the file.

It gets a lot more complex, area specific and there are various methods and
pitfalls some of which have already been mentioned (things like word alignment)
but if you can find one or more of the above and document those you will usually
be well on your way to reverse engineering a file format.

Also for an example on why your hex editor will want to be able to change
the size of the window (preferably when maximised and with a simple click and
drag of the mouse)

62

Just having opened the file and then after quick resize and a tiny delete

H Hex Workshop - [ET.pkg] =10l x|
Fie Edit Disk Options Tooks Window Help =& x|

CEEERE T EE IR N EE
Sc«nSPER | & vt - =zl MaB|[BEE % %8 |

0000000000 [F06E 6700 0000 0000 0103 0000 0100
000000001012333 9F01 E2FT BBOO 8445 (0900 AADD
0000000020 (0300 0000 0000 0000 Q000 Q000 0000 ..
0000000030 (6761 6D6S 7465 7874 5F65 BEZE 7374
0000000040 (0000 0000 0000 0000 Q00O 0000 0000
0000000050 (0000 0100 B2ec 0000 5234 0000 649C
0000000060 (0000 0000 6261 GE64 6974 BFZE 7370
0000000070 10000 0000 Q000 Q000 0000 0000 0000
0000000080 (0000 0000 0100 0100 AB4F 0000 CS10
0000000090 [BEDO 0000 0000 0000 6261 T725F 6261
0000000040 |7370 7200 0000 0000 Q000 0000 0000
0000000080 (0000 0000 0000 0000 0200 0100 CO04
00000000CO (1301 0000 7EEL 0000 Q000 Q000 6261
00000000D0 (676F B6F64 2E73 7072 Q000 Q000 0000
00000000ED 0000 0000 Q000 Q000 0000 0000 0300
00000000F) |CO04 0000 EVOD Q000 91E2 0000 0000
0000000100 |626F 6775 7366 6C6F 7731 362E 7370
0000000110 (0000 0000 0000 0000 0000 QUOD 0000
0000000120 0400 0100 FB5C 0000 280E 0000 78E3
0000000130 (0000 0000 626F 6775 73066 GCOF F75F
0000000140 (273 7072 0000 0000 Q000 Q000 0000
0000000150 (0000 0000 0500 0100 2827 Q000 D704
0000000160 |A0FL 0000 Q000 Q000 636F 726E 6572
0000000170 (7072 0000 0000 0000 G000 0000 0000
0000000180 (0000 0000 0000 0000 0600 0100 2801
0000000190 (BOOO 0000 77F6 0000 Q000 0000 6469

0000000140 [6CEBF 2E73 7072 0000 0000 0000 Q00O =l
ET.pka
ﬁ Data Inspector [_Structurs Viewsr [|ﬁ Compare 4 Checksum i Find Bookmarks fy Output /
Ready [offset: 00000000 [Value: 27504 [oziz3%abytes [OWR [MoD FEAD. s
=[o|x|
B) Fie Edt Disk Options Tools Window Help =[] x|
EECERE L EE) EEID R EE |
[srens2e2aialrs - s zwb|aas|mes|w e
0000 [6761 6065 7465 7874 5F65 GEZE 7374 7200 0000 0000

0140000 0000 0000 0000 0100 8ZEC 0000 5234 0000
034 16261 6E64 6974 6F2E 7370 7200 0000 0000 0000
04E 0000 0000 0000 0100 0100 AB4F 0000 CEB10 0000
068 6261 725F 6261 642 7370 7200 0000 0000 0000
082 0000 0000 0000 0200 0100 CO04 0000 1301 0000
09C |6261 725F 676F 6F64 2E73 7072 0000 0000 0000
0BG 0000 0000 0000 0300 0100 COO4 0000 E700 0000
00D0 |626F 6775 7366 6CO6F 7731 362E 7370 7200 0000
00EA (0000 0000 0000 0400 0100 FB5C 0000 280E 0000
0104 |626F 6775 7366 6CO6F 775F 3130 2E73 7072 0000
011E (0000 Q000 0000 0500 0100 2827 0000 D704 0000
0138 |636F 726E 6572 2E73 7072 QQO0O 0000 0000 0000
0152 |0000 Q000 0000 0600 0100 2801 0000 BOOO 0000
016C |6469 6162 6C6F 2E73 7072 QQOO 0000 0000 0000
0186|0000 0000 0000 0700 0100 6097 0000 5615 0000
01A0 |6469 616C 6F67 7565 6463 5F31 302E 7370 7200
01BA (0000 Q000 0000 0800 0100 D092 0000 €217 0000
01D4 |6564 6075 6E64 7364 6973 5F31 302E 7370 7200
01EE (0000 0000 0000 0900 0100 FB53 0000 3B14 0000
0208|6564 6075 6E64 735F 3134 2E73 7072 0000 0000
0222|0000 0000 0000 0A00 0100 ABBD 0100 5019 0000
023C |656C 7469 6772 652 7370 7200 0000 0000 0000
0256|0000 0000 0000 0BOO 0100 78AF 0000 841D 0000
0270 |666F 665F 3136 2E73 7072 0000 0000 0000 0000

0284|0000 0000 0000 0cO0 0100 7866 0000 111F 0000
244 (6765 7374 7572 6550 6F69 6E74 2E73 7072 0000
2BE (0000 0000 0000 0000 0100 200 0000 7e00 0000
2D |6963 6F6E 7365 6C65 6374 ZE73 7072 0000 0000
2F2 (0000 0000 0000 QE0QQ 0100 2801 0000 £200 0000
30C|7369 6465 2E73 7072 0000 0000 0000 0000 0000
32610000 0000 0000 OF0O 0100 2B0L 0000 9300 0000
340 |736D 6F6B 6573 7461 7273 2E73 7072 0000 0000
35410000 0000 0000 1000 0100 0BOE 0000 6E02 0000
3747469 T46C 6573 7068 5F31 362E 7370 7200 0000
038E (0000 Q000 0000 1100 0100 1073 0100 QF27 0000
0348|7469 746C 6573 7068 5F31 3BZE 7370 7200 0000
03C2 (0000 Q000 0000 1200 0100 1083 0100 662A 0000
03DC |7469 746C 6573 705F 3136 2E73 7072 0000 0000
B ETpkg
T oata tepector {_Srcuravimr | |2 ompare f couckam e . Bockars oupur
Ready Offset DO0D0000_ [Value: 24935 ~ Pe1zgsibytes [ovR oD FEAD 7

63

2 Graphics

Whether it is ripping them or wanting to edit them graphics hacking is and
has long been a huge part of ROM hacking. Generally there is a line that can
be drawn between 2d and 3d imagery as they tend to have different hardware
underneath it all although both can be used to influence the other; isometric
imagery and sprites used to generate a first person “3d” view is nothing new
but many are surprised to hear that New Super Mario Brothers on the DS used
3d models instead of sprites to make a fairly traditional 2D platformer. The 3d
hardware gets used in various ways that might not be immediately in line with
the general perception of 3d as well.

Basic graphics concepts

In computer games and most visual or other sensory media until you meet
things like abstract works (note a somewhat different concept to abstraction
as seen elsewhere in this document) there are two concepts that feed off each
other at work. 1) is the suspension of disbelief and 2) is getting the audience
to use their imagination. 2) is the subject of any good artistic tutorial but in
the meantime think how a camera might pan away and use some audio cues
rather than attempting to display violence or a good book will spend a lot
of time setting a scene and describing things or otherwise describe situations
compelling to humans. As it is very involved 2) is not really something that can
be covered here other than to say it is well worth learning about even if you are
mainly a technical person both in general and to try to guess what methods will
be used to achieve it. 1) however is much more of a scientific discipline although
biology and psychology eventually feed into it so it gets covered. To make an
image look real assuming you want that sort of thingE[) it

1. Has to replicate enough colours that the human eye can not tell (this is
typically taken to be about 24 bit aka 16.7 million colours although those
that edit images like to go to 32 bit (4294967296 values) so as to have
more information to edit with and avoid having colours jump from to the
other) and although the GBA and DS screen is 16 bit it can do the job if
you do it right.

2. Has to have enough information which typically means having a point and
the point next to it not being distinguishable from one another (if you can
see the points that make up the average image something has gone wrong).
Now there are ways around this as the human eye is better at brightness

31t stems from robotics but there is a concept known as the uncanny valley that reads
in brief as a robot gains more human like qualities humans will react more favourably to it
on an emotional level until a tipping point is reached where the robot is fairly similar to a
human but not quite and humans will start reacting less favourably or even negatively on an
emotional level until the robot gets considerably more realistic (no small feat) at which point
the emotional reaction turns back towards the positive. The idea has parallels throughout
media and other attempts to emulate either a human or something that is seen in the real
world. To this end going for ultra realism is not always the best bet.

64

(luminance) than colours and there is such a thing as empty magnification
where you can blow things up/zoom in but no real new information will
be gained not to mention humans do not see ultraviolet so it tends not to
be replicated in imagery; indeed much of lossy compression is tasked with
doing just this.

The alternative to actual pixels and 3d rendering into them is so called vec-
tor imagery which defines images entirely mathematically (for instance draw a
square, thickness 3 with a length 4 at point 0,14 can be scaled to any size with
simple multiplication). Fonts on computers have used it for years and consoles
have recently got into it (newer fighting versions of Street Fighter being noted
for it) but it is quite rare to see in the end result of a console game much less
a handheld title. Still if you want to there are programs like Inkscape | that
you can try out and attempting to render pixel art as vector imagery is quite
popular.

2.0.1 Aliasing

Most screens in the world (and as far as games go it is mainly only the Vectrex
that differed here) use a grid of pixels that can be individually set to various
colours to display images. Rendering this out means a nice defined line can
appear as a run of a couple of pixels and then a shift one pixel and then another
run and the human eye is quite adept at picking this up even when not trained
to so techniques (known as anti aliasing) were developed to lessen the effect.

This is also a problem when you take an image that was made at one size
and scale it up or sometimes scale it down to something that is not a simple
half (or quarter or so on) size of the original but scaling imagery has several
potential pitfalls beyond that so do it sparingly or not at all.

Example (might need to zoom in a bit)

Allased
Antialiased

65

http://inkscape.org/

2.0.2 Haloing

Related in some ways to aliasing above here trying to select just the outline of
an item on a complex background might be hampered by the anti aliasing which
has a habit of causing a slight merging/smoothing of colours and transitions and
as a result a coloured outline not unlike a halo. This is one of the reasons why
sprite sheets and similar things will often come as a selection of sprites on a hot
pink or lime green background which lessen merging effects.

2.0.3 Bit depth

It general imagery it means one thing and that is how many bits are assigned to
colours which were covered in the introduction to this section but in 2d console
imagery it means what number is assigned to represent each pixel with typical
values being 4 and 8. Now this does not mean 4 and 8 bit colours but that you
can select from a choice of colours from a premade selection which is composed
of 16 bit colours. Later on sector addressing is covered which works on a related
principle.

2.1 Palettes and colours

Although the GBA and DS capable of 16 bit (well 15 bit) colours you usually
do not have the ability to define any number of 16 bit colours to use in a given
image (remember tiles are like paint by numbers and you might only have 4 bits
aka 16 colours at once or 8 bits aka 256 colours at once).

2.1.1 GBA colours (15 bit)

There is an undocumented feature on the GBA (and GBA mode of the DS) that
swaps the green and blue but that is not that commonly used.

The GBA is said to be a 16 bit screen but as there are three colours used to
make others each 16 bit value is in fact 15 with the 16th bit wasted.

Bits 0 to 4 deal with Red

Bits 5 to 9 deal with Green

Bits 10 to 14 deal with Blue

This allows 32 intensities (consider it a 5 bit number and higher numbers
are more intense with lower ones being closer to blackEb.

This also means depending upon how you look at it the GBA/DS (and
SNES) use BGR video instead of the standard RGB notation used almost every-
where else (naturally printing uses a different colour setup which is usually Cyan

4The lower range until at least 10 decimal on the first GBA screens and in some cases
the later ones are not so good and so developers would often manually up the contrast or
brightness which did not do well when the GBA SP which featured a frontlight and later
a backlight as standard. To this end several people have hacked and continue to hack GBA
games to improve the colours or in the case of games with originals on the SNES (it also uses a
BGR colour model) and such to those on these later models. It should be noted Donkey Kong
Country actually changed far more and downsized some sprites meaning it is not a simple
hack to restore it.

66

Magenta Yellow blacK hence your printer or a higher end one usually having
four cartridges or ink level displays). The other method of note comes into play
usually when video is involved and is known as yuv (which also leads to YV12)
but that will be mentioned later and has no effect on any of the standard 2d
and 2d imagery used on the GBA or DS.

In most operations the DS and GBA make a palette of various colours using
the above method and the imagery refers to this to generate the colours. If
you need to turn it into a 32 bit colour value (say for HTML colour notation)
most of the time it is directly interpolated (multiply by 7.96875 which is 255
divided by 32) without correction save maybe for a rounding (this can vary
between implementations) and as most screens are not calibrated properly and
the GBA /DS screens are not stellar to begin with it works well enough.

It should also be noted the DS has a master brightness section just before
the image is displayed and optional capture hardware that change how an image
ends up being displayed and this is in addition to some of the extra features
afforded to the GBA and DS that will be covered later.

2.2 Tiles

Although you can draw an entire image on screen at once (many DS games are
great fans of this and effectively make a tile 256 wide by 192 high necessitating
a tile editor capable of handling it which many legacy ones are not) most 2d
graphics are built from small building blocks known as tiles. Typically these
tiles are 8 by 8 or 16 by 16 pixels although text fonts and 3d textures as well as
the previously mentioned “full screen tiles” like to break from form here. The
simple way to think about them is to think of them as very boring (thanks
to the square pixels) versions of a paint by numbers picture with the numbers
being looked up from a palette. Although most people never have to touch
the graphics themselves with a hex editor an appreciation of how the hardware
works is necessary to reverse engineer some of the more complex formats and
appreciate the animation/handling mechanisms which means having to learn
about the methods by which tiles and palettes for them operate.

2.2.1 1Bpp

Technically it is a compression method (the screen/video hardware itself does
not display the mode in any real sense) but it is a special case and is so simple
that a basic tile editor can handle it and can be edited in place without issue
as indeed Crystaltile2 does so it is here rather than later on when compression
is discussed. The idea being if you have a black and white font or some other
two colour image each four bits, the minimum length for a pixel the hardware
accepts, will in fact be one or the other allowing you to compress the image
down into 1 bit per pixel. Although it is not mandatory for developers to use
it the GBA and DS BIOS actually carry a “decompression” method in SWI10h
that is known as BitUnPack.

67

2.2.2 4 Bpp

The workhorse of the GBA and a good chunk of the DS. Bringing back the icon
from Yakuman DS. The “marching ants” selection is the section viewed in the
hex editor which is as it is in the original ROM (certain hex editors can flip
nibbles but it was not done here). As you can see each nibble looks up the
value of a single colour (one of 16) which can be anything in the 15 bit format
the GBA and DS can use. Equally there are 32 palettes each with the option
for 16 colours which the game can swap between at runtime. Although not the
only colour animation possible (the palette can also be edited at runtime) a
developer can uses these multiple palettes to change the appearance of items
within the game and if you see the option to change at say the start of a battle
(advance wars war room is good for this) or indeed at runtime then you are
almost certainly looking at this.

........

QOO0 (0000 DpODD
Qo004 10000 FDFF
0008 0000 FDEF
QQOC (0000 FDEE
0010 (0000 FDEE
0014|0000 FDEE
001le (0000 FDEE
001cC (0000 FDEE
0020 |0DoDDD DODDD
0024 |FFFF FFFF
00Z2% |EEEE EEEE
O0Z2C |EEEE EE36
0030 |EEEE 1633

ing.

D038 |EEd6 F1i3
Palette
EHENE 2 sBBEE: ~s@p E F

As you can imagine the background is not pink in the real game and this is
as the first colour in a palette is treated as though it was transparent regardless
of what it is (although in practice is is fairly pointless with the way the screen
works it allows for a full colour range without the loss of a single colour).

2.2.3 8Bpp

Although available and well used on the GBA it really started to be used on
the DS.

68

Here each palette entry is 8 bits long and a two 256 colour palettes are

available although only one for each mode (BG and OAM)
UNLOEO 000 0000 0000
0008 FFFF
0010 0101
0018 ' '
0020
0028
0030
0038 01 S
0040 |FFFF

0048|0101

0050 |9F9F 9F87 0101 FF21|.......!
D058 |EFEF EVBD BDBY OLFF|........
0060 |01E7 EFEF EFBD B701|........
0068 |01EY EFEY EFE7 BDOLl|........
0070 |01EF EVEY EVEY BDBY |........
O M123456789ABCDEF IINFRINTFT FFF7 F7FT7 FFOF|.

Here each hex digit is the lookup for the palette with the first being the row
and the second being the column (although if you really wanted you could flip
them and indeed the hardware probably does effectively just that but that is
introducing completely unnecessary work for no real gain).

43028962295 FEZ T[T

2.2.4 GBA3 Xbpp

There is another method that much like 1Bpp acts as a sort of compression meets
hardware format method. Crystaltile2 is one of the few editors with support for
this method and it is very rare indeed (the very occasional font being about the
only thing that uses it).

It is a kind of 4 colour format (2 bits per pixel) but values are actually
interleaved between two consecutive tiles.

Nibbles are “fipped” similar to the 4bpp GBA format. The order of the
nibbles is then lower tile, upper tile, lower tile, upper tile......

A basic example of the interleaved format 8x8 tiles (larger tiles of this
pretty much follows the same pattern but to spare confusion it will not be
covered here).

Palette as defined in the image. Remember the nibbles are actually flipped
but ignoring that for the moment

69

address |B618162 6304050560768 09 6! BB | 6C | 6D | GE | BF e
080800880 11 (11 11 11111111 11 11 11 11 11 111111 11 .
BA8AAAI0 11 11 11 4111 11 41 41 11 A 11 1101141
08800820 /55 |55 |55 /55 g Igg (gg g gg Igg lgg gg gg igg lgg g i
98080830 55 |55 55 55 55,55 55 55 55 55 GL EL 5L EL CG LG
0000004 22 22 22 22,2222 22 |22 22,22 22 ,22,22,22.22 22 "
0686A0650 22 |22 |22 122122 122 (92199 122 122 |92 192 29 122 |92 92 |~
08088060 AR (AR AR AR AR AR AA AR AR (AR AR AR AR AA AR AR *
00008B70.AA AR AA AR AR AA AR AA AR AA AR AR AA AR AR AR *
08660680 ' 86/ 08 /' e0/60' 66/ 06 ' e0/60 66/ o/ oo /60 60/ pa ! oe'ee !
08080090 60 00 0 0O, 00, 80,680 60 060 06 08 00 60, 680,00 60 .

CrystalTile2 1:2

H "l "EEEEEEE
L
a8

The first pair of tiles is one fully green (01 binary on the palette) and one
fully black (00 binary)

The second pair of tiles is both fully green (01 binary on the palette)

All this being said it is 4 bits between the start of a pixel in a given tile and
the start of the next pixel in the tile which gives rise to the numbers seen

1 hexadecimal is 0001 binary hence the 00 going to the second (lower) tile
and 01 going to the first (upper) tile.

The second pair is both green and is represented by 5 hex

5 hex corresponds to 0101 binary

The pattern still holds for the single blue and single black tile

The dual blue tiles

A hex corresponds to 1010 binary.

A more complex example Most of this is going to be left as an exercise to
the reader but as mentioned the nibbles are flipped in a similar manner to 4bpp

and it is not immediately apparent in the above example.
sddress @0/ 01782783 0405 66 67 '68 09 6n 88 [oc 6D | 6E [oF
80000000 00 B8 08 90 80 88 88 00 80 00 80 00 88 08 88 08
00000610 80,22 60 80 60,2000, 90 00, 02 82 60 60 B2 82 64
foApAA2A 60/ 0n'pa' @8 60/ pp' 6/ @6/ 60/ o6 Aa 60! 6n! 6a ' @8 | e
60000030 00 00 00 00 00 00 08 00,00 00,00, 00,60 60,60, 60
00000640 B0 60 60 G0 G0 00: 00, 90 00, 00 60 60 60 8O 89 60
feApAESA A0/ 0n'aa @8/ 60/ op' 6/ @6/ 66/ pe! Aa 60! 6n ! 6a ' a8 | B
60060060 00 00 00 00 00 00 06 0 06 06, 00 60,60 60,60, 60
00000670 B0 60 60 A0 60, 00: 00, 90 00, 00 60 60 60 8O 89 69
(oTsTe T Lot A T e TR TS A T T A TN T A 15 A T S T A T A S T TS
80000090, 60 00 00, 00 06, 00,00 00, 60,00 00, 00,00 00, 60,00
CrystalTile2 1:2

i

The leftmost (upper) tlle is blank for 4 vertlcal plxels but the lower tile has
data in it.

70

00 08 08 00 hex

0000 0000 0000 1000 0000 1000 0000 0000 binary

80 88 88 00 hex

1000 0000 1000 1000 1000 1000 0000 0000 binary

The first pixel is blank on both counts as is the second so the 00 holds.

The third is not blank yet it is still 00, the fourth is blank but it is 10 (10
binary = 3 remember). As mentioned the nibbles are flipped with respect to
the pixels they represent.

The fifth pixel is blue but it is 00 and the sixth pixel is 10 (again flipped).

Going to the next line

Blank and then blue. Flipped again (10 and 00 being seen in the binary).

2.2.5 GBA2 4BPP

For the sake of completeness crystaltile2 has another format known as GBA2
4bpp that is in some ways slightly more complex than GBA3 XBPP. Very few
games have ever been observed to use it either.

It is a 4bpp format and technically is not nibble flipped like the other sub
8 bit formats but in practice it is a kind of interpolated format (each pixel
technically having a choice of four colours) and additionally the first pixel in
the pair of them sets the colour range for the second one.

The range in question is value 0-3, 4-7, 8-B and C-F. They could up so 0
through 3 allows the first four pixels (selection 0), 4 through 7 allows the second
four pixels (selection 1) and so on but some more background is needed before
that makes sense.

The first nibble selects from the first four colours using the range (0 through
3 pixel 0, 4 through 7 pixel 1 and so on)

The second nibble selects from one of four colours also in a row but what
four it can select from is determined by the value of the first nibble. Within
the values although it might not matter for the first pixel the second one has
the four pixels also in a range of four and those are selected by the actual value
within first pixel.

Examples

Selection 0 value 2 (in practice it would be 2 hex for the first pixel) allows
the third group of colours from the palette for the second pixel.

Selection 3 value 2 (in practice it would be E hex for the first pixel) allows
the third group of colours from the palette for the second pixel.

Selection 0 value 0 (in practice it would be 0 hex for the first pixel) allows
the first group of colours from the palette for the second pixel (0 through 3 in
the standard numbering).

71

-
-

12345678 0ABCDEF

CrystalTilez 2:2
address 'G6'81'92 ' 93 ' 64 ' 65 ' 06 ' 87 ' 68 ' 69 '0A' BB ' BC ' AD ' BE ' BF

00000620 BB CO CO CO CO CO CO CO CO CO CO CO COCOCOCO
d00080638 B CA CA CA CAa.CA CA CA CA.CA CA.CACA CA CACA
80AAAA4E (B1/C1/C1/C1/C1/C1/C1/C1/C1/61/C1/C1/C1/61/C1/C1
A@eAAA5A B1 C1.C1 €1 C1 C1.C1:C1.C1:.C1:C1 G1:.C1.C1:C1 €A
80860860 B2 €2 €2 €2 €2 c2 c2 'c2 c2 c2 c2 c2 c2 c2 c2 c2
AABAAR7 A B2 C2 C2 C2 C2 C2 C2 C2 C2C2 C2 C2C2,C2 C2C2
60AAEAA8A B3 C3.C3.C3.C3.C3.C3.C3.C3.C3.C3.C3.C3.03.C3.C3
60860890 'B3/'c3/'c3/'c3/c3/'c3/'c3/'c3'c3'c3'c3'c3 63 /63 /63 'c3
B0BOBOAD B4 C7 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 Ch4
d00080BA B4 C4 C4 C4 CY4 CH C4H CYy C4 CH CYH4 C4H CH C4H CY4 Ch
80AAAACA BS |C5 | C5 L5 /C5 G5 C5C5 IC5 /C5C5C5 L5 IC5 G5 L5
AAeAABDA BS C5 C5 CS5 C5 G5 C5 C5 05 C5 C5 G5 C5 CS5 C5 C5
BOBBOBED B6 C6 C6 C6 C6 C6 C6 C6 C6 C6 C6 C6 C6H C6 C6 CH
00080ABF A B6 C6 C6 C6H CH CH CH CH CH CH CH CH C6H CH CH CH
80AA8108 B7 C7 .C7 .C7 C7 .C7 .C7.C7 . C7 .C7.C7.C7 .C7 C7.C7.C7
A@AeAa110 B7 'c7 'c7 'c7/c7'c7/'c7/c7 /07 'c7'c7 7 'c7 /67 7 C7
80006120 BS C8 C8 C8 C8 CB C8 C8 C8 C8B C8 C8 C8 C8 C8 C8
d8008130 B8 C8 C8B CB CB C8 .CH CB CB CB CB C8 CB.CH CB C8
60AAEA148 B9 (C? IC9 C9 /CY9 /C?ICOICYO ICO/CYICOICYICOICYICOICT
f0AAA15@ B9 C9 C9 CO CO CO CO CO CO CO CO CO CO CO CO CO
80860160 BA CA CA CA CA CA CA CA . CA CA CA CA CA CACACA
AA8AA170 BA CA CA CA CA CA CA CA CA CA CA CA CA CA CACA
60ABA188 BB CB . CB . CB . CB . CB.CB.CB . CB . CB.CB.CBE CB CB.CB .CB
AA8AA190 BB 'CB'CB'CB/CB 'CB/'CE/CB 'CB/CB'CB 'CB'CB/CB /CB/'CB
8080B1A0 BC CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC
gd@ee1Ba BC CC . CC CC CC CC CC CC CC CC CC CC CC CC CC CC
80AAB1CA BD |CD ICD ICD /CD |CDICDICD ICDICDICDICD ICDICD I CDICD
A@e@a10e BD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD
808601EG BE CE CE CE CE CE CE CE CE CE CE CE CE CE CE CE
AA8AA1F 0 BE CE CE CE | CE CE CE CE CE CE CE CE CE CE CE CE
80AA82 A8 BF |CF . CF . CF .CF |CF |CF CF .CF .CF .CF CF .CF CF .CF .CF
000800210 'BF 'CF 'CF 'CF 'CF 'CF 'CF 'CF 'CF 'CF 'CF 'CF 'CF 'CF 'CF 'CF
0000220 B0 B4 B8 OC 10 1448 1C 28 24 28 2C 28 24 28 2C
00008230 3034 38 3C 30 34 38 3C 40 44 48 4C 4O 44 48 4L
60AAA248 58|54 58 |5C /58|54 58 |5C 6864 68 6C 6864 68 60
0ABAA250 7@ 74 78 7C 70 74 78 7C 8@ 84 88 8C 80 84 88 8C

90080260 90 94 98 9C. 90 94 98 9C AB A4 AS AC AD A4 AS AC

2.2.6 Bitmap

This will probably be better served after discussion of graphics modes and hard-
ware but know this is not referring to the “bitmap” image format as seen in every
basic image editor and most advanced ones although some modes of it share a
lot in common with it.

The GBA has the ability to eschew tiles and just draw images line by line
across the entire screen although it limits what can be done as to do it takes
up most of the VRAM and it is not feasible to change it all every frame so
extremely few games use it.

In the graphics it is known as modes 3, 4 and 5

3 is a 240x160 (aka the GBA resolution) 16 bit mode where colours are defined
there and then (same BGR fashion as the rest of the hardware)

4 is a 240x160 8 bit mode where the full 256 colour palette is used (modes 3
and 5 do not allow transparent colours unlike this) and allows 2 frames to
be defined in memory at once.

5 is a 160x128 (less than GBA resolution) mode using the same idea as mode
3 but the lowered size allows two frames to be stored in VRAM.

The DS has a kind of related tile mode where large tiles still composed or palette
references like regular tiles can be used and it is quite popular but the DS has
slightly increased VRAM size to manage this better. It also has the ability
to hold and manipulate images larger than the resolution in bitmap modes (it
comes in handy for some end stage representation of 3d) although again this is
better served for a discussion of hardware.

2.2.7 Known formats

Some games have been seen to use known/common formats like GIF, PNG
and JPEG with the most prolific being that of the DS Opera browser for it
having to decode them as part of the operation meant it could use it internally
quite happily but other games can do this as well. This becomes even more
common on other more powerful consoles but the DS does have a few formats
that Nintendo provides in the SDK that allow for some fairly extensive abilities
but more on those in the layout/OAM section.

2.2.8 Crystaltile2 export and import.

Although Crystaltile2 usage is covered in depth later this is a basic operation
and should be covered now. Most tile editors are just that and will allow you to
edit an image but occasionally you are going to want to not be tied to a pixel
by pixel editor and will want to use a more featured editor.

Although the act of exporting and importing images is easy enough. Al-
though it is quite possible to do without a palette set properly it is best to have

73

one in place else you will have to edit pixels accordingly (red means blue and
such).

First select the tiles/area you want to edit. The either right click or click
the edit pulldown menu

CrystalTile2 - [0555 - Wi-Fi Taiou - Yakuman DS O] x|
<t File Edt Miew Tools Bookmark{Z) Plugin Window Help - |5’ |£|

S N A S EE = e - E

Properties | palette | Eavarite: 4 | * ;I
* default settings
offsek 73B600
* Tile properky
scale 400
linked to move 1
MAPICAM address 0
bete jump 0 —
widkh g
hizight a i
- [mde Chrl+Z
Tile Format GEBA Bbpp
Repeak
image patkern Tile
&ngle angle:0is Cut ZEH
left turn inactive Copy Chri+C
Flip horizontal inackive Paste Chrl+y
Flip wertical inackive select all CE-4,
Z214 inackive
* Tile Fonk Editor Go Cerl+G
Sort LeftTop Expart image Chrl+E
Cransparency inackive 11 Expark...
shadow effect inackive Import image Chrl+I
Font Courier hew Insert Font Chrl+T
Alpha blending 255 B} A T o
Refresh Memary, Snapshak

& B

wdakafmajanjobj_dice_demo.ged |‘1".ﬁ.KLIM.ﬁ.N DS|NTR-.|5."|"KJ|JF'I"-.I|256MBiTS|Nintenu:|-:u| o

You can either copy the image out if you have a few small edits but most will
instead opt to export it. Crystaltile2 has a few basic options but BMP works
for most purposes. Here you can import it into your chosen editor

74

There is also the second option of a 1:1 export which splits things along the
tile lines and allows a sort of regular expression to be formed.
Once in the editor you can edit it accordingly

Il
File Edit Select Yiew Image Laver Colors Tools Filkers Windows Help
Er AN
RHE E [® o
IMode: Mormal j] - ;; %9 5 l%
Cpacity 100'Ul_ L N P - = O - . T G = —
2)
Locki g B §E | &) 5 W / e
- = * 7 Y
- ﬂ obj_dice_demo.go E: & ‘i. "a.‘ /)// *@‘
= e AdS
1]
[
- AdE v/
14
B QL e d 8
B
] = IR ¢
" i)

.

)
|

el = W] @

Move

Mo\re:|E - A{\

Toal Togale (SHif)
8 Pick a layer or guide

]| =]
Il N

(" Move the active layer

=T
11

g
1l

I
|II

D@ % ¢ @ 4 @ 35 -
[« &=
I&i‘er A 4__
Z. Hartless @5@ (51 % 51) 0]

.

g

e

3

= |

Bkl | ags

| 16, -10 IPx v|| 200%] Pasted Layer (37.6 kE) = o z

Right clicking or clicking the edit pulldown menu and pressing import will
import the newly saved image back into the editor where you can move it (it will
snap to gridlines). Again you can use the copy and paste if you prefer although
do remember to merge layers if your editor supports it.

75

CrystalTile? - [0555 - Wi-Fi Taiou - Yakuman DS - |EI|1|
& File Edit Wiew Tools BookmarkiC) Plugin ‘wWindow Help - |5’|5|

NEH» ¥ CEX QG Eaals| =
i Palette ikes ;I

Palette

Irnpork
Export —
Ni1z3456750aBCDEF| Zhar

by the alignment will be: (T4 [¥AKUMAR DS|NTR-AYK]| JPN|25EMBITS |Minkenda| 2

Move it accordingly and then double click the image to set the image

76

CrystalTileZ - [0555 - Wi-Fi Taiou - Yakuman DS {JP) :nds] O] =]

1123456789ABCDEF| Char

vdatafmajanfobj_dice_demo.god

On palettes If the colour you want is in the image then the dropper is
usually sufficient but most tile editors have the option to export palettes to the

7

commonly supported windows palette format (crystaltile2 has it right there in
the palette window and BMP has a palette built into the file format (technically
optional but crystaltile2 includes it).

2.2.9 Avoiding gradients, AA, lossy/noise and such things.

The name of this says it all really and most pixel artists will know this already
but it needs to be mentioned unless you want to redo the whole palette which
might not be viable if the palette is used elsewhere not to mention if you only
have limited colours available it makes sense not to waste them unless you do
truly have the option to do so. To this end you should avoid gradients (hopefully
one already exists if you need one), anti aliasing options (quite often added in
when adding text), resizing (the nearest neighbour algorithm is probably the
worst general usage scaling method but it has the benefit of using the colours it
had to begin with if you truly need one), noise functions and other things that
will add random extra colours to your image for unlike most image formats you
are limited here.

On a different note much like changing palettes can change things elsewhere
in the ROM you also have layout to contend with which might limit the tiles
you can edit but that is the subject of the next section.

2.3 Layout, timing, OAM and special effects

The consoles do not magically know how to sort tiles out and indeed much of 3d
and 2d imagery as well as coding in general revolves around reusing things to
lessen the drain on resources; you surely have seen old RPGs where you would
fight a giant rat, a plague rat who looks exactly like giant rat but with a green
and dark blue/purple paint job and later fire rat who has a red, orange and
yellow paint job but looks exactly like the earlier rats. To do this the GBA
and DS have hardware they can employ to change things in addition to the
palette although said hardware can also control what palette is used. Most
of the images used thus far have been simply one tile after the other but tile
reuse which breaks the one after the other pattern and compositing (sticking
one image over another) are common.

2.3.1 Introduction to the OAM and BG modes.

The GBA and DS have two principle graphics types known as BG aka back-
ground and OAM aka object area memory aka sprites which work together to
display games. Although you can use one to do the other and games have done
for the most part the distinction is observed and backgrounds will be left to do
backgrounds (exception on the DS is 3d which is rendered in the 3d hardware
and moved to the background to display) and OAM which is left to handle
the sprites and image overlays (give or take windowing). Text can be in either
BG or OAM depending upon the game although BG is far more common and
usually the suggested method for developers to use. Finding out what method

78

something uses is usually best done by getting to the point in the game it is used
and viewing the OAM, sprite and BG in a given emulator (VBA for the GBA
and desmume both feature such abilities) and it is also a fairly good ripping
method.

The GBA and DS are much the same although the DS has two engines known
as A and B which is ostensibly one for each screen although they are not tied to
a given screen and can easily be swapped at runtime. The “A” engine has more
memory, the ability to do full VRAM bitmaps as well as what mainly houses
the results of the 3d (engine B can use the results of the 3d but it requires some
thought) and has use of the “capture” hardware which can be used to create
effects although the more general general effects/functions still work on engine
B.

As with most other things on the handhelds the hardware itself has sections
dedicated to running various aspects of the hardware with graphics forming a
large chunk of it. DS 3d aside there are two main components that go into video

e The main handler known as “DISPCNT” found at 4000000 hex on both
the GBA and DS (although the DS only has it on the ARM9 memory mappings
and has a second one for the B engine at 4001000 hex)

e The actual BG (4 16 bit sections) and OAM stuff that handles all the lower
level things for each of the various modes.

2.3.2 Timing

The graphics hardware tends to act as a timer for much of the rest of the
system as far as software is concerned with a very significant component of the
checks, updates and similar things being started when a vblank (vertical blank)
happens.

The general idea is the screen is redrawn a scanline (a horizontal line across
the screen) at a time. However after each scanline is drawn there is a pause
known as hblank (equivalent to time taken to draw 68 pixels on the GBA) and
after all the scanlines are drawn there is another pause known as vblank (on the
GBA it works out to be about the time to draw 68 lines or just shy of 84000
cycles and the 71 lines for the DS means it is more or less the same refresh rate
there). As updating the locations of things could cause tearing on the screen if
it were done mid refresh updates to the screen and other things closely related
to it are triggered at these times (indeed the hardware itself dedicates the first
couple of bits in interrupts solely to vblank and co). Either way the refresh
rate is ever so slightly less than 60Hz which is why most games will aim for a
framerate of just below 60FPS or half that at 30FPS.

Although knowledge of how the hardware works in this regard is definitely
worth knowing about unless you are doing low level programming or are hooking
into the code using timers based off it most of rom hacking is not too concerned
with it and more focus is put on the OAM, display registers and memory hand-
ling . The assembly section will cover more on interrupts but in the meantime
if you do want to read more theTonc video section| has a nice worked example
and (GBAtekl has a lot of numbers.

79

http://www.coranac.com/tonc/text/video.htm
http://nocash.emubase.de/gbatek.htm#lcddimensionsandtimings

Also as mentioned interrupts are a big thing so GBAtek on interrupts.

2.3.3 GBA and DS OAM (sprites)

Sprites (occasionally known as OBJs) are probably the main workhorse of games
(they are typically the things you move, the game moves and you spend most
of the game focusing on) and being able to manipulate them is a useful feature.
The GBA supports up to 128 of them at any one time and each is given a section
of memory

07000000 hex is the location of the OAM on the GBA with obj 0 at 07000000
hex, objl at 07000008 hex obj2 at 07000010 hex, obj3 at 07000018 hex and so
forth.

The DS is much the same but it has a second bank at 7000400 hex that is
also 1 Kbyte long for engine B.

It gets quite complex and as not much beyond a basic appreciation of the
concepts is necessary for most hacking work (if you have an appreciation for
how it works, can look it up and with the help of the documents decode the
values found that is good enough for most things) you are referred to GBAtek
which has a full listing.

Three 16 bit values make up most of the useful things and packed into each
of those 16 bits

Attribute 0 - First 16 bits - Y coordinates (bits 0 to 7 leading to 256 options)

Attribute 0 - Second 16 bits - X coordinates (bits 0 to 8 leading to 512
options)

Attribute 0 - Third 16 bits - name, priority and 4 bpp palette selection

Priority is for each obj relative to the backgrounds and the lower values of
objs have a higher priority relative to each other.

The other bits are used for rotation, flip, size and scaling options with the
remaining 16 bits in the range used for the payload of the rotation and scaling
functions when they are employed.

Most of the time edits to them are done manually with just a few tweaks
or handled at function level when dealing with assembly but if you do need to
edit them there are tools. Equally there are formats in the case of the DS that
handle initial values/setup of it for various files so editing those is often more
useful.

OAM calculator for the DS Filetrip download

If you need to edit OAM on the DS (it might also work for the GBA but
be wary as a couple of things on the priority side of thing changed) or likewise
decode a value you need not do it by hand thanks to this tool. Usage is fairly
straightforward

80

http://nocash.emubase.de/gbatek.htm#gbainterruptcontrol
http://nocash.emubase.de/gbatek.htm#lcdobjoamattributes
http://filetrip.net/nds-downloads/utilities/download-oam-calculator-10-f29054.html

0B Attibute D
¥-Coordinate
Rotation/Scaling
Double Size:
0BJ Disable
0BJ Mode
0BJ Mosaic:

Colors/Palettes

B nps 0aM Calculator - hackotedelaplague
OAM Valus 6 bytes Hex) ESEET. Get Aliibutes | Calculate DAM |
0B Attibute 1 - OBJ Attibute
[% -Coordinate [z Tike Hurmber [Tog
o =
Rotation/Scaling Uﬂ
Dauble =] Parameter Prioriy relative Ton =
0BG :
ot Displayed =
Horizontal Fip [Womal =]
Semi-Transparent ¥
Palette [
an T Nurrber 4
Vertical Flip Nomel =
256 colors/ palette
[Squae =] 0B Size:: B8 T

0BJ Shape :

Basic emulator view This just has a quick example of viewing the memory
(editing is sometimes possible here but often refreshed every vblank). From here
you would trace the thing that originally changed the OAM and change things
in the original binary (the DS quite often has helper formats for the graphics
and the GBA was fairly good about keeping the actual binary code and the
OAM values separate). It is also an early preview of animation via the OAM as

well.

GBA

Sprite:

A1

Pos: 16176
tode: 0
Colors: 16
Pal 4

Tile: 742
Prio: 2
Size: 16,16
Rot:

Flags: H

¥ Stretch o fit

¥ Automatic update

Refresh |

2

M

R:8
G 8
B:8

Save |

~=lolx|

VBA. The sprite here is

0x07000000 - DA4M

| € Bbit

i+ 16-bit

= 32-bit

—

actually made up of multiple tiles.
=l

07 poa6ae
87000610
070008028
870080638
07000040
087000650
07000060
087000670
87000680
0870006920
87000600
070006880
87 88086CA
070000600
087 000BED
0700006F 0
67001680
a7e00118
87000120
87000130
07000148
8708808158
070008160
@7 o00170
07000180

aesc
apac
LR
BBEB
BOED
BOE D
BOED
BOE D
BBER
BOE D
BBEA
BOED
BBEB
BOED
BOE D
BOED
BOE D
BBER
BOE D
BBEA
BOED
BBEB
BOED
BOE D
BOED

10a1
sont
4070
apes
L)
i iLs]
L)
i iLs]
apen
i iLs]
apea
L)
apes
L)
i iLs]
L)
i iLs]
apen
i iLs]
apea
L)
apes
L)
i iLs]
LT

MAEF
4AEG
i1 10)
B3FF
B3FF
B3FF
B3FF
B3FF
B3FF
B3FF
B3FF
B3FF
B3FF
B3FF
B3FF
B3FF
B3FF
B3FF
B3FF
B3FF
B3FF
B3FF
B3FF
B3FF
B3FF

LIS LEs]
LiL 1)
Ll 1)
il 1)
L)
LIS LEs]
L1110
LIS LEs]
aee8
LIS LEs]
LiL 1)
Ll 1)
il 1)
L)
LIS LEs]
L1110
LIS LEs]
aee8
LIS LEs]
LiL 1)
Ll 1)
il 1)
L)
LIS LEs]
6008

Be5C 18A9
883c o874
OO0EG 0600
BOES 06860
B0EG 0600
O0E@ 0000
B0EG 0000
O0E@ 0000
BOEG B0008
O0E@ 0000
BOAEG 0000
OO0EG 0600
BOES 06860
B0EG 0600
O0E@ 0000
B0EG 0000
O0E@ 0000
BOEG B0008
O0E@ 0000
BOAEG 0000
OO0EG 0600
BOES 06860
B0EG 0600
O0E@ 0000
OO0EG 0000

LAEE
ag a2
B83FF
B3FF
B3FF
B3FF
O3FF
B3FF
B3FF
B3FF
B3FF
B83FF
B3FF
B3FF
B3FF
O3FF
B3FF
B3FF
B3FF
B3FF
B83FF
B3FF
B3FF
B3FF
B83FF

L]
apea
Ll
s Ll)
L)
L]
LT
L]
apep
L]
apea
Ll
s Ll)
L)
L]
LT
L]
apep
L]
apea
Ll
s Ll)
L)
L]
0000

¥ utomatic update

Riefresh

Load

Current address:

Save

Close I

81

S
-
Il Memory viewer

Sprite:
li 007000000 - OAM x| abit & 1Bt 0 32bit Go

ﬂJ 07000060 | BO7C 0097 LAEF 0000 0O07C OBSF LAEE 0660
070008010 | BO6C 4OBF 4AEG OGOGO 0OB3C 0674 OE02 G660

Pos: 143,108 07000020 | BO44 4070 DBOO 0ODOGO OODEG OO0 OIFF 0BOBO
Mode: 0 A7000030 | GAEG DAAA B3IFF DABA BBEA ABAA B3IFF ARGA
Colors: 16 A7000840 | BBEQ 00O8 B3FF OVAA GOEA BBAR B3FF B860
Pal. 4 97000050 | BOEG 0000 B3FF 0060 OOEG ODBO0 B3IFF 0000

Tie: 742 B G 07000060 | BOEG DDGO D3FF GOG0 OBEG OGOO OIFF G660
07000070 | GOEG DOGO D3FF GOG0 OBEG OGOO O3IFF G660

;2 %ﬁ G:8 |g7pee0se | DBED 8OG0 B3FF O0AE OOEG 08D GIFF BO0E
- B:5 |A70BAA9R | OBEA RAAD R3FF BARA AOES AAA AIFF AAAD
- A700APAR | ABEA RAAD R3FF ARG AOES ARG AIFF BAAD
A 07000080 | OBEG DOOH D3IFF 00O DOEG 00O OIFF BO0O
[Suetch ta fit 070006C0 | GOEG DOGO B3FF 0080 DOED 0060 OIFF 8000
¥ Automatic update 070006800 | GOEG DOGA B3FF 008G DOED 0068 OIFF 8800
070060E0 | OBEG DOGS D3IFF 000G DOEG 008 O3IFF 6E08

Refresh | Save. | 070600F0 | OGEG DOGH DIFF DOGH DOEG DA0G OIFF 6A06

07000100 | BOEG BOOO DIFF 0OOO DOED 00RO BIFF HAD
97000110 | BBEG BOOO OIFF OOOO DOED 0BAD BIFF BOD
-10Ix| |g7006120 | 0EG 0000 03FF 000G DOED DABG B3FF 0090
Fo Gefen @hes g G 67000130 | OOEG BOOG D3FF DOAO DOES 0889 B3FF 6600
67000140 | OOEG BOOG DIFF DOAO DOES 0089 B3FF 6660
67000150 | OOEG BOOG DIFF DOAO DOES 0080 B3FF 6600
07000150 | OOEG BOBO DIFF 0000 DOED 0000 OIFF HAD
07000170 | BOEG BOOO DIFF 0OAO DOEO 00RO BIFF HAD
07000180 | BOEG BOOO 0IFF 0000 DOED 0BO0 UIFF BOOD

¥ automatic update Cument address: I

Refrech Load... Save... Cloge |

DS Desmume.

ARMI memory x|

P View mods: Addr Dump vi
’VIAHMS =1 ’VIEyles =l ’707000400 Go HV Testdump | Raw dump Dumpm|| ‘

D 1 2 3 4 5 6 7 8 9 LB CDEF mzzqsmsgucm:}‘i'
07000400(BE 20 20 00 54 04 00 00 53 20 EO 10 14 04 00 00

07000410(30 20 40 00 61 04 00 00 30 20 B8 00 61 04 00 0O
07000420 24 20 7C 00 61 04 00 OD 20 Z0 20 0O DE 04 00 00
o7oo0430| R 20 DS 00 DE 04 00 OD 12 20 7C 0O 61 04 00 0O
07000440| 08 20 7C 00 BO 04 00 00 00 20 48 00 D2 04 00 00
07000450| 00 20 BO 00 Dz 04 00 00 FE FE FE FE 00 00 00 00
07000460| FE FE FE FE 00 00 00 0D FE FE FE FE 00 00 00 _mlx
07000470\ FE FE FE FE 00 00 00 0D FE FE FE FE 00 00 00 =g
07000450 FE FE FE FE 00 00 00 00 FE FE FE FE 00 oo o e Fmuation View Config Tooks Help
07000450 FE FE FE FE 00 OO0 00 00 FE FE FE FE 00 00 RN W

070004A0| FE FE FE FE 00 00 00 0D FE FE FE FE 00 00 00

070004B0| FE FE FE FE 00 00 00 0D FE FE FE FE 00 00
070004c0| FE FE FE FE 00 00 00 00 FE FE FE FE 00 00
0aM Vi

wer

@ L]
Sub sereen spiite -
=

0&M:8 4| 5

< o 5 =
Mode Noimal
Tile 00ED
Paletie: 256 colors #
Prio: 1

Coordinates - 124« 8
Dimensions : Bx8

Rolalion: OFF
Mossic: OFF

[
¥ border

W Autoupdate [1 ﬂ!ramf

Closz FRefresh

82

[© ARM9 memory x|

~CRU View mod Add: Dump vi
4RMS ¥ (Bytas ~ (U?UUU‘:UU Go (Texldump Fiawcump | Dump Al ‘

\n1234557BBABcDEFmzaqssva;wcnmﬂ

07000400| B8 20 20 00 54 04 00 00 59 20 DF 10 1A 04 00 00 T
07000410| 30 20 40 00 61 04 00 00 30 20 B& 00 61 04 00 00 O B.;...O
07000420| 24 20 7C 00 61 04 00 00 20 20 20 00 DB 0% 00 00 § |.a-..
o7000430| [20 D& 00 DB 04 00 00 14 20 7C 00 61 04 00 00 ¥
07000440| 05 20 7C 00 EO 04 00 00 00 20 45 00 D2 04 00 0O
07000450 00 z0 BO 00 D2 04 OO 00 FE FE FE FE 00 00 00 00 . . .
07000450 FE FE FE FE 00 00 00 00 FE FE FE FE 00 00 00]
07000470| FE FE FE FE 0 00 00 00 FE FE FE FE 00 00 00

07000480| FE FE FE FE 00 00 00 00 FE FE FE FE 00 00 gp (e Emston View Config Took el
07000490| FE FE FE FE 00 D0 00 00 FE FE FE FE 00 00 00 G4 - | (| G @
070004k0| FE FE FE FE 00 00 00 00 FE FE FE FE 00 00 00
070004B0| FE FE FE FE 00 00 00 00 FE FE FE FE 00 00 00
070004c0| FE FE FE FE 00 00 00 00 FE FE FE FE 00 00 00

partviener
© ©
Sub screen spite 2 g
=
0AM: 8 M ®
]]
Mode Hoimal

Tile g0
Falette 256 colors =3

Coordinates : 124 % 8
Dimensions: 818
Rotation OFF
Mosaic OFF

¥ border Scale by
& 2
R Autoupiats [T ame ((: ;: 0
Close Refresh O 1B

2.3.4 GBA and DS BG modes

The BG modes as well as providing the end result of the 3d rendering tend to
be for backgrounds, text and some menus. On both the GBA and DS there are
4 background given the name 0 through 3 (again the DS has a second set of BG
modes for engine B).

On the GBA there are 4 BG layers (0 through 3) and 7 modes although
different layers are restricted in what they can run. BG layers can be a higher
resolution than the screen given the right options and such things can be used
for animation and general game usage to save having to stream content.

How it works There are two main options here for developers to use in games.
Use a bitmap image or generate a background from tiles with the second being
superior in most cases owing to the ability to do animations more easily (as
mentioned previously the hardware is incapable of refreshing an entire bitmap
each screen) and used by the majority of games.

Emulator shots

Most of the debugging emulators feature the ability to see the various layers
that make a background. Typically this is called something like “view map”.
Examples of the VBA ones are present in the next few examples of other methods
and it is much the same for any emulator with the only differences being in how
much the hardware supports.

Scrolling The BG can be placed behind something and scrolled as a type of
animation (often combined with other sorts of animation) or just have a larger

83

BG section to focus the rest of the window on (there are other methods by
which to have bigger “rooms” than the screen so do not assume this is how a
game does it).

Visible in many games but an especially nice example exists in Tetris worlds
for the GBA. From the same BG image the impression of random stars is given
as a background.

= 5 X
(=i Mode: o e Mode: o
@ Fran= 0 MepBase: 0408006800 € Frame0 MapBase: (406008500
£ Frame 1 CharBase: (40BO04000 € Fiamel CharBase: 005004000
Size: 256255 Size: 2581256
ar Colars: 16 o Colors: 16
 BGO oty 1 860 Piiriy: 1
© BEt Mosaic: o & 561 Mosaic: 0
Dverflow: Dverf
© BGZ © BG2 veter
£ BG3 Address: BG3 Address:
Tile: Tile
I~ Stieteh ta fit Fii: I~ Shestehta fit Fip
¥ futo update Palette: ' Ao update: Palette:

Fie Options Cheats Tools Help

BoyAdvance

ptions Cheats Tooks Help

TETRIS

Another good example exists in the first advance wars which actually makes
use of the wrapping ability (see the lack of a complete Yellow Comet flag/logo)
[Wropven

S
Frarme Mode: 0
& Frame0 MapBase: Dx0B00FE00
I iz | CharBase: 0x06008000
Size: 256256
~Backgiound—— Colars 15
" BGO Priarity 3
~ BE Mosaic: i
Overllow i
€ BG2
BG3 Address
Tike
™ Stetchto fit Flip:
W Auto update Palette:
=lalx

File Options Cheats Tooks Help

Welome to Advance Wars! o

Close:

Layering effects The classic example of this feature being used is beds in
RPG games where the character will have a head visible above the pillow but
the rest is covered. To do this there will be at least two layers with one being
assigned a higher priority than the sprite and the second being assigned a lower
one.

84

- Frame:

Iode: 0 Mode: o
& Fram=0 MapBase: 006003000 & Fran=0 MapBase: (40003800
 Frame 1 Char Bage: 0x06004000 T Frame 1 Char Bage: 0x06004000
Size: 256256 Size: 256K256
rBackground—— s 16 r~Background—— ojgrs 16
 BGO Pricyity: 1 BGO Priority: 2
& BE Mosaic 0 BEi Mosaic i
Owerflow: Owerflow: o
 BG2 * BG2
 BG3 Address: BG3 Address:
Tile: Tile:
[~ Stetch to fit Pl [~ Stetoh tofit Pl
™ Auto update Palette: [Auto update: Paletie:
Richesh | Save. | Do | Refiesh | Save Closs
x|
o
Pl ol 0 =
& Fram= 0 MapBase: Ux0B004000 =
" Frame 1 Char Base: 0x06004000
Size: 256k256
rBackground—— s 16
 BGO Priarity: 3
~ BG1 Mosaic 0
Owerflow: 0
 BG2
 BG3 Address:
Tile:
[~ Stetch to fit Pl
[Auto update Palette:

Fisfiesh |

Save.

Close

After disabling BG1

85

The second classic example which is slightly less involved is where trees or a
structural beams will be placed over the game map allowing the sprites to move
underneath them. Here many emulators will allow you to disable layers which
can be useful when ripping maps to generate a game walkthrough.

= = PPl E > S|

A
wo Wl
iy T T

i ———
=t
|

86

[Frame Mode:]
& Frame.0 MapBase: 040500D000
€ Frame 1 Char Base: 0r0E000000
Size: 5121256
Background—— Calors: 16
 BGO Pricrity: 1
o BG1 Iozaic: 1}
Overflow:
 BG2
" BG3 Address:
Tile:
™ Steeteh to fit i

™ Auto update Palette:

Refresh Save.. Clase |

2.3.5 Basic animation

As the OAM can control what is on screen and where things are it is the thing
responsible for most animation. There are additional abilities in rotating, scaling
and such but those will be covered later. Although it is fairly obvious when seen
from static images seeing it in real time is better so if you have the chance then
do

There are concepts to consider.

1. Screen movement
2. Sprite swapping

As you will see later in video if you swap the images displayed fast enough it
will appear to the human eye as though they are moving which means you can
swap sprites out to the places after a given number of frames (the screen gets
updated every vblank which is the conventional and suggested point at which
this is done). Combine this with movement of the screen or background and you
get the impression of movement. Now as you might have seen in the imagery
representation section images tend to be composed of multiple tiles so you do
not have to swap an entire sprite set if you can swap swap the top half of a body
instead and have the character throw their arms up as a result and this can go
much further.

Formats will be covered in a few sections from here but the DS SDK does
provide developers a fairly seldom used animation format known as NANR but
moving back to the hardware there are several good examples of this in the Ace
Attorney (Phoenix Wright) series.

87

Dragon Quest Rocket Slime The game provides a great example of
OAM animation in the pre title screen sequence. Again if you can see it in real

time it is quite a lot clearer.

ARMS memory.

=

$3] "% Paused =10l x|
Fle Emution Visw Corfig Took Help

Vien mod

Bytes -]

’7 07000400 Go

Dump vi
[Texldumu Rawdump | Dumpal

‘a-\a\ﬂ-m

0 1 z 3 4 5 6 7 8 9 LB C D E F mzaqsmagascnxrj
07000400| 65 B0 78 60 14 F5 00 00 56 00 7C 00 A F8 00 00 EuXe.eereslorees
07000410 8O0 00 7C 0O OA FS 00 00 94 00 80 00 16 F8 00 00 .ul.vee.ns
07000820 89 00 79 00 16 F8 00 00 CO 0D 00 00 CO 00 00 0D v
07000430 CO 0D DD 00 CO DD 0O 0O CO 0D 00 00 CO 00 00 0D
07000440 €O 0D DD 00 CO DD 0O 0O CO 0D 00 00 CO 00 00 0D
07000450 €O 00 0D 00 CO OO 00 00 CO 00 00 00 CO 00 00 00
07000460 €O 00 0D 00 €O OO 00 00 €O 00 00 00 €0 00 00 00 +evvveenns
07000470/ €O 00 00 0O CO 00 OO 00 €O 00 00 00 €O 00 00 00 +evvvennns
07000480 €O 0D DD 00 CO DD 0O 0O CO 0D 00 OO0 CO 00 00 0D
07000490 €O 00 DD 00 CO DD 0O 0O CO 0D 00 OO0 CO 00 00 0D
07000440 CO 0D DD 00 CO DD 0O 0O CO 0D 00 00 CO 00 00 0D
070004B0| €O 00 0D 00 CO OO 00 00 CO 00 00 00 CO 00 00 00
070004C0| €O 00 00 00 CO 00 00 00 €O 00 00 00 €O 00 00 00 +evvveenns
07000400 €O 00 00 0O CO 00 OO 00 €O 00 00 00 CO 00 00 00 +evvvennns
070004ED| €O 0D DD 00 CO DD 0O 0O CO 0D 00 00 CO 00 00 0D
070004F0| CO 0D 0D OO €O DO 0D OO €O OO 00 00 €O 00 00 00 =l
2012 I big endian T
‘ [EITENES HIEylss =l ‘ ‘ 07000000 Go | Testdump | Rawdumg | Dumpal ‘

0 1z 3 256 78 3 4B CODEF
07000000 CO 00 DD 00 CO DD 00 00 CO 0O 00 00 CO 00 00 00
07000010 CO 0D DD 00 CO DD 0O 0O CO 0D 00 0O CO 00 00 0D
07000020 €O 0D DD 0O CO DD 0O 0O CO OO 00 OO0 CO 00 00 0D
07000030 €O 00 DD 00 €O OO 00 00 €O 00 00 00 €O 00 00 00
07000040 €O 00 00 0O CO 00 OO 00 €O OO 00 00 CO 00 00 00
07000050 €O 0D DD 00 CO DD 0O 0O CO OO 00 00 CO 00 00 0D
07000060 €O DD DD 00 CO DD 0O 0O CO 0D 00 00 CO 00 00 0D
07000070 €O 0D DD 0O CO DD 0O 0O CO 0D 00 00 CO 00 00 0D
07000080 €O 0D DD 00 CO DD 0O 0O CO 0D 00 OO0 CO 00 00 0D
07000090 €O 00 DD 00 €O OO 00 00 €O 00 00 00 €O 00 00 0D
07000040 €O 00 00 0O CO OO OO 00 €O OO 00 00 CO 00 00 00
070000BO| €O 0D DD 00 CO DD 0O 0O CO OO 00 00 CO 00 00 0D
070000CD| €O 0D DD 00 CO DD 0O 0O CO 0D 00 00 CO 00 00 0D
070000D0| €O 0D DD 00 CO DD 0O 0O CO 0D 00 OO0 CO 00 00 0D .
070000ED| €O 0D DD 00 CO DD 0O 0O CO 0D 00 00 CO 00 00 0D
070000FD| €O 00 0D 00 €O OO 00 00 €O 00 00 00 €O 00 00 00
012 I big endian J
* ARMI memory B3] ' DeSmuME 0.9.8 %86 =10 x|

Fle Emultion tien Config Tooks Help

View o

Bytes

Adds
“W Go

I'DwnD i ‘

Testdurp | Rawdump | Dump Al

ERLIEY

0 1 2 3 4 5 5 7 8 9 A B C D E F 0123456783ABCDEF j

07000200| 30 00 70 50 0% A1 0D 0D 64 OO &5 40 00 FS 00 00 0.p

07000410 79 00 3D 40 01 F9 00 00 34 00 66 40 02 FS 00 00 Ve

07000420 46 00 95 40 03 FS 00 0D CO 00 DD 00 CO OO OO 00 F..

07000430 CO 00 DD 0D €O 00 0D 0D CO 00 DD 00 CO 00 DO 0O .

07000440| €O 00 DD DO €O 00 0D 0D CO 00 DD 00 CO 00 DO 0O

07000450 €O 00 00 00 €O 00 00 00 €O 00 00 00 CO 00 00 00

07000460 CO 00 00 00 €O 00 00 00 €O 00 00 00 €O 00 00 00

07000470| CO 00 DD 0D €O 00 0D 0D CO 00 DD 00 CO 00 DO 0O

07000480| €O 00 DD 0D €O 00 0D 0D CO 00 DD 00 CO 00 DO 0O

07000490| €O 00 DD DD €O 00 0D 0D CO 00 DD 00 CO 00 DO 00

07000440 €O 00 00 00 €O 00 00 00 €O 00 00 00 CO 00 00 00

070004E0| CO 00 00 00 €O 00 00 00 €O 00 00 00 €O 00 00 00

070004C0| €O 00 DD 0D €O 00 0D 0D CO 00 DD 00 CO 00 DO 0O

070004D0| €O 00 DD DD €O 00 0D 0D CO 00 DD 00 CO 00 DO 0O

070004E0D| CO 00 00 00 CO 00 00 00 CO 00 00 00 CO 00 00 00

070004F0| CO 00 00 00 €O 00 00 00 €O 00 00 00 €O 00 00 00

2012 I big endian

4RM3 ~ |||Eyles = ‘ ‘ 07000000 Ga | Testdump | Rawdump | Dumpal ‘
0 1 2z 3 4 5 6 7 8 9 BB CODEF DlZldSS’IEQAECDEFﬂ

07000000 CO 00 DD 0O CO 00 00 00 CO 00 0D 00 CO 00 0O 00

07000010 CO 00 DD 0D €O 00 0D 0D CO 00 DD 00 CO 00 DO 0O

07000020| €O 00 DD DO €O 00 0D 0D CO 00 DD 00 CO 00 DO 0O

07000030 €O 00 00 00 €O 00 00 00 €O 00 00 00 CO 00 00 00

07000040 CO 00 00 00 €O 00 00 00 €O 00 00 00 €O 00 00 00

07000050 €O 00 DD 0D €O 00 0D 0D CO 00 DD 00 CO 00 DO 0O

07000060| €O 00 DD DD €O 00 0D 0D CO 00 DD 00 CO 00 DO 0O

07000070 CO 00 00 00 CO 00 00 00 CO 00 00 00 CO 00 00 00

07000080 CO 00 00 00 €O 00 00 00 €O 00 00 00 €O 00 00 00

07000090| CO 00 DD OO €O 00 0D 0D CO 00 DD 00 CO 00 DO 0O

07000040 CO 00 DD DD €O 00 0D 0D CO 00 DD 00 CO 00 DO 0O

070000B0| €O 00 DD 0D €O 00 0D 0D CO 00 DD 00 CO 00 DO 0O

070000<0| €O 00 00 00 €O 00 00 00 €O 00 00 00 CO 00 00 00

07000000 CO 00 00 00 €O 00 00 00 €O 00 00 00 €O 00 00 00

070000E0| €O 00 DD 00 €O 00 0D 0D CO 00 DD 00 CO 00 DO 0O

070000F0| €O 00 DD 00 €O 00 0D 0D CO 00 DD 00 CO 00 DO 0O

2012 I~ big endian

88

ARMS memory.

=

View

Bytes

% pesrur0s00s AT

File Emuation View Confi; Tools Help

]

Dump

Testdump | Rawdump | Dump Al

‘awammﬁ-

0 12 3 45 678 3 4 E CDETF mznsﬁagmﬁcnzrﬂ
07000400| Az 00 71 80 0O 71 00 00 Az 80 S1 40 04 71 00 00
07000410| 45 00 30 80 05 81 00 00 39 00 BO 40 08 91 00 00
070004z0| 49 40 B0 00 OA 1 00 00 39 00 CO SO 0S 91 00 00
07000430| 49 40 €0 10 OA& 51 00 OO0 3b 40 A4 OO OB 91 00 0O
07000440 3D 40 €6 10 OB 91 00 00 3D 00 BE 20 OC 91 00 00
07000450| €O 00 0O 00 CO 00 00 00 €O 00 00 OO €O 00 00 00
07000460| €O 00 DO 00 CO 00 00 00 €O 00 00 OO €O 00 00 00
07000470/ €O 00 DO 00 CO 00 00 00 €O 00 00 OO €O 00 00 00
07000480| €O 00 0O 00 CO 00 00 00 €O 00 00 OO €O 00 00 00
07000450| €O 00 00 00 CO @0 00 00 €O 00 00 OO €0 00 00 00
070004A0| €O 00 00 00 €O 00 00 00 €0 00 OO OO €0 00 00 OO0
070004B0) €O 00 00 00 CO 00 00 00 €0 00 00 00 €0 00 00 00
070004C0| €O 00 DO 00 CO 00 00 00 €O 00 00 OO €O 00 00 00
070004D0) €O 00 0O 00 CO 00 00 00 €O 00 00 OO €O 00 00 00
070004E0) €O 00 00 00 CO 00 00 00 €O 00 00 OO €O 00 00 00
070004F0| €O 00 DO 00 CO 00 00 00 €O 00 00 OO €O 00 00 00
ARMS memory.

View mad

==

Bytes

Add
’7 (07000000 Go

Durn i
’7 Tewt dump

0 1z 3 456 783 4B CDEF
07000000 2C 00 70 80 OO AL 00 OO 68 80 98 90 24 F& 00 0O
07000010 81 00 SA 00 03 F8 00 DO BC 0O SE 00 03 F8 00 0O
07000020 8% 00 SD 00 16 F8 00 DO CO 0O 0O 0O CO 0D 00 OO
07000030 C0 00 00 00 CO 00 00 00 CO 00 00 00 €O 00 00 00
07000040 C0 00 00 00 CO 00 00 00 €O 00 00 00 €0 00 00 00
07000050 C0 00 00 00 COo 00 00 00 €0 00 00 00 €0 00 00 0O
07000060 €0 00 00 00 Co 00 00 DO €O 0O 0O 0O CO 03 00 0O
07000070 Co 00 00 00 Co 00 00 DO €O 0O 0O 0O CO 03 00 OO
07000080| Co 00 00 00 Co 00 00 DO €O 0O 0O 0O CO 03 00 OO
07000030 Co 00 00 00 Co 00 00 Do €O 0O 0O 0O CO 03 00 OO
07000040 C0 00 00 00 CO 00 00 00 CO 00 00 00 €O 00 00 00
070000E0 C0 00 00 00 CO 00 00 00 €O 00 00 00 €0 00 00 00
070000¢0| C0 00 00 00 COo 00 00 00 €0 00 00 00 €0 00 00 0O
07000000 Co 00 B0 00 Co 00 00 DO €O 0O 0O 0O CO 03 00 00
07000080 Co 00 00 00 Co 00 00 DO €O 0O 0O 0O CO 03 00 0O
070000F0| Co 00 00 00 Co 00 00 DO CO 0O 0O 0O CO 03 00 0O
2012 ™ big endian

[ubscreen spite

|

0AM: 0
Mode

Tile

Palelte

Piio
Coordinates
Dimensions
Ratation:
Mosaic

¥ barder

Normal
100

16 colors: 7
]

13x162
2532
IFF

FF

W futoupdate [1 ::“hams

Clase Refresh

Original phoenix wright animation The above was plain animation

via OAM but games occasionally get more interesting.

The first Phoenix Wright game had some fairly notable character animations
but rather than redrawing each frame of the animation the characters themselves
were actually split into components (usually face and hands) and those swapped
The tile view is not quite how the

out as necessary to
internal formats do
hands and face being one visual concept).

TILE YIEW

creation animation.
it (those usually being set up to take advantage of the

Sub screen SPR PAL VI
Pal: 14 « | v
B-0B.- 0x6610000 vI

" Bitmap
256 calors
' 16 colors

Tile num : 0x0

=

S

Auto-update ﬂ frame

89

Background animation The scrolling effect was mentioned already but if
you are using a tiled background you can change the tiles the make up the
background and create animation there. Animations with bitmap images has
often been done on a programming basis but much of that is either very obvious
or quite arcane and steeped in programming methods.

Another use of the scrolling effect is more commonly used as camera anima-
tion in 3d imagery but here if you rapidly move around the BG map a “camera
shaking” effect is created and is well documented /entrenched in cinematography
as something seen when startled or hit.

Palette animation It has been mentioned briefly in the past but there is also
the matter of palette animation aka dynamic palettes to consider as well. Here
the game will change a colour or a handful of colours in the palette and this has
a corresponding change in the main game.

From Summon Night Swordcraft Story 2 a quick sample of three stages of
an animation. Changing parts of the palette have a black square added around
them.

90

> VisualBoyAdvance-10] | Palette Yiew

File Options Cheats Tools Help

Click on a colar far more information

— Background — Sprite

Dam Yiewer

Sprite:

kil i
Pos: 184,72

Mode: 0O

Colors: 16

" YisualBoyAdvance-10 i =] | B Palette Yiew

File Options Cheats Tools Help

Click on a colar far more information

— Background

Pos: 184,72
Mode: 0
Colors: 16

=i VisualBoyAdvance- 98 N =] [| B Palette Yiew

File Options Cheats Tools Help

Click on a color for maore infarmation

— Background

Sprite: I
I 1 |

|
] 4 |
Poz: 18472 |
Mode: 0 I
Colors: 16

The game, unlike most on the GBA, also features a few different colour
modes for the original GBA, GBA-SP, TV and the option to change brightness
on a slider.

Developer tricks There is more on this in part III but some on 2d for now.
The idea here is the developer will do things to make the demands on system
resources less and in doing so allow them the potential for a larger amount of
things to be done which is always good.

For instance a character walking left is much the same as a character walking
right so you only need to animate one direction and flip the sprites over. This

91

might also trickle down into the sprite itself which will not be seen holding a
weapon or something that will mark it as a flipped sprite.

If an area of a level is not being seen at present there is no need to animate
it. The basement/smithy of the Summon Night Swordcraft Story 2 used in the
palette animation section provides a great example. The 3d equivalent of this
is backface culling and viewpoint rendering.

Another effect commonly seen in 3d animation but useful in 2 and seen in
several games is the addition of a single dark circle as a shadow.

2.3.6 Window feature

Although you can fill the whole screen the GBA and DS have abilities to pick
and choose things to show and the technique is known as windowing. The basic
idea is the mode is triggered which selects a region (you have two windows
allowing for a four way split if you prefer) and you can change the display of
BG and OBJs within it. Various things and games can employ it in the actual
game but menus are a common usage.

GBAtek windowing feature| explanation/description. The feature first has to
be enabled in the DISPCNT register and then has the windows defined in other
registers which can then have various BG or OBJ layers disabled as appropriate
but do remember that transparency can be made to work for the BG so do not
always expect windows to be used.

An animation technique can be done here and henke37 noted that things
can be tweaked on hblank to create certain effects beyond the obvious classical
or offset windows with |ghost trick (see around 5:20)| providing a nice example.

2.3.7 Special features (flipping, affine transformation, alpha and such)

Despite all the limited memory and quirks the GBA and DS or perhaps because
of it both feature all sorts of methods that developers can employ to perform
various alterations to the images seen.

In OAM transformation Mentioned briefly a few paragraphs back the OAM
has options to flip sprites and individual tiles. and is quite often used to have
characters walk to the left or walk to the right despite using a single set of sprites
(you can see an example of it up in the GBA OAM viewing section). Double
size is also available although intended use seems to be for working around
affine transformation induced issues (preventing parts from being clipped off
when rotated in most cases) rather than the immediately obvious (although
that works as well).

Affine Many guides and documents will refer to this by the two most common
things is does which are the other two big transformations done to geometry
known to most as rotation and scaling (the third one, translation, being fairly
well taken care of by everything else) but strictly speaking it does allow for

92

http://nocash.emubase.de/gbatek.htm#lcdiowindowfeature
http://www.youtube.com/watch?v=1t8wWnI_I1I&feature=related

shear transformation among other things and so the term affine transformation
is more fitting.

In the case of sprites/objs it is split across the first two attributes and the
fourth hidden ones. The s in ones is not a typo as the normally unusual 4th
attribute is in fact affine transformation data but it allows for 32 attributes
(somewhat less than the 128 objects possible but that is not so bad as there is
nothing stopping things from sharing a set of attributes) in all as the first four
hidden attributes are used for a single transformation value and this is repeated.

Attribute 0 activates the mode

Attribute 1 selects the transformation grouping in bits 9 to 13.

The hidden attribute 3 is in fact split over four hidden attributes as men-
tioned and each carries one 16 bit value (signed 1 bit sign, 7 bits integer, 8
bits fraction format) corresponding to what are known as PA,PB,PC and PD
which can be used to effect rotation, scale and shear transformation and all the
same time if necessary (it does not quite work like it but if you imagine having
control of every corner and how you can use that to scale things, shear things
and rotate things at the same time) .

Tonc has a worked example of a lot of the maths involved (in many ways
it is as complex as maths in ROM hacking gets outside of some very in depth
assembly hacking), it also returns after a fashion for the 3d system. It will be
returned to there in earnest as it underpins the entire 3d system.

For those used to the maths the reference point is the top left of the ob-
ject rather than the screen and the rotation centre is set as the middle of the
sprite. In some ways this is quite limiting as some interesting things can be
accomplished with different origins and centres of rotation but it does serve to
simplify things for basic transformations.

GBAtek has basic listings and {tonc| has more worked examples.

BG affine transformation is slightly more involved but follows much of the
same logic, (GBAtek| has more.

Mosaic Usually seen as the single corner pixel repeats for every unset pixel in
the rest of the screen but it is available for smaller values. Has to be enabled in
the individual control register and then set accordingly in 400004C hex and is
available for all the BG layers as well as equivalents for sprites. (GBAtek mosaic
section and Tonc| has some nice worked examples.

Alpha and brightness Alpha blending is a method by which two images
can be merged together with the not entirely accurate term being called trans-
parency which can be used to achieve a variety of effects. Note that the DS
3d system has a rather more complex setup for alpha depending upon textures
used and more.

For the most part alpha is a flag and variable which is to say if it wants to
be alpha blended there will be a flag to say so and somewhere else a variable to
say by how much (this is also where the 3d differs slightly in some modes).

93

http://www.coranac.com/tonc/text/affine.htm
http://nocash.emubase.de/gbatek.htm#lcdobjoamattributes
http://www.coranac.com/tonc/text/affobj.htm
http://nocash.emubase.de/gbatek.htm#lcdiobgrotationscaling
http://nocash.emubase.de/gbatek.htm#lcdiomosaicfunction
http://www.coranac.com/tonc/text/gfx.htm#sec-blend

Brightness adjustment which the DS has a special mode in the capture unit
for is also possible with it being available instead of alpha if you want it. Note
that many developers instead chose to alter brightness at the palette level for
the original GBA model hence the hacks to restore colours that looked rather
washed out in later GBA models.

Three registers are used here with 04000050 hex aka BLDCNT being the
main select this mode 4000052 hex aka BLDALPHA being the alpha modes and
4000054 hex aka BLDY doing for the brightness. Note that although sprites
can be blended here the setting can be overridden to always blend in the OAM.

GBAtek has more depth and full listings.

Mode 7 The SNES (which the GBA owes a lot to in terms of abilities and
hardware design) was one of the first to allow for a perspective transformation
of an image which although looking quite poor to those used to modern 3d
imagery was revolutionary at the time and so much so the hardware term from
the SNES became shorthand for the technique. [Tonc has more.

2.3.8 Basic DS layout formats and mapping

Although games and indeed many games do use raw formats and declare what
they should be rendered as/mapped to elsewhere (or just have a tile for every
tile on the screen) the nitroSDK provides several formats for developers to use.
They range from simple wrappers for a layout to full animation formats. Also
worth noting is that if an image is composed of tiles some of those tiles might
be reused as a kind of compression so you might have to edit those (this is very
often the case in Japanese puzzle games where text is part of the image and the
two kanji can afford to have a blank tile in the middle). A basic demonstration
of the compression /tile reuse concept

94

http://nocash.emubase.de/gbatek.htm#lcdiocolorspecialeffects
http://www.coranac.com/tonc/text/mode7.htm

ystalTile2 - [xshrink2.nds]

e+ File Edt View Tools Bookmark{C) Plugin “Window Help

BT TEE T

P E =R

HEIG

Properties | pajette | Favorites | Settings | < [v
~ Tile property -

scale 200

linked to move: 1

MAPIOAM address ClABL4

byte jump 1]

width 258

height 256

Tile Farmat GEA 4bpp

image pattern Map

Angle Angle:0id

left turn inactive

Flip horizonkal inactive

Flip vertical inactive

24 inactive

‘http:f,l’hg.mtgh.cnm [system resource utilization: 13264 16kb]

_—

| Murn... | address | size(1267?134)| sub-File

E test2.nogr
test2.ncl

0005 ODC18B60 6,760 Tile file
0006 DOC1ASCS 552 Palette
0007 | OOC1AFFO 2,084 M

95

A few clicks later

or Fle Edt View Tools Bookmark Plugin Window Help

DEds s anx|dcEaa[s 8=
properties | pajette | Favarives | Settings | <[
~ default sattings

offset 0

* Tile property
scale]

linked to move 1
MAPJOAM address C11D40
byte jump 0

wickh 256
height 256
Tile Format GBA #hpp
image pattern Map
Angle Angle:0id
left turn inacive
Flip hotizontal inackive
fiip vertical inactive
244 inactive
~ Tile Fant Editor
Sort LeftTop
transparency inactive
shadow effect inactive
fork Caurier New

Alpha blending 255

[Tile tor adjust the ratio of the
lexpansiorShartcuts: Cbrl + +, ﬁe s
AR TESA

Palette formats

NCLR Occasionally seen as RLCN it is a palette format. Most of the time
a fairly pointless wrapper for the palette but other times does act as an
archive format.

NTFP Technically part of the NCLR format but seen quite often by itself and
especially on earlier games.

PAL Not always a palette (it still being the shorthand for European and Aus-
tralian TV standards and so versions of games aimed at there will sport
that extension) but quite often palettes are seen with this extension.

Tile storage Tiles themselves need to be stored and various archive formats
have been made for them

NCGR A format that includes all the relevant data about the data stored
(widths, heights, colour depths, whether it is tiles or not and more). Aimed
more at sprites/objs but remember full screen images are possible and still
used for BG type images.

NTFT Another raw format that is technically part of another (in this case
NCGR) but seen by itself on occasion.

96

NSCR Aimed at background (BG) images and contains information on how
to decode and set things up.

NTFS Once more part of a bigger format (NSCR in this case)

Mapping Mapping merely involves arranging the OAM or BG into the proper
order. It can be done in many ways but the nitroSDK provides a handful of
methods although many are encompassed either by animation or by the storage
methods themselves.

NCER Aimed at sprites and provides initial OAM data among other things.

Animation
NANR An infrequently used animation format.

NMCR A format seen in pokemon to provide animations. In some ways it
might be considered a wrapper to NANR.

Fonts It will be covered later in the text hacking section but there is a fairly
complex font format many DS games use. Many other games use equally com-
plex formats or simply plain tiles (maybe in a slightly odd size).

NFTR A font format the includes character widths/dimensions, line locations
and various types of mapping available.

General observations Most DS editing programs will feature editing abilit-
ies for these formats and related ones and exporting and importing should not
be a problem. However if you are after a more general image editor and have
one that supports the Susie plugin format (a fairly popular plugin format seen
in a lot of Japanese image editors) loveemu’s nitroscrap heads down such a path.

Although they can and frequently are found by themselves they might be
put into basic container formats like narc, custom ones as will be covered sev-
eral times over the course of this guide, occasionally stripped of components of
(maps being ignored and such), be stripped down to the their basic components
(basically a headerless file), have a single palette for an entire range of images
(often this will be named accordingly but not always and either way it can
confuse programs that expect the same name which is most of them). This is
especially true of animation which rarely uses the NANR format.

The formats have remained largely static over the course of things although
pokemon has a habit of changing a few things, using rarely used features and
reworking some others so tools built to earlier standards might not work properly
with that franchise.

The names above are the extensions the files that carry them usually have
but they are occasionally known by the magic stamp which is usually a reversed
version of the extension (NCLR=RLCN and such).

In the absence of the formats at the end of the document

97

http://code.google.com/p/loveemu/downloads/list

Lowlines current specifications

Lowlines older specifications

Tinke source code| (trunk/ Tinke/ Imagen and trunk/ Plugins)

Nintendo VieWer source code (python)

They are largely aimed at programming with the latter two being source
code to various programs.

2.3.9 Video memory handling and alignment

The GBA and DS video systems are quite in depth which serves both to work
around issues of low power and to provide developers the options to do things
they might otherwise have to spend a lot of time programming. One of the more
interesting aspects of this is the memory handling as it is quite possible to run
out and there are other quirks such as alignment.

2d memory management Games, especially on the GBA but the DS is no
eagy street, frequently push up against the limits of the memory and this means
there is certainly not so much of it you can never run out and with certain
graphics modes it is very easy to do. As ROM hacking so often wants to add
things you will probably brush up against this eventually. The most common
scenarios are you have a 2d overlay on a background and either the repeated
tiles want to be edited or you want to extend the overlay a bit and run out of
memory that way.

pineight.comdetails a streaming method homebrew programmers can use to
hopefully never run out of ram. DS programmers are not quite so fortunate and
will tend to have to fiddle with maps and tiles or accept a slightly lesser image.

Alignment In short the GBA VRAM will only accept writes to values aligned
to 16 bits and this most commonly rears up when compression is being dealt
with. It has had such an effect that it led to a whole class of methods being
described as VRAM safe or otherwise WRAM safe if they do not work on
VRAM. Unless you are physically managing the VRAM as part of a hack (and
not say relying on a function to read so much from the cart into it) it is usually
just a matter of making sure you select the “VRAM safe” compression function
of whatever program you are using.

24 3d

Although some games on consoles are experimenting with vector images between
tiles and 2d above and 3d covered in this section the vast majority of imagery
use in games is covered. Note it is far from unheard of for games to use their 3d
hardware to display 2d imagery and animation (several title screens on games
have been seen to do this at various levels and even swapping out 3d for con-
ventional 2d at points) and it was already mentioned how several apparently
2d games have used 3d models in place of sprites (New Super Mario Brothers
being noted for it) and others have augmented 2d imagery by doing things like

98

http://llref.emutalk.net/docs/
http://www.romhacking.net/documents/469/
http://code.google.com/p/tinke/source/browse/trunk/?r=119
http://nvwr.googlecode.com/svn/trunk/libs/formats/
http://pineight.com/gba/managing-sprite-vram.txt

having backgrounds rendered on the 3d hardware (the first Castlevania game
being noted for it).

For the most part this section will be very basic general concepts and DS
specifics as the GBA lacks proper 3d hardware and anything there is likely to be
prerendered and given to the 2d, a trick like isometric imagery or “mode 77 style
techniques. This section will also assume a knowledge of GBA /DS 2d hardware
and can be considered to follow on directly from it.

On computers and to a lesser extent consoles as well (although they use the
hardware designed for it the software development kit developers will often still
cook up their own programming methods for it) the two dominant methods for
rendering 3d at time of writing and for some time prior are known as DirectX
(a 3D technology from Microsoft and used in Windows and the xbox line of
consoles) and OpenGL (a 3d technology of similar power and scope but as it is
relatively open it is used in most other places as well as being available for use
in Windows).

Lines are blurred between the hardware running things and the standards
built on top of them as DirectX and OpenGL will put standards out which the
hardware makers will build to and the hardware makers (and engine developers)
will also have a say in what should go in the next versions of the DirectX and
OpenGL standards and it only gets more blurred as those technologies also start
to encompass general computing tasks (physics and such for games but owing to
the way they are built they are also pretty good for aspects of high performance
computing) with GPGPU being the term of choice to look up and in the case
of DirectX the standard also defines input methods and helps with sound.

It should also be noted where the GBA and DS for the most part have all
that 2d animation on consoles and more or less 2d animation in general ever
wanted (naturally support for larger amounts of sprites and such, being faster
and operating at higher resolutions are desirable) the DS 3D systems are not
that much like current 3d systems or even that much like past ones. Basically if
you knew all that was to know about GBA 2d and underlying methods you could
do 2d anything but knowing all there is to know about DS 3d and the underlying
methods will leave a large gap in your knowledge (the idea of shaders, much of
light reflection and some of the ideas that have led to shortcuts/approximations
are at best going to be touched upon) although it should not do a disservice to
any future intentions to learn 3d imagery. Learning 3d imagery is quite possible
thanks to the internet and The Guerrilla CG Project| put out a nice series that
covers a lot of the basic concepts.

2.4.1 Basic 3d (bones, coordinates, keyframes)

You can do 3d imagery in a lot of different ways and for the most part 3d and
the way 3d is animated is not really possible to separate. In practice it comes
down to keyframes which have quite a lot in common with their 2d counterparts,
morphing which is a hybrid of keyframes and the following and bones which as
the name implies a bunch of jointed (often imaginary) lines running through a
character that can be moved to provide animation (lesser systems using fewer

99

http://www.youtube.com/playlist?list=PL6A7DF3D7866EB076&feature=plpp

bones and joints and winding up with things like hands always in a “pistol”
grip).

Coordinates. For the most part the X, Y, Z coordinate (Cartesian) system
appears once more although with two main refinements either in hardware or
when doing maths on them.

1. The ability to define a line with an angle and a length

2. The ability to have a coordinate system within a coordinate system (helps
when you have a complex shape and do not want to have to worry about
recalculating a lot of points despite them not changing relative to each
other).

Angles and lengths are quite useful as they can be manipulated somewhat more
easily in some ways (the general idea is a line is defined at the origin with an
angle to the given axes and a length and then maybe translated which gives
the same information as a set of coordinates but allows easier rotation and
more). Strictly speaking it is not used in the hardware but it often feeds into
the multiple coordinate systems and speaking of those.

Multiple coordinate systems are extremely useful once you get past basic 3d
for as mentioned they allow you to rotate an entire shape and not have to worry
about recalculating all the components within it and deal with odd angles not to
mention it allows for independent animation. For instance consider your hand
when curling your arm it is at the end of your wrist but if you curl your arm
leaving the hand in the starting position and then try to map the coordinates
your hand just passed through it gets horribly complex despite your hand not
changing position relative to your wrist.

In most games made points are defined which then become the corners or
more accurately vertices of a model are defined and lines drawn between them
to make the image and those points moved accordingly (usually via the bones
technique) although the latest techniques at time of writing are experimenting
with a technology known as geometry shaders where new lines can be generated
after an explosion or something. Back on topic most of the time this line is
straight although some more advanced systems can define a type of line to
make for a curved image (other times you see this it can be textures though)
which usually falls under the remit of subdivision although there is a lighting
trick known as Gouraud shading that achieves a similar effect. Another type of
imagery seen mainly in 3d scanning (medicine and parts of reverse engineering
devices) and certain types of computer modelling (usually scientific in nature) is
known as point cloud data where individual points are used and expanded from
there but as you might imagine this can be very costly in terms of resources
which for more real time use leads to voxels where a image is composed of
small boxes or if you prefer the points themselves expanded so as to meet their
neighbours and can be seen in voxelstein3d| among other things.

Optional maths lecture on arrays/matrices Arrays are a concept that
arises early in discussions of 3d and programming in general and as they have

100

http://voxelstein3d.sourceforge.net/

some very useful functions they never really go away. With one though you can
effectively define in a few numbers a primitive anything really (a 3 x 3 array
stores 9 values which works quite well when you have an X, Y and Z value and
three sets of those can define a triangle and more although the DS favours 4x4
for a lot of things (although it turns those 4x4 into 3x3 by setting all the but
the bottom right coordinate to 0 and the bottom right one to 1.0) and does
not use them for defining vertices per se but the model format might well store
things in one). The underlying maths is not hard it is just not as most people
that have previously spent time doing algebra immediately expect. For some of
the more in depth 2d affine transformations the same maths and many of the
same concepts will arise.

Both [GBAtekl and Tonc have more on this with the latter aimed at the GBA
2d.

Still there are a few select concepts worth knowing

e Dot product
e Cross product
e Scalar multiplication

Depending upon your point of view scalars are either regular numbers or a 1x1
matrix.

[To finish]

The decimal point Floating point was covered back in the introduction and
it is surely not hard to see what the ability to represent numbers after the
decimal point is useful in 3d modelling. Combined with the need to do oper-
ations on lots of data all at once (a problem “solved” by the introduction of
Single Instruction Multiple Data/ SIMD instructions) this is why 3d tends to
have a piece of dedicated hardware inside the system and systems will have their
performance measured in FLOPS (floating point operations per second). The
DS specifically tends to eschew floating point in favour of fixed point using a
variety of different formats for fixed point depending upon the operation.

A couple of different fixed point methods are used depending where you are

1bit sign, 3bit integer, 12bit fraction for a lot of the vectors (usually involving
light and view)

1 bit sign + 3 bit integer + 6bit fractional for the 32 bit vertex set command
(X,Y and Z in the same command each with 10 bits)

1bit sign + 9bit fractional part for the 64 bit vertex set command (X and
Y in one 32 bit command, Z and wasted space in the next) and the commands
that be used when reusing a previous coordinate (set X and Y but use the same
Z or the other permutations of that concept).

2.4.2 Viewpoints

As well as lighting (covered elsewhere in this section) the idea of the view-
point /camera is important where in 2d both those are something of an abstract

101

http://nocash.emubase.de/gbatek.htm#ds3dmatrixexamplesmathsbasics
http://www.coranac.com/tonc/text/matrix.htm

concept at best. As the name implies it is the thing that ultimately decides what
is rendered (3d learned early on you only need to render what the camera(s)
can see) and more importantly can be used for animation (although in practice
bugs in the DS hardware sometimes mean the camera is not animated by the
world instead).

Additionally the DS supports a cutoff value so items beyond a certain dis-
tance will not be rendered (this helps the hardware by having less to do and
likely the resulting image by having things that are only visible as single pixels
not be rendered.

This is where matrices are most prevalent with the principle example being
that of achieving a perspective view. The DS hardware supports either ortho-
gonal rendering which is useful for 2d games like New Super Mario Brothers
or games which use it for basic animations (certain RPG battle sequences) or
rendering with perspective which is useful for first and third person type games
where the camera is behind the player.

2.4.3 Textures and material colours

The earliest 3d just defined the points at corners (vertices) and lines (quite often
green or grey) in a process known as wireframe; this is not used much any more
with it tending to be reserved for cheat modes/bonus content, testing out the
game itself and those creating the 3d content in the first place so in place of that
there is material colours and textures. This being said many systems including
the DS will still allow the “wireframe” to be coloured differently.

Further down the line there are also concepts like bump mapping where the
illusion of surface roughness can be created by assuming another light source on
the object, some systems will have hardware support for this but the DS does
not and any you see will be the result of those responsible for 3d models and
textures calculating such things ahead of time (if you plan to do any work with
DS 3d the idea of precalculation is one that will appear again and again).

Material colours are just what they sound like and the 3d object will be
coloured in according to a given value somewhere, with lighting and shadows it
can look different and with each vertex in the case of the DS being able to be
assigned a colour basic coloured models can be made however it tends to look
a bit plain which brought in the idea of textures.

Textures are more or less 2d images placed over the 3d models or parts
thereof which is more demanding than simple material colours. Unlike palettes
in 2d you can map a texture to a part of a model and then between light /shadows,
certain graphics modes, angles to the camera and fog a final image might be
generated that is nothing like the texture colours. To this end with the pixels
that make up a texture not being quite what it will be in the final image they
are known as texels instead. Also available is alpha blending with the material
colours so the texture and the material colours combine to create an image.

w8 bridge.nsbmd is a nice example here.

First image is what it looks like, second is without the texture.

102

i

4 '
-

Also worth noting is 3d has seen several titles allow the player to create
their own textures with Mario Kart being on the more notable ones and other
common ones include clothing games and games like the sims. There has been
a bit of this in 2d as well but not half as much although for the most part
textures will tend to manifest as 2d images anyway (certainly some editing has
been done with 2d tile editors where necessary).

This brings a secondary issue up that developers and hackers alike have long
had to think about when attempting to map a 2d image to a 3d object. Doing
as such tends to make for some distortion so models will tend to be painted in
3d with a program and then converted to a 2d texture for storage; for more on
that subject “Texture unwrapping” and “UV Mapping” are good search terms.

DS textures When being editing many will resemble custom size 2d formats.
Equally much like 2d there are additional options and textures can be repeated,
flipped and more.

GBAtek has more on the various methods and although at times they re-
semble things seen in the 2d palette/tile world other times see something quite
custom in comparison.

2.4.4 Models

Basic constructions
There is the idea of a 3d primitive although this takes two forms with the
likes of the DS and truly low level hardware and more general 3d modelling.
The DS hardware uses four concepts

e Triangle (three points defined anticlockwise)
¢ Quadrilateral (four points defined anticlockwise)

e Triangle strips (three points defined anticlockwise to start with and then
either up down or if you prefer clockwise anticlockwise)

¢ Quadrilateral strips (four points defined “up and then down”)

Straight lines (line segments) are usually made by setting two of the points in
a triangles to the same value. Equally although there is little in the way of

103

http://nocash.emubase.de/gbatek.htm#ds3dtextureattributes

support for or need for subdivision on the DS quite a few models eschewed the
reliance on triangles that marks most game consoles apart from conventional 3d
modelling which opts for quadrilaterals instead.

Although more conventional 3d modelling recognises those types as prim-
itives (and if they are not primitives they are certainly fundamentals) on top
of this and when dealing with slightly higher level ideas there are three other
primitives

e Spheres
e Cylinders
e Cuboids

Either way when reverse engineering a model should developers have been kind
enough to leave a selection of these primitives and when reverse engineering a
format seeking these out and/or creating them is a useful step but more on that
later.

Parent and child This is often where the idea of multiple coordinate systems
comes into play.

The basic idea is there is a primary set of coordinates known as the world
(although do note some call the entire level the world and it is a separate
concept) and from here several extra coordinate systems can be defined and
known as children; children can have further children but are each tied to the
parent going right back to the world.

It becomes useful as having a large level and defining it only to want to move
an item within it or worse it relative to another item it touches can get to be
a nightmare very fast and even more so when there are say 300 points defining
that item which all have to be accounted for possibly using a coordinate system
with an origin several hundred of a given unit from the location of the model at
the time.

2.4.5 Lighting/shadows

Where 2d is inherently assumed to be lit (indeed the whole colour scheme is
designed around differences in brightness of the component colours) lighting
and shadows as an extra concept do not really exist but most 3d systems will
allow the phenomenon to me modelled and so lighting and shadows needs to be
discussed.

Theory There are three types of light reflection known as specular, diffuse
and emissive and the DS supports all three in hardware. Where light is blocked
it makes shadows and where it is partially blocked it changes the colour of the
light coming in but the DS has very limited support for both of these concepts.

104

Light There are the three sources and they all combine to make for im-
ages humans are used to seeing. Although the DS supports them most of it is
precalculated /nice approximation. Approximation however is common in much
of 3d regardless of where it is at.

Specular This is the traditional concept of reflection where a single beam
provided it is below the critical angle for a material will be reflected out.

Diffuse This is the “scattered” light as often seen in crystalline structures but
many materials will have a measure of diffuse reflection.

Emissive As the name implies this is light generated by an object.

There are also three types of light source and although it is key to most light
modelling which are a spherical source (light in every direction and dropping in
intensity with distance), a conical source (light expanding as a cone with dis-
tance and also dropping with intensity) and a tube/parallel source (think laser
beam where a single set of parallel light beams and not dropping in intensity
with distance). They are not quite so key here as only the parallel sources are
available to the DS although there can be multiple ones coming from various
locations and are reflected accordingly. GBAtek also notes that the DS diffuse
light engine is bugged and does not reflect properly if the camera is turned so
in those cases diffuse is not used or the entire world is rotated instead.

Shadows If there is light there must be shadows to go with it. The DS
lighting engine provides only light to the camera but it does have the ability
to generate shadows instead. As mentioned in 2d the lack of shadows is fairly
notable to the human eye but it can be placated by adding a simple circle
shadow a lot of the time.

DS basics The DS supports light in the three forms although it is only re-
flected to the camera and not to other objects. As mentioned it does however
provide the option to make shadows using a polygon so developers can precalcu-
late shadows and add them to images and they often choose to also add a basic
shadow (no shadow is quite noticeable but even a basic blob/circle shadow will
help believability).

2.4.6 3d smoke and fog

Although in real life the fog and smoke are roughly treated as similar concepts as
far as physics modelling is concerned in games the differences are quite extreme
although developers have often been known to make one stand in for another.
Fog is most commonly associated with draw distance and indeed is usually
there to make up for the hardware being unable to draw far enough ahead in
real time although games like Silent Hill used it as part of the gameplay. It
should be noted though that developers will also do things like make winding
corridors, use a skybox, make things have trees/buildings either side of the level

105

itself and use low light conditions to mask the inability to draw at long distances
to say nothing of things like mip mapping and 2d overlays but more on that in
animations and developer tricks in part 3.

Back on topic the DS hardware has a fog option as do most other 3d hard-
ware/engines that aspire to be useful; it provides the ability to define fog colour
(including alpha), location and density (typically to allow for things to fade out
but not restricted to it).

Smoke Assuming it is not the result of the fog engine being used most smoke
is a simple 2d animation maybe as a texture to an item with an animated
texture or as conventional 2d imagery. On other computers there have been
several smoke generation algorithms that are considerably less demanding they
are usually well out of reach of the DS and certainly not supported in hardware.

2.4.7 Animations

Basic animation was alluded to elsewhere but it takes three main forms.

Bones animation The traditional transformation types of rotation, scaling
and translation return and provide most of the ideas here.

Texture animation Textures can be added, removed, have their level of al-
pha changed, combined with other textures (the result of an explosion say),
have mirroring and expansion/scaling turned off and on more advanced systems
which does include the DS the texture origin can be changed creating a similar
effect to the scrolling BG from 2d animation. Also why go to the effort of un-
coupling the wheel from a car and making it move when you can just rotate the
texture of the wheel (or indeed just have a white shiny line move up and down
or flicker).

Camera animation Much like real life although you can rotate the entire
world to have something appear upside down it is usually easier to change turn
the thing viewing it upside down and similarly for the other types of transform-
ations. The do remember the bug with rotation on the DS and diffuse reflection
(if a camera does a Dutch angle then it is probably the world that rotated
instead).

Clipping Yet another area worthy of a section to itself. 3d by itself is just
an imagery method and the camera itself can go anywhere within the space
provided without restriction. Naturally this is not desirable for games so clipping
comes into play and it can take many forms with some hardware and game
engines even providing a measure of support for it. Sometimes clipping can be
detected by using the 3d hardware itself similar to some level systems that use
OAM for 2d but on the DS much of the time it is another file that will mirror
the level (as a developer it is not terribly hard to generate one if you have the

106

level sitting in front of you) will be made instead with a nice example being
the KCL format used in many first party Nintendo games like the Mario Kart
series.

2d overlays Although things can be done in 3d all proper 3d systems will
work with the 2d hardware as well ranging from things as simple as skyboxes
where the horizon is visible but rather than being a single colour there will be a
2d image placed on it of what the horizon would look like (or the sky above it)
and as it is incredibly far away at this point. Some 2d engines go a step further
than this and will replace actual objects in the distance with 2d representations
and swap them out for 3d as the distance to them becomes less.

Others rather than creating a full model of a plant (traditionally quite a
hard thing to do and demanding once it is done) will instead make a very thin
box, make it transparent save for the plant and display that. An example of the
idea can be seen in the map point.nsbmd from New Super Mario Brothers on
the DS.

In fact it is the little marker for the levels that have been done from the world
map show as it is in the game, as wireframe and as it is without a texture. Note
also the potential for a specular highlight wich in in this case is done in textures.

Animations can also happen here and smoke or sparks can be simple 2d
animations set to a given point.

Basically regardless of what is done 2d imagery plays a serious role in creating
3d worlds and speaking of that it ends up as 2d in the case of the DS.

2.4.8 DS 3D hardware

GBAteka lot of detail on the subject but the basics behind the 3d hardware are
worth knowing about.

The general idea is that there is a geometry engine and a rendering engine.
The geometry engine is what the DS communicates with and it calculates the
changes required before passing it to the rendering engine (a process triggered by
a Swap Buffers command) which puts everything together and makes a picture
out of the result or would but rather than an entire rendered frame (otherwise
known as using a framebuffer) only 48 lines are rendered at a time and put into
a cache.

Communication is typically done via write only registers starting at 4000330
hex and ending at 40006 A4 hex, the display control register for 3d (DISP3DCNT)

107

http://nocash.emubase.de/gbatek.htm#ds3dvideocontains

is however found at 4000060 hex and controls what modes are selected. Bur-
ied within the 3d IO range is the geometry command range which is either
accessed directly or send a series of commands via the GXFIFO arrangement
where geometry commands can be called by type instead.

Although some maths can be done it is a fairly low level arrangement and
there is little in the way of high level constructs compared to say programming
for a modern PC or console targeted 3d game engine where models themselves
are essentially data types.

Matrices The DS emulators desmume and no$gha dev version will allow you
to view the matrices.

Matrix Yiewer
—Position r— Direckion
-0z [0ze4s [-0.8644 |0.0000 |00z o243 [-0.9844 [0.0000
jonooo [ose44 o289 [0.0000 0.0000 [0.9644 [0.2649 [0.0000
1.0000 |0.0007 0,003z |0.0000 10000 |0.0007 0,003z | 0.0000
0.0264 |-45.8059 [-22.4758 |1.0000 00264 |-45.8059 |[-22.4758 | 1.0000
ICurrent 'I ICurrent ‘I
—Projeckion Texture
oot [ooo00 o000 [o.0000 [4.0000 [o00o0 o.0000 fo.0000
o000 o001z [o.0000 | o.0o00 f0.0000 [10000 [o.0000 o.0000
o000 [o.oooo [-0.2s00 | o.0o0o f0.0000 |o.ooo0 [o.ooo0 o.0000
jooooo [ooooo [-0.250 oo2so f0.0000 |ooooo |o.ooo0 10000
¥ auto-update Il_jlfram‘

108

il

Ledd | LedB | Lod3D Lod3D" | Cpmem3 | DmaTmid | hialped| Sound? | wian? | Spifitc? | DmaTmi? | Iralpe? |
“Wertes [2.0.2.1] Light Calor, Light Vectar
“5950 FF3a |DaF0 48Ch Cmd23h VislE | |7FFF EES J00o0 J00o0 4CC Cond33h L. Color

Mormal Yector J23685800° Ja715B244] [00000000 00000000 4C8 Cmd32h Liect.
’_h 2142148 484 Cmd21h Narmal |~ BoxTest, PosTest, VecTest
— Matrisl Frojection [oooo” [oooo [oooo [o000 [o000 [0000 | SCOh Crd7Oh BT est
Joono01ce Jonnooooo . [oononona [ooooo0o0 {|[oood” foono” Joooo” SC4h Cmd?1h PasT est
Jooooo000 foononzs0 | 00000000 [00000000 || 00000000 foonoaoa0 | 00000000 00000000 620h PasResul
[oo000000” [oo000000” JFFFFFFO0. [FFFFFFO0. ||/o0000000 5E8h Cmd72hVecTest [0000° [0000 [ooon | B30h VecRe
[oonoon00” foono0o00” [FFFFFEND fOD000O00 |- EdgeCalors, FogTable, ToonTable, ShininessTable
i Poskion fo000 Jooos. Joooo. Joooo Jooos. Joooo. Joono Joogn 330 Edoe
[FFFaEADD [FFFaa000 [FFFZFCO0 00000000 | 00 04 05 OC 1014 15 1C 20 24 26 2C 30 34 30 a0 360h Fog
0000000 [000C3600 [FFFSAF00. 00000000 | [40 44 48 4C 50 54 55 5C 60 b4 b6 BL 70 74 78 70 370h Fog
o0&7Co0 [FFFE3500 [FFFEC300 00000000 | [A000 0000 0000 0000 0000 0000 0000 0000 380h Toan
FFDE2342 [00137086 00150571 00001000 | [A000 0000 0000 0000 0000 0000 D000 0000 390h Taan
r— MatrixZ Direction 0000 0000 0000 0000 0000 0000 0000 0000 340h Toon
FFFFFaEa, [FFFFFa3D [FFFFFFFC 00000000 | [BE73 GAS 7358, 7790 7FFF 7FFF FFFF FFFF 3B0h Taon
00000000 [000O0C3E [FFFFFS&F 00000000 | [0d 00 0000 00 00 00 0000 00 00 00 00 000000 4D0h/34h
0000047C [FFFFFEas [FFFFFECE [00000000 | [0d 00 0000 00 00 00 00 00 00 00 0000 000000 4D0h/34h
00000000 00000000 00000000 [00001000 | [6d 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 4D0h/34h
—Mahix3 T exture 00 001 001 00 00 00 0 0 00 00 00 00 00 00 00 00 4D0h/34h
0001000 00000000 00600000 0000000 (60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 4D0h/34h
0000000 0001 000 [A0600000 0000000 (60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 4D0h/34h
0000000 [00A00000 | [A0a0n000 | 0000600 | [6d 6d 60 60 60 00 00 00 00 00 00 00 00 00 00 00 4D0h/34h
[FFF22200° JoonDDENC foononona fonno100a || Ao 00 0n 60 00 00 00 00 00 00 00 00 00 00 00 00 4D0h/3%h

Although there is a matrix stack which allows things to be swapped out in

very short order there are four main ones that are useful at any one point in
time. Once you know the Direction matrix refers to the light direction most are
fairly self explanatory and if you recall affine transformation and mode7 from
the 2d side of things most of it drops into place.

Still

Projection handles the change between orthogonal and perspective view and

although those are the main two it can handle everything in between.

Position handles the ultimate locations of vertices

Direction used for light and the testing vectors (light is the most commonly

handled).

Texture handles the texture mapping using the texture modes the hardware

supports.

They are set by selecting the mode by writing to 4000440 hex aka the MTX MODE
register aka command 10h after which there are write matrix commands, read
commands (for clipping), various multiplication and read as well as stack hand-
ling commands.

GBAtek| covers the basics here.

2.4.9 The shift of the 3D to DS 2d

The 3d hardware as mentioned is it is not addressable directly in memory and
it is not really tied to the screen rendering so the resulting frames from 3d

109

http://nocash.emubase.de/gbatek.htm#ds3dmatrixloadmultiply

rendering are turned over to the BGO layer of engine A where it can have the
usually selection of overlays and sprites done to it (many games will also render
a 3d background to put behind the game). This being said the BGO can be
further transferred (with a speed penalty) and used elsewhere with the typical
destination either being engine B or the capture hardware. By shifting layer
priorities this is how a lot of ostensibly 2d games (like Castlevania) could use
the 3d hardware to render a 3d background and have a conventional 2d game
run on top of that.

2.4.10 NSBMD

NSBMD is the standard SDK 3D format and format used by a lot of games
although some appeared before NSBMD became finalised and others like some
Yu Gi Oh games have their own custom format. It has also been seen a couple of
times with the textures mapped to a simple square in title screens and as men-
tioned elsewhere some ostensibly 2d platformers like New Super Mario Brothers
used the 3d systems to in place of 2d sprites; note this is not Rare SNES Don-
key Kong or Resident Evil style prerendering but actual 3d movement restricted
to a 2d world. It also led to the introduction of “2.5D” but that is a different
discussion.

The basic idea is that NSBMD is a 3d coordinate driven format with support
for materials colours, textures, points to hook in for animations and not a lot
else. It is sometimes flanked by the formats NSBTX (optional textures) and
NSBCA (animations) where necessary and you should probably also remember
the BMD or BMDO is the actual model contained within (it shares a stamp with
3d formats for the gamecube and wii in this regard). Much like most things in
many ways it is quite close to the hardware it ends up on.

Tools and specifications

e nsbmd tool

kiwi.DS NSBMD specs

lowlines specs| (also NSBTX| and NSBCA)
o lowlines’s the console tool

e tinke

e mkds course modifier

o NSBTXExtractor

Nsbmdtool is the tool created from the first attempts at reverse engineering the
NSBMD format and although it lacks the ability to render quite a lot of imagery
since discovered it has the ability to parse 3d models and give locations of the
models, textures and similar ideas contained within the format which means it
is still invaluable for editing even newer models.

110

http://filetrip.net/nds-downloads/utilities/download-nsbmd-tool-10-f28230.html
http://kiwi.ds.googlepages.com/nsbmd.html
http://llref.emutalk.net/docs/?file=xml/bmd0.xml#xml-doc
http://llref.emutalk.net/docs/?file=xml/btx0.xml#xml-doc
http://llref.emutalk.net/docs/?file=xml/bca0.xml#xml-doc
http://llref.emutalk.net/projects/ctool/
http://code.google.com/p/tinke/
http://gbatemp.net/topic/299444-mkds-course-modifier/
http://filetrip.net/nds-downloads/utilities/download-nsbtxextractor-10-f29535.html

lowlines console tool is a newer attempt at reverse engineering the specific-
ations and did better than nsbmdtool in a lot of cases.

Tinke includes a texture viewer and later versions include a model viewer as
well as a great human readable version of the events.

MKDS course extractor includes NSMBD viewing features and some manip-
ulation ability.

NSBTXExtractor is mainly aimed at texture extraction but it works on a
lot of things and simply being able to extract textures helps in a lot of cases.

There are additional tools but they are usually game specific save editors and
the like (mario kart emblem editors, Animal crossing texture editors in saves
and such).

Basic NSBMD hacks

There are four main hacks done here although many of them translate to the
other 3d formats as well.

e Filesystem hacks

e Texture modding hacks

e Scale and minor tweaks

¢ Full injection/modding hacks

Filesystem hacks are many and varied but were seen early on in the likes of
the Mario Kart course hacks (it was mentioned elsewhere but Mario Kart used
a KCL format for the track layout so unlike many games on more powerful
machines simply editing the model does not do much) and several hacks since.
Note that animations and textures can often be tied to a given model and odd
things can happen if they are changed with some good examples being seen in
some of the Super Smash Brothers hacks for the Wii. Occasionally injection
from other games was attempted although it usually works better when it for a
similar franchise.

Texture modding hacks are not that common but equally they are not that
hard. Generally a combination of something like nsbmdtool, tinke and looking
at the specifications will allow you to direct a tile editor to the appropriate
location, get the required dimensions (they are usually a simple multiple of 8
for each dimension but not always) and get the appropriate palette sorted which
allows for conventional 2d editing. By similar logic palettes and any offsets for
the textures can also be edited.

Scale and minor hacks. With 3d models being tied directly to the points
that created them minor hacks are quite possible if the would be hacker can get
a handle on the layout of the layout of the model in the file.

Full injection uses various techniques ranging from using leaked parts of the
nitroSDK (parts were leaked and that included plugins for older versions of
several industry standard 3d modelling programs such as 3ds max, maya and
Softimage 3D /XSI which exported files to an intermediate format and conversion

111

software for that) where others have done things like export images into a human
readable format and between viewers and hex editing managed to change models
enough to count as a full injection hack. At time of writing there is nothing
resembling a high level editor of models themselves either standalone or via
plugins.

Example of minor hack

The following is a quick example of a minor model tweak. “map_point.nsbmd”
from New Super Mario Brothers will be returned to as it only being four vertices
means less chance in being bogged down with a complex model. The model could
be worked up from the specification but Tinke provides a nice human readable
output

[~Debug messages

polygon0 is the item of choice and following it should be the commands.
Note that as it is a flat square and thus shares some coordinates from point to
point the smaller 3d hardware commands can be used from point to point.

112

H Hex Workshop - [map_point.nshmd] =101

Ele Edt Disk Options Tools Window Help (=] x|

E<SEE =@ c|y¥(a|m(Es 10D @O«

Se«»ER2ER A 8|yt xdb e [BEE (% eE
0000000070 00017500 05001000 7700000 40000100]. - G vv ety Y B
0000000100 04000500 7C000100 7067696 745F6335 | . 1. point 5 0
0000000110 |2€310000 00000000 00012800 05001000 C

0000000120 |7E010000 40000100 04000800 70000100
0000000130 |706F696E 745F6335 ZE3IL0000 00000000
0000000140 (00000000 0000200 3970000 00000000
0000000150 |B0001F0D FFEB1F3F 00000300 FFFFFFFF
0000CELF 40004000 00100000 00100000, ...
0000000170 00012800 08001000 FFOLOOO0 3DOOCLIO0|..
0000000180 |04000800 28000000 7O06FBCTY BTBFGE3D|. ..
0000000190 00000000 Q0000000 00001000 06000000
00000001A0 (10000000 38000000 40222024 01000000 ..
00000001B0 FF7FOO00 22252226
000000010 00040000

0000000100 22254100 00000000 Q0000000
00000001EC | 54455830 48300000 00000000 00003C00
00000001F0 | 00000000 CEOLO0DO 00000000 B0033CU0]..
0000000200|00000000 CBO10000 C8100000 Q0000000 (.
0000000210(10020000 10010000 cB280000 000704001 ..
0000000220 |0B002800 7EO10000 4D000200 42030503

0000000230 49010401 48030402 49060705 43020604 |1. hd
1 map_paint, nI
ﬂ Data Inspector j Structurs Viewsr [|ﬁ Compare } Checksum } Find A Eookmarks A Cutput [
Ready [Offset: 000ODIBE [valusi D [15912 bytes [ovR oD [z

Might as well change a single vertex to begin with so 01D9 was changed to
80

Wireframe of the modded version and the original version

Lo x

With textures

113

o1 |

Basic texture viewing hack

Textures are usually just stored as 2d images of some format although do re-
member it might not be a colour format commonly seen in regular 2d editing
(see the hardware notes for DS 3d textures). This is not usually so bad for much
like editing without the proper palette using a somewhat abstract method (if
you know this green corresponds to that red in the image it is still possible to
edit) a tile editor is little more than a hex editor that shows coloured pixels
instead of letters and can arrange it in a few more orders, just make sure you
have all unique colours if you do this or you risk getting quite confused. You
could try exporting the texture in something to a bitmap format and importing
the palette from that as well.

Game is Fire Emblem - Shin Monshou no Nazo Hikari to Kage no Eiyuu. It
used (as did most DS fire emblem titles) 3d textures to help with 2d images.

File is title_logo.md (the series has the curious habit of using only the last
two letters from the SDK extensions) from title12 directory.

NSBMDtool output Nsbmdtool despite being old and not working on a lot
of NSBMD files can provide some useful output.

114

[DEBUG: palnun
fpal Cnat by_pl”
fpal i *copylight_pl’
fpal i ’fiircemblen_pl’
fpal
fpal
fpal
fpal
foal 'y p.
fpal i *shield_ef _pl’
fpal i shield_p
fpal i *shield_sdu_pl’
fpal i “silhouctte_ef_pl’
foal i ilhouette p
fpal i ‘subtitle ef_pl’
fpal i ’subtitle_pl’
UG texname: r, palname: r_pl
lhouette, palname: silhouette_pl
palname: fiireemblam_pl
. palname: Fiireemblem_s_p

e: hg_)
Fireenhlen_ef. palname: Fireemhlem_ef pl
subtitle, palpame: subtitle pl
shield_ef, palname: shield ef pl
copylight, palname: copylight_pl

shield_sdu. palname 1d_sdu_pl
subtitle_ef, palname: ef_pl
silhouette_ef . palname: silhoustte_ef pl
ensf, palnamé: lensf_p.

. palname
” palname

polynun

codeoffsot

reading *TEX@’ ...
[DEBUG: blockoffset = BBAB1e3D, blocksize = BBBLc178
15, palnum = 15
a b : 09B10e98 size = BOBB406A [V [256,2561
1 ‘?llwligllt i

4 *fireemblen_ef ’
5 *lensf ’ 000810008
6 *orh ’ APBAA6198 si BAAAR4HA
2 ’ 0PBaAE5 98 000801608
8 *shield ’ 80001808

x @ rshield ef :
18 *shield_sdw ’
11 *silhouette ’
12 ’silhouette _ef ’

13 *subtitle ’ e V)

14 ’subtitle_ef vz ! 164,321

000A4 !
80004908
BAAA2 i

Tinke output Tinke provides two windows with useful output information.

=10j x|

Property | Value Texlure Palette image
Section Texture Info 0:bg -l
Offset [hex] O 1: copylight

Repeatx 0 1l

Repeaty 0 3 fiireemblem_s |
Flip = 0 4: fireemblem_ef

Flip* 0 2 lendt

\width 256 =

Height 64 .

Format 3[Color1E) Palette:

Color

Transforms O [Mot_Transform]

Section Palette Info

3 fiireemblern_s_pl
Offset [hex] 1320 % frsemblem of pl — Set backgiound color
B: lensf_pl
E: ob_pl
7o ol ~|

‘] Save texture |

115

Debug messages

> |Debug messages

"|Debug messages

Palette finding Plenty of information was given but no direct address of the
palette in question.
The palette offset is given at 38 hex in the TEXO section.

116

H Hex Workshop - [title_logo.md] =B x|

File Edit Disk Options Tools Window Help =lEx]
Z=H&G tbez|v¥|m|m@/BsL0F(@alz|| - |
= [EEETEAE

B - < e B e S VR TR

0000001EZ0 (22254100 00000000 QUFE0000 00000000
0000001E30 (54455830 7810100 00000000 AQ1D3COQ
000000140 | 00000000 68030000 00000000 EO0F3ICOO|.. ..
0000001ESD | 00000000 6BFOOQ0D C01 00000000 ..
0000001EGD |E2020000 FOO10000 000FB401 ..
0000001E7O | 0B004B800 7FO10000 66020E03 56030002 ..
0000001ERD |[4E040C0A 46050801 JEQ6050D 2EQ7Q608
0000001E9D |26080705 16090806 QEQADS00 06000A07
0000001EAD | 44080409 4C0C030B 530D020E 640F0104
0000001ERD |4BOFOEOC OBOOFCOD 00000016 D0D010BED K.
0000001ECO |0D0ECO14 BOBOOOBO 00000020 00010280 ..
0000001EDD |4008C014 BOBOO0BO 00044019 BOO00D1E0 |@.
0000001EED |0006B01Y 40000280 00082019 20000180 (..
0000001EFD |BO0E9004 10800080 20084016 80000480 ..
0000001F00 |A008401a B0000480 ADI04006 80000480 ..
0000001F10 30045016 00010480 ADIECOLY 30000280 ..
0000001F20|300E5015 00010180 AQLCI005 40000180 ..
0000001F30|62670000 00000000 00000000 00000000
0000001F40 |636F7079 6CEI676E 74000000 00000000 [copylight..

0000001F50 66696972 65656062 6CE56D00 00000000 (Fiireemblem.

0000001F60 66696972 65656062 6CHEIBDIF 73000000 (fiireemblem s. ..

0000001F70 66697265 636D626C 656D5F65 66000000 |fireemblem_ef. .. =l

tite_logo.md |

2|} instances pf ‘tex' found jn tide lnao.md
.

x| bfFset: 7784 [0x00)
I\ Data Inspector £ Structure Viewer 2\ Compare i Checksum Find f Bookmarks } output |

Ready (Offset: DDODIEES [Walue: 6.422566e+024 [122792 bytes [evR” [MoD ReA 4

TEXO starts at 1E30

Palette set to 0001 AA68 (within the tex0 section)

This gives 0001 C898 as the start of the palette section. It is not however
the first palette in the palette section (it is the third although numbering starts
at 0 so 2 is the actual number if using internal logic)

Tinke says 13E0 which needs a shift/divide by 2 to get 09F0. Adding that
on gives

0001D288 hex

Crystaltile2 filtering Setting the appropriate locations as given in tinke and
the nsbmdtool output.
The offset was given by nsbmdtool and tinke. 16 colours aka 4bpp.

CrystalTile2 le_logo.md] =10l x|
or File Edit View Tools Bookmark(C) Plugin Window Help =18 x|
EE I AR
Properties 4l
~ default settings

offset 2198
~ Tile property

scale 200

linked to move 1

MAPOAM address 0

byte jump 0

wiidth 25

height 2]

Tile Format GBA 4bpp

image pattern Tile

Angle Angle:niE

left burn inactive

Flip horizonkal inactive

flp wertical inactive

24 inactive
~ Tile Fant Edtor

Sort LeftTop

transparency inactive

shadow effect inactive

font Courier New

&lpha blending 255 =1
Inttpifbg. critgh.corn [system resource tiization:1799496Kk]] 4

Setting the palette.

117

o/ %l
or File Edit Yiew Tool Bookmark(C) Flugin Window Help =18 x|
EE e TR E =
Pri |

offset i
~ Tile property

scale 200

linked to move 1

MAPIOAM address 0

byte jump 0

wiidth 256

height &4

Tile Format: GEA 4bpp j
hhttpifbg. cribgh, com [system resource utilization:1728320kk]] 7|

From here it is so much basic image editing although do note the gradient.
It looks like there is a periodicity in the X direction after a fashion (there is odd
shading within the characters on the shorter widths) but vertical give or take
shorter widths that trouble the X direction and the marks above the second
and third from the right could be made to have a constant. Certainly though
it would be quite possible to make a layer mask after recreating a more basic
version of the gradient.

%2 DeSmuME 0.9.8 x86 =]]
File Emulation Wiew Config Tools Help

RN Wi

%2 DeSmuME 0.9.8 x86 =]]
File Emulation Wiew Config Tools Help

-0l e
F

Command decoding aside

Returning to map _point.nsbmd from New Super Mario Brothers and some of
the commands decoded as a quick example. Once again Tinke provides a nice
human readable output

118

=lolx|
-]

-00-38-E 1F-D0-FF-F8-1F-3F-00-00-03-00-FF-F

Polygon 0 (polygonO)
|__Display-> offset: la8, size: 38, unknownl: 100000, unknown2: 6
|__Geometry commands:

BEGIN VTXS (0x20) - P
TEXCOORD (0x22) -
COLOR (0x20) - Par:

: Oxl
s: 0x2000000
OxTEEE —

VIX_10 (0x24) - Pa: 0x13028270
TEXCOORD (0x22) - s: 0x2000400
VIX_XY (0x25) - Paramete 0x28006400
TEXCOORD (0x22) - Parameters: 0x400

. VIX_XZ (0x26) - Parameters: 0x9c006400
9. TEXCOORD (0x22) - Parameters: 0x0

10. VIX XY (0x25) - Parameters: 0x28009c00
11. END_VIXS (0x41)

12. NOP (0x0)

[TR

< | o
Being a single quadrilateral it is defined anticlockwise with the first command
being point 0.

Point 0 Cmd 24 hex aka VIX 10 sets the vertex coordinate with 3 ten bit
(signed bit, 3 bits, 6 bits fraction) with the upper 2 bits ignored.

19028270 hex

0001 1001 0000 0010 1000 0010 0111 0000 binary

Splitting it up

— (the two skipped bits)

0 110 010000 = + 6.25

0 010 100000 = + 2.5

1 001 110000 = - 1.75

7

Y

X

Point 1 Command 25 hex aka VIX XY is just two points with the Z point
taken to be the same as the previous.
Full bits used (0 to 15 being X, 16 to 32 being Y)
signed, 12 bits given over to the fractional part
28006400 hex
Splitting it up
0010 1000 0000 0000 0110 0100 0000 0000 binary
0 010 1000 0000 0000 = + 2.5
0 110 0100 0000 0000 = + 6.25
Y
X

Point 2 Command 26 hex aka VIX X7 assumes the Y point is the same as
the previous and sets the X and Z. Same bit breakdown as the other two point
commands.

119

9C006400 hex

1001 1100 0000 0000 0110 0100 0000 0000 binary
Splitting it up

1 001 1100 0000 0000 = - 1.75

0 110 0100 0000 0000 = + 6.25

Z

X

Point 3 Command 25 hex aka VIX XY returns
28009c00 hex
0010 1000 0000 0000 1001 1100 0000 0000 hex
Splitting it up
0 010 1000 0000 0000 = + 2.5
1 001 1100 0000 0000 = - 1.75
Y
X

2.4.11 Non NSBMD

Although NSBMD is a pretty good format developers have attempted to make
their own for various reasons including additional features the NSBMD format
might well lack, what has been seen says most of the SDK for it requires the
use of certain expensive (although industry standard) modelling packages, ports
from other platforms (although no conventional high level formats of any form
have been seen thus far and any that are seen are more likely to be a de-
veloper left extra) or that NSBMD was not finalised at this point (Metriod
Prime Hunters being a good example of this and also one of the earlier tools for
it in DSGraph)).

As has been mentioned a few times and will be a few more before this is
done the formats the end product will use in embedded systems will try to stay
reasonably close to the hardware that will eventually use them (see things like
custom audio formats on the DS tending to be wrappers for PCM or ADPCM
audio which is what the DS hardware supports) which is why the hardware itself
was covered and NSBMD given a section rather than it being the main focus of
3d hacking. It did not use standard 3d formats but model swapping was still
able to be done.

Yu Gi Oh WC 2011 |An attempt to rip/ the models from Yu-Gi-Oh World
Championship 2011 soon revealed the game be one that did not use the NSBMD
formats and what was there did not look especially like the sort of thing NSBMD
is usually brought in to handle.

After breaking through the wrapper formats to reveal NARC and after ex-
tracting that many files were obtained with an example being

m8970 _matanm.bin

m8970 mdl.bin

m8970 mdlanm.bin

120

http://filetrip.net/nds-downloads/utilities/download-dsgraph-10-f29517.html
http://gbatemp.net/topic/109587-model-swapping-in-soma-bringer/
http://gbatemp.net/topic/322715-yu-gi-oh-world-championship-2011-model-ripping/
http://www.youtube.com/watch?&v=ccqzbFvC3Vg

m8970 texanm.bin

Most groups were just mdl and mdlanm files with the occasion extras having
texanm and matanm which a quick playthrough of the game makes sense as not
all creatures have complex animations. mdl presumably expanded to model
and the others were likely model animation, texture animation and material
animation. There was also a single visanm file. A strings search on the smallest
file and other mdl files yielded some interesting results

m7091 mdl.bin was the smallest file and it had strings like pSphere and
pCylinder inside it where others were named things like arm and wing as well
as a lot of romanised Japanese names for similar things and 3d concepts (Blinn
(phong) and Lambert among other things).

The smallest file and names pointed directly at developer left extras (circle
and primitives) and where trying to figure out mappings that might be rotated,
scaled and assigned assorted parent/child relationships and coordinates could
be tricky knowing how a basic set of primitives worked could prove useful for
further reverse engineering.

The format header was further reverse engineered.

[To finish]

2.5 Notes and further reading

Games usually account for it but so as to be able to deal with it should the
need arise the “bezel” between the top and bottom DS screens is taken to be 90
pixels.

GBAtek DS video block diagram

Worth studying a bit for although it can slow things down to use anything
other than the shortest method to output sending it round the capture a time
or two can create some interesting effects.

A collection of a few hardware and software coding links

Cowbite GBA video. Cowbite was at one time a document linked alongside
GBAtek for GBA hardware discussion.

GBAtek DS video. For the most part it is similar to the GBA but that
covers what differences there are.

TONC on GBA video. A nice worked example of how a lot of the GBA
video hardware works and it is not that different for the DS.

TONC. A GBA programming tutorial but covers a lot of the concepts un-
derpinning things.

pineight.com VRAM streaming technique. Covers methods by which the
limitations in the GBA VRAM size can be overcome.

General graphics programming

gamedev.net has a nice guide to a lot of graphics editing although it gets a
bit low level at times.

The Guerrilla CG Project| has a series of fairly short videos that cover the
basics of 3d. There is also another video covering UV mapping for textures.

121

http://nocash.emubase.de/gbatek.htm#dsvideodisplaysystemblockdiagram
http://www.cs.rit.edu/~tjh8300/CowBite/CowBiteSpec.htm#Graphics%20Hardware%20Overview
http://nocash.emubase.de/gbatek.htm#dsvideo
http://www.coranac.com/tonc/text/video.htm
http://www.coranac.com/tonc/text/toc.htm
http://pineight.com/gba/managing-sprite-vram.txt
http://www.gamedev.net/page/resources/_/technical/graphics-programming-and-theory/graphics-programming-black-book-r1698
http://www.youtube.com/playlist?list=PL6A7DF3D7866EB076&feature=plpp

3 Text

Games can and have stored their text as simple graphics but developers learned
quickly that for longer games this is not very helpful at various levels so games
have long featured text decoding and display engines. Said engines are very often
highly custom things with various abilities and restrictions that people hacking
them have to figure out second only to the game level files and assembly in
terms of how custom things get. Games still have text in the images they might
display (very often for low text games like puzzle games but not always) and
conversely some early hackers altered the encoding of characters to have them
appear as others in certain places (often messing up the text in the rest of the
game) but text engines are very much a part of games now and as such aspiring
rom hackers have to know how to deal with them. Know that games can and
do often enough use multiple versions of the following concepts within the same
game and even on the same screen at once.

3.1 Tables

More recently there have been efforts to turn tables into a higher level concept (
Table file format proposal|) which is good as it allows for easier hacks in the end
but classically speaking tables are just simple text files containing a long list
of hexadecimal numbers of various lengths and what they represent in readable
text. One of the other reasons for the proposed standard above is there are
several types of table file format with varying abilities.

There is nothing to stop one character from being encoded multiple times
(indeed it is often done as a cheap way of doing bold, small, italic or otherwise
stylised text), encoding multiple characters in a single entry (a process known
as dual or multiple tile encoding) and or even mixing 8 bit and 16 bit encod-
ings/character sets together (this troubles a lot of simpler text readers/decoders
as they expect everything to be of one length and maybe even alignment).

Normally they would all be on separate lines but for the sake of readability
here is a sample of encoding used by Golden Sun Dark Dawn’s “kiaro1212” font

20= Th=y
21=! Th=z
28=(TE={
29=) 7C=|
37=7 7D=}
38=8 TE=-
30-0 0081
3= Q0A2=1
3B=; 00A3=£
=< 00Ad—T
3n== Q0AS=¥
3E=> 201E=,
3F=7 2020=1t
40=@ 2021=%
41=4 2022=-
42=E 2026=
5a=7 2030=%
5B=[2059=¢
5C=Y 203A=>

7l=q 2122=™

Most conventional hex editors will not really support tables/custom encod-
ings in a manner useful to rom hacking (that is to say easy to load a single file

122

http://transcorp.parodius.com/scratchpad/Table%20File%20Format.txt

with a full custom encoding, several will support changing the odd character
though) so we have rom hacking specific hex editors with the main ones being
Transhlextion and WindHex32 although they lack some of the features of a more
general hex editor like Hex Workshop. Crystaltile2 and some of the related tools
do have a measure of table support as well.

Table creation and figuring out custom encodings

There are several methods used to figure out the text encoding for a game. The
first step for anything like it though is to check to see if it uses or uses enough
of a known encoding to start getting things done.

As far as rom hackers are concerned this branches into three types

1. Known conventional encodings - things like ASCII, shiftJIS, euc-JP, UTF
16 unicodel and UTF-8

2. Known game and game company encodings - Capcom have a table used in
several of their games and games with Japanese tables often use fragments
of existing encodings (be it from other games or conventional encodings).

3. In the case of the DS the NFTR font carries the encoding information for
the font inside it and other formats doing similar things have been seen
as well. In many cases you can pull a table from it but other times you
will have to manually create one using the encodings (or use OCR)

Although it is rarely seen any more games can do a type of compression where
if the first hex character/byte is repeated in a 16 bit value the game can take
one 16 bit value and assume all the following ones are also to be decoded with
the first hex character/byte until told otherwise (for instance in shiftJIS the
entire Roman alphabet, Hiragana and katakana will have the first byte as 82 or
83 even though it allows for a 16 bit encoding). A second interesting concept
that is also rarely seen these days is games can swap out encodings at will by
signalling as such but do not get hung up on this as it is very rare indeed (it is
far more likely to be something else).

A note on Unicode. |Joel on Software’s unicode post| details a lot that
is good to know about the encoding standard known as Unicode. Now unlike
the fairly simplistic encoding that most games use Unicode is actually quite far
reaching and not necessarily hard to implement but not a simple translation of
a set length of hex to a known character most of rom hacking is concerned with
(any fancy extras usually being a set option that the coding team gets the call to
deal with). There is however a simplified version of Unicode that forms the basis
of a few encodings in rom hacking known as UTF16 Unicode (sometimes ul6
Unicode) that is always 16 bits (no flags or other such things) that is definitely
worth knowing about as games tend to use it; in short it eschews the abilities
like right to left text and variable length characters in favour of set 16 bit lengths
and as far as most games are concerned no extras. Still if you want a nice tool
to help with it have a look at The unisearcherl

123

http://www.asciitable.com/
http://www.rikai.com/library/kanjitables/kanji_codes.sjis.shtml
http://www.rikai.com/library/kanjitables/kanji_codes.euc.shtml
http://unicode.org/charts/
http://unicode.org/charts/
http://www.utf8-chartable.de/
http://www.joelonsoftware.com/articles/Unicode.html
http://www.isthisthingon.org/unicode/index.phtml

Assuming it is not a known encoding or a known encoding only accounts for
part of it after this you have to actually figure out what is going on.

There are several ways of doing this ranging from simple and not unreliable
but not universal (especially as far as Japanese goes) to complex but will figure
anything out. Combining methods here is not only a good idea it is suggested
and encouraged. There is quite a bit of overlap between finding the text in the
rom itself and finding out how it is encoded with various methods if not doing
both at once then seriously aiding the other.

3.1.1 Relative searching

Going back to the Golden Sun table and looking at the Roman character side
of things

41=A

42=B

43=C

44=D

45=E

46=F

47=G

48=H

49=1

4A=]

The word BAD would be encoded as 424144

If you then searched the ROM of better yet a file you suspect of being text
(assuming you had no compression or had dealt with it) for any strings with
one value and the next one lower and the new two higher than the original you
will quite often get the text you want. Most relative searching tools are 8 bit
but you can get 16, 24 and even 32 bit relative searching tools.

There are several tricks and things you can do to make you more likely to
get what you need.

e If you suspect a variable (value of something in a shop, character name if
you are allowed to customise it, amount of HP and so forth) or you see
some effect being applied to the text (even if it is just bold or italic text as
games will not render fonts as standard computers do but have multiple
characters) try somewhere else as it will likely be something else entirely
in the text (see markup and placeholders in a few sections for more).

e If you see something that might be dual tile encoded (character names
often are even if you can not change them) or is a symbol (™ for example)
and games will quite often encode their yes/no selection as a single tile)
try something else.

e Longer (to a point) is better, three characters as in the example above is
pushing it and finding two characters is at best going to leave you with a
lot of stuff to wade through to find the good stuff.

124

e If the text looks to be split across two sections avoid it or shorten the
search.

e On a more positive front you can live dangerously and search for a common
phrase (the word “the” with a space either side of it is very likely to
appear in English text) or a game specific one (moogle in Final Fantasy
for example).

e Japanese does not feature ordering in Kanji and kana only have a weak
ordering (to say nothing of odd things games do for Handakuten and
Dakuten) but you can get some things done if you suspect an ordering.

Many ROM hacking text grade hex editors tools feature relative search but for
the purposes of this guide there are two main tools you will want to look at

Monkey Moore Monkey Moore google code downloads

Monkey Moore filetrip downloads

A standalone relative search tool and one geared towards this sort of thing
(where others are often very much simple implementations of the theory /search
technique this has a few more options and works better with language).

Crystaltile2 Filetrip download

In some ways not as polished as Monkey Moore (you can have a fairly well
realised table from Monkey Moore inside 30 seconds unlike this) but it does
feature a nice 16 and 32 bit relative search you can use.

Example usage The game of choice is Megaman ZX although the table has
been seen in several Capcom games. By chance the lower case letters in the table
line up with the ASCII upper case equivalents which means relative search is
probably not that useful as something other than a shortcut by virtue of the
game practically handing you the encoding but it makes for a nice example.

125

https://code.google.com/p/ricardojricken/downloads/list
http://filetrip.net/pc-downloads/applications/download-monkey-moore-05-f29133.html
http://filetrip.net/f23649-CrystalTile2-2010-09-06.html

i
File Edit Disk Options Tools Window Help I = |
FSHE e o v vl mm Bs L0 FD @0 = [«
S~«»82E0 | gfvs - e x| ma||an |
01Z0[594F 5500 5448 45rC 5452 414 5350 4F52 [YOU. THE. TRANSPOR 4]
01305445 520C O0FA 1FFD F201 F202 F326 FB1A|TER.....o.... &,
014012059 004 414D 4507 5300 2841 5245 4E47 | -v.NAME.S. (AREN
0150 |0EFD F201 F202 F326 FEla 2954 0753 0054 |....... &, .IT.5.T
0160 |4F4F 0045 4152 4c59 0054 4F00 5445 4C4C|00.EARLY.TO.TELL
0170 |FC59 4F55 004D 5900 5245 414C 004 414D |.vOU.MY.REAL. NAM
0180 |450E FDZ3 4F4E 5349 4445 5200 2841 5245 |E..#0NSIDER. (ARE
0190 |4E47 004D 4F52 45FC 4F46 0041 0043 4F44 |NG.MORE.OF.A.COD
01a0 |454E 414D 450 FEF2 01F2 0Q2F3 26F8 1AZEB |EMNAME....... &. . C
01B0 (404D OQEOQE OQEFD F201 F202 F326 FE8LA 2954 |MM......... &7
01cQ (0753 0048 4152 4400 544F 0042 454C 4945 |.5.HARD. TO.BELIE
0100|5645 FC54 4841 5400 4100 4849 4400 4953 |WVE. THAT.A.KID.IS
OLEQ | 0054 4845 FC43 484F 5345 4E00 4F4E 4500 |. THE.CHOSEN. ONE.
O1FQ |464F 5200 2p4F 4445 4c00 3IB0E FOFZ OLFZ |FOR.-ODEL.G&.....
0200 |02F3 26F8 1429 (0043 414 0754 0047 454C|..&. .).CAN.T.BEL
0210|4945 5645 0049 540E FEFZ Q1FZ 02F3 Z6F8|IEVE.IT....... &.
0220 |1AFA OCO0 594F 5507 5245 0041 4c49 5645 (... .v0U.RE.ALIVE
0230 |01FD F201 F202 F3I26 FE1A 2556 454 0057 |....... &, CHVEN. W
0240|4954 4800 5448 4500 4845 4c50 004F 46FC|ITH. THE.HELF.OF.
0250|5448 4500 2249 4F4p 4554 414c 0c00 5448 |THE. "IOMETAL. . TH
0260|4154 0753 FC49 4p50 5245 5353 4956 4501 |AT.S.IMPRESSIVE.
0270 |FEFZ QLFZ QZF3 206FE 1a29 074D 0047 4c41|...... &, .0.M. GLA
0280 14400 594F 5507 5245 0053 4146 450E FDFZ |D.YOU.RE.SAFE...
N7A0 1012 023 2AFR 1474 Ardr 0754 0047 Ar00 & o T nn =l
talk_gdl_en, I
ﬂ Data Inspector i Structure Yiewer |ﬂ Compare f| Checksum j Find ,_Bookmarks }, Output /.

Ready |Offset: 00000190 [value: 18254 [e170zbytes 4

In monkey moore
Il
rFile

IE:\,taIk_gdl_enl.bin gl
Search Parameters
% Relative search ' Value scan relative
|press QQ
[T Enable widcards I*_
Advanced
’7|_ Define characker set:l _I ‘
Results
¥ Show repeated results
Offset | alues | Preview |
0x267 A=21 a=41 al##that#s#impressivef # 23 # #F#
1428 A=21 a=41 #irom#Giro#Express### ##0#CM, .,
0:x28B0 A=21 a=41 good#firstimpressiond 4 44 £ £ T4
04560 A=21 a=41 ditthend 4 #B# #press## Control#Pa
0x463C A=21 a=41 vel#tand#thengpress# # £ #EHXHC, ..
Create Table Clear List |£I _@I Results: 5
Search Progress
Elapsed time: less than one second. Q_\fl

A search using a wildcard in an older version

126

Il

File
[E:ttalk_gd1_ent bin ﬁl
[~ Search Parameters
Iname"‘s
¥ Enable widcards I*_ ;%l
Results
¥ sShow repeated resulks
Offset | Values | Preview |
Ox143 A=21 a=41 R EHFEEMyRnameds#Hareng. ..
Ox66E A=21 a=41 chanic##The#name# s#anguile# ##
0% 15FE A=Z21 a=41 bt # #HA #MyRNaMed s#Sardine. .
oxz1C2 A=21 a=41 H#RRTRAThe#nameds#Scombr# .
02514 A=21 a=41 #PMy#namedsdSoled .. .
Ox2A%E A=21 a=41 |t#####C#NMy#name#s#Dorado#####h
OxZF7F A=21 a=41 ERR R R IR R Truited
0x34D2 A=21 a=41 #####ijHere'll be displayed the search results, if
Ox3416 A=21 a=41 #EHew &40,
Create Table Clear List | @ | Results: 9

~Search Progress

Elapsed time: less than one second, Wl

Later versions included kana support using the Gojuon order (although
you will probably want to do wildcards between characters to allow for 16 bit
entries). It is not always viable thanks to the Handakuten and Dakuten (extra
marks added to Kana to indicate pronunciation) but it is one of the few oc-
casions relative searches might work in a reasonable/non esoteric manner with
Japanese.

=10l x|
rFile

| =]

rSearch Parameters

¥ Relative search & Value scan relative

| 4

™ Eneble Widcards [7 a|
Advanced
’7|_ Define character set: I&L\ﬁjﬂ’j‘f]\#(f‘J‘C?L@‘ﬁ‘%f:%‘)fk?m‘[{ﬁhm@iﬂ}ﬁ\/\@ _I ‘

Reslts
¥ Show repeated results

Offset | Values Preview

Create Table Clear List | N’l @-l Results: 0

Crystaltile2 relative search
Available in the hex editor window from the tools pulldown menu.

127

relative Search --talk_gdl_enl. ﬂ

28h

72h [PAOAAAEZ]
65h [-8088013]
61h [-B0880A4]
6Ch [BBOABA11
20h [-B0ABO76

Options:
4 Bytes
' 1 Bytes
" 2 Bytes
I | Height repl
" Dec
 Hex
' Skring

Range: IDDDDDDD[= IDDDDS‘ICE [Down
Eariabl real Save |
Add Delete | Search | Clear |

0801 BOAAO177 PB|52 |45 |41 4] 08
0802 BOBBISLC BB|52 |45 |41|4C| B8]
0803 BOBBIAAS BB|52 |45 |41|4C|88]

Usage is fairly self explanatory and you can double click results to set location
in the hex window. It will save those results to a text file similar to the results
page which allows you to direct a more conventional table creator.

You can enter Japanese characters as well although unicode as opposed to
shiftJIS is the standard method

It also has a slightly more functional value search than even the later versions
of monkey moore. Usage is set the options how you need them in terms of length
and entry type and add characters one at a time before pressing search.

relative Search —-talk_gdl_enti =
4ih Options: ——
42h [-808808684 4 Bytes
4Dh [BBB88AA11 1 Bytes

" 2 Bytes

I | Height repl

" Dec

% Hex

" Skring

Range: IDDDDDDDE - IDDDDS4CE [Down
Eariabl‘lD Save |

Add Delete | Search | Clear |

00061 B0000179 45|41 | 4C -
0002 000004AFF 45| 41]4C|
0083 BOBB127E 45|41|4C|
0004 B00028F8 45| 41]A4C|
00085 B00B2E99 45| 41]A4C|
0086 B008354E 45| 41| 4C|
00087 00083AGE 4E|4A|55] —
0008 BOOB3AAT 45| 41]A4C| LI

AAAN RRAANTIT LEILAICT

Note also the second to last visible result and consider it a reason for wanting
longer search terms.

The Monkey Moore search was used to create a table and it was then im-
ported into crystaltile2

128

Crystal 2 - [0556 - MegaMan 2X (US).nds] -0 ﬂ

or File Edit Search TBL Yiew Tools Bookmark Plugin Window Help & x|
NS kaR% @0 HeEZs

address | 88/01/02 /08364685 66 07 '68 09 '6a 8B 0C 8D | BE | OF luzers 1able |=]
62195CA0 €254 18,61 80,68 93 88 85 61 5D, 61 BD 61 45 62 .t...
02195C10;F3; 82 91,02 74 684 E8 05 4E 06 E3 086 78 07 90 68
02195c20/un /09 c2 /09 /FE! 09 /87 'on'8s /6B /31 /0c 'DAloc /89 eD ! .
8219503012 | OF 30| BF 7C BF [7A 181D 11,95 11 DB 11 AB| 12,
B2195C40 4F (13 C8:13 44 1498 14 .E1:14 AF 15 5C 16 8C 16.0...d
02195050/ 8E /17 6017 'ng /17 'E6 18 /cu/19/00/1n189c /83 /10 ..ol lL
82195060 49 | 1E EB [1E 2D | 1F 53 1F 74,28 5F |21 2A 229223 i...H.5....AJB.C
0219507024 24 7C .24 D5 24 46 258225 50,26 9926 D626 .DD.D.DFE.E.F.F.

I
8219509036 2B 6D | 2C CC|2C 0D 2D |99 2D 88|2E 65 2F |0A |38 VK.L.L.H.H.N.0
62195CA0:B2 .36 1B 31,98 31:1F 32.:9A 32,2033 8633 6E 34 .P.Q.0.R.R.S.S.
62195cB0/ A9 |34 E3 /35 /cF /36 /4837 'ER /37 |F2/38 ua/3a/n9 /3B . T.U. .U W X.2
62195CC0 |25 |3C | ©F 3D 20| 3E (AR 3E E1[3E|2C | 3F 14 462D 40 E......... L...H.
82195000 56 .48 87 (4080 41,70 41.F3 41,2C 42 OA 43 71,45 u....a.a.alb.c.e
02195CEQ/ D6 |45 29 146 2F 'u7ce 47 5a/ug |78 /48 1B /49 /8B 49| _elf0g.gzh.h.i.i =
B2195CF8 23 | 4A A2 4A 4C 4B 8D 4B F2 4B 6D 4C 5C 4D BC 4D Sj.jlk.k.k.1.m.m
0219506016 4E 6A 4E DB 4E 9D 4F 965018 51 58 .52 9F (52 .n.n.n.o.p.gxr.r
02195010/BE /52 2B/53/F2/91/F2 02 /F3 /26 'F8/1n'21/52 /us 80/ ris. ... F..Are.
02195020 |59 |4F 5508 54 48 |45 FC 54 52 41 4E 5358 4F 52 you.the.transpor
8219503054 45 52.0C 80 FA 1F FD.F2.81.F2 82 F3.26 F8 1A ter..
8219504020 59 08/ 4E |41 /up |45 07 5360/ 28 | 41152 145 [uE | w7 My .name[]s .Hareng
821950508 8E |FD F2 |61 F2 82 F3 26 F8 1A 29 54 07 53 885k F..It.s.t
02195060 4F | 4F 08 45 4152 4C 59 08 54 4F 00 54 45 4C 4C o00.early.to.tell
02195070/ Fc /59 uF I55/80/ 4D /59 08/52 us !yt 4c 00! 4E 'y /4D | _you.my _real .nam
82195080 45 | BE FD |23 4F HE 53 49 44 45 52 08 28 41,52 45 e..Consider.Hare
82195090 4E |47 B8 4D 4F 52 45 FC 4F 460841 80 43 4F 44 ng.more.of.a.cod

F
J
P
T

62195000/ 45 | 4E 41 '4p |45 | 9E 'FE 'F2 /01 /F2 /82 /F3 26 /F8/1n /28 lename. F..H

62195DE0 4D | 4D O OF 6E FD F2 61 F2 62 F3 26 F8 1A 29 54 mm._._._.._. F..It

B2195DC0 67 53 08 48 41 52 44 0BG 54 4F B0 42 45 4C 49 45 _s.hard.to._belie hd
4 | »

Jo0000111]02135047 | Mapmade] MEGAMANZXINTR -ARZE| USA|S 1ZMETS| Capcom] 7

It is not complete as the punctuation is missing but that is where the other
methods appear. Here it is fairly obvious that 07 hex represents the apostrophe
character and 00 represents space leading to

CrystalTile2 - [0556 - MegaMan 2X (US).nds] O] x|
or File Edt Search TBL View | Tools Bookmark Plugin Window Help 1= x|
A IR T A TR =E)
addre=s |08/ 61 /52 03 6465 0607 (68 09 on (6B 6C (8D [AE [OF Tusers tahle [«]

52195000 |C2 54 10,8108 08 93 80,05 81 5D 61 BD 01 45 62 .t.. .
82195C10:F3:02 91,83 .74 04 E8 85 4E 06 E3 .06 78 67 90,08 .
62195c26'4n /89 /c2 ' 09 'FE /89 'B7 ' BA 84 /6B /31 6c DA !6c /89 8D .
82195C38 12 | 8F |30 BF |7C | BF 71810 11,95 11,D8 |11 A8 12 ..
82195C40 4F (13 CB 13 .44 14 9B 14 E1:14 AF 15 5C 16 .8C .16 0.
62195c56/ 9E 17 |6n /17 /a8 /17 /E6 18 'c4 /19 /98/1n 18/1c /83 /1D | .
821950608 49 |1E [EB|1E 2D |1F |53 |1F 7420 5F |21 2R |22 9223 i...HM.5....AJB.C
B2195070:24 24 7C 24 D524 4625 8225 5026 99 .26 :D6:26 DD.D.DFE.E.F.F.

8219509836 2B 6D | 2C |CC | 2C 8D | 2D |99 2D B8 2E 65 2F |BA 30 UK.L.L
82195CA0 B2 381831 98 :31:1F 132 1932 20,33 86 .33 | BE .34 .P.0.0.
02195c86 /A9 34 'E3 /35 'cF |36 '48'37 'E0/37 /F2 /38 'ue/3n /a9 /3B .T U U

B2195CCH |25 |3C €7 3D 28| 3E |AB | 3E |E1|3E |2C 3F 14 482D 48 E.
82195C00:56 40 87 4808 41 70 41 F3 41:2C 42 (BA 43 .71.45 v... a.a.alb.c.e
02195CE6 /D6 |45 129 /46 | 2F |47 Ico'u7 '5a/us 178 /48 1B /9 8B /49 _elF0g.gzh.h.i.i
B2195CFB |33 [4A A2 | 4A | 4C 4B 8D 4B F2 4B 6D AC 5C 4D BC 4D Sj.jlk.k.k.1.m.m
82195D68 16 4E |6A 4E DB 4E (9D MF (96.50.18:51 58 52 (9F .52 .N.N_N.0.-p.qxr.r
62195018 'BE /52 |2B/53 'F2 /@1 /F2 /82 'F3/26 /F8 /121 /52 lus'en ris_ F..Are

82195028 59 |AF |55 88|54 48 45 FC |54 52 41 4E 53|58 4F 52 you the.transpor
82195D30 ;54 45 52 0C B0 FA 1F (FD F2 81 F2 02 F3.26 FB 1A ter. -
0219504620 /59 a8/ uF |41 /8D |45 07 153 /8628 |41 /52 85 |4E |47 My name's Hareng
82195058 | BE |FD |F2 |81 F2 82 F3 |26 F8 1A 29 5407 53 00 54 F..It's t
02195D60 4F | 4F B0 45 41 .52 (4C 59 08 54 4F 08 54 45 4C 4C oo early to tell
92195076 /FC /59 |4F |55 ae/ap /59 8p /52 /65 lu1/uc a8/ uE 41 /4D _you my real nam
B2195D808 |45 | OE [FD |23 |4F 4E 53 49 44 45 52 80 28 4152 45 e..Consider Hare
02195D90 4E 47 60 4D 4F 52 45 FC 4F 466041 00 43 4F 44 ng more.of a cod
02195DA0 |45 | 4E lu1up lus oE [FEIF2101/F2 02 /F3 /26 F8!1a 28 lename [].....F..H
62195DB0 | 4D 4D | OE | BE | OE FD F2 |61 F2 02 F3 26 FB|1A |29 54 mn.........F..It
02195DCO: 67 |53 ;60 48 41,52 44 00 54 4F 6042 45 4C 49 45 ‘s hard to belie
02195006 /56 /45 |FC /54 /48 /1 /54 00/ 41 /06 /4B 49 'un 06 49 /53 ve _that a kid is
62195DE@ | @0 54 48 45 FC 43 48 NF 53 A5 4E 00 4F HE 45 88 the.chosen one =
: R | JJ-J

[11111110] 02195086 Mapmode][MESAMANZXINTR-ARZE U4 |5 12METS| Capcom|

F
dJ
P
T

However having a look at the font for the game there is a lot more to it than

129

that so other methods will have to be employed

CrystalTile? - [0556 - MegaMan 2% {US).nds] - |E||5|
& File Edit Miew Tools Bookmark{C) Plugin ‘Window Help _|5|5|

DEEs s AXGGERaZE|EEe

i isf.dﬂ

matrix:ax20=160(16 [10h) [Sel:1%1=1(16 /10n] 008847 10] [Mapmads] MEGAMANZHINTR-ARZE |USAIS LZMBITS| Capeom| 2

Font_pal.bil

Regarding the buttons seen in the font the Japanese font is a 16 x 16 ar-
ray so the game probably accounts for this somewhere (complex font formats
with individual characters being assigned a sizeﬂ are quite possible on the DS)
but there have been instances of half a character being encoded in two “sep-
arate” characters to be assembled at runtime. Note this is not the same as
dual /multiple tile encoding (covered later) where multiple characters or indeed
a run of them is encoded in the same space as a regular character.

3.1.2 Corruption and alteration

Corruption is a general purpose technique where you corrupt sections of the
ROM before running it and seeing what breaks. If you find a text file by this
or some other method you can then change things and either by seeing the
surrounding text you can see what the text either side of it is encoded as.

On the less crude side of things comes alteration where you can do things
like put a run of a single character in the file and then when you encounter
a long run of them you know what that character is (which might well leave
you in the position to have the rest of the encoding) or you can put a section
counting up so if you encounter text that now reads say fghijklm you might

5In practice it is easier to have identical size tiles and then include a size elsewhere for
the game to account for at runtime as the game would likely already be doing calculations on
widths but there have been instances of games doing uniquely sized tiles for each character.

130

well know a few things (this can be further refined by putting things in a non
repeating pattern of some form to allow you to easily align things, something
like ABBCCCDDDDEEEEE...... for instance).

This process can be troubled as text engines can be quite picky about their
content and if you mess up section markers and other would be formatting
things can start going very wrong but if you do not corrupt enough of the game
finding what went wrong is harder.

Once you have some characters though you can start changing things and
noting what you change before matching it up and gaining the complete en-
coding. Indeed this is often one of the better ways to figure out what different
symbols and punctuation type things are encoded as. In encryption attacks like
this often fall under the remit of known plaintext and chosen plaintext but more
on those later.

Megaman ZX again

This game was loaded and the text that loads within a few seconds of the
game loading was sourced. It also makes a good case study why variable width
fonts and line handling are good but fonts in a couple of sections time.

The text in a hex editor

131

H Hex Workshop - [0556 - MegaMan 2X (US).nds] ;Iglil

File Edit Disk Options Toals ‘Window Help =1 x|

FS@8 =220 v¥ @ [wm(BsSLLED BA B v« 5|

F« K2 ER A | g -2 sz Wb (sl % e
021AEG30 [150B 250B 5SAUB EYOE CEOC 1FO0D 530D BZC0E|..%.Z2....... X, ..]
021AE640 [EACE 5S5AO0F OBOF 2810 3JFL0 EC11 4E12 BB1Z2|..Z.k.(.7...N...
0Z21AEG50 (E113 7015 C218 EOLE 0al9 5819 F202 F9E9|..}....... b R
0Z21AEG60 [03F] ODFE 0328 454C 4c4F 0100 3448 414E(..... (ELLO. . 4HAN

021~E670 4800 594F 5500 464F S52FC 4341 4C4C 494E |K.YOU.FOR.CALLIN
021~E680 (4700 2749 524F 0025 5850 5245 5353 FC54|G. 'IRO.%XPREES.T
021AE690 15241 4E53 504F 5254 4552 5301 FDFZ 02F9 |RANSPORTERS.
021AE0AQ |EADI F30D FBO3 3745 0043 414 0054 414B(...... FE.CAN.TAK
021AEBEB0 |4500 414E 5954 4849 447 OCFC 414E 5957 |E.ANYTHING. . ANYW
021~E6CO 4845 5245 01FD F202 F9EB 0JF3 0ZFE D027 |HERE........... '
021AE6D0 (4952 4F1F 0029 5300 5448 4154 0059 4F55 |IRO..JS.THAT.YOU
021~E6E0 |1FFD F202 F9EC 03F3 ODFE 0321 480C 0054 |........... Ho.T]
021~E6F0 |4845 0027 5541 5244 4941 4e0e QEOE 004F |HE. 'UARDIAN....O
021AE700 |52FC 5348 4F55 4044 0029 0053 4159 0043 |R.SHOULD.). SAY.C
0Z1AE710 |4C49 454E 540c FOFZ 02rF9 EDO3 F302 FBOO|LIENT...........
021AE720(2449 4400 594F 5500 5245 4345 4956 4500 (3ID.vOU.RECEIVE.
021AE730 5448 45FC 5041 4348 4147 4500 4652 4F4D |THE. PACKAGE. FROM
021AE740 10054 4845 FD41l 5243 4841 454F 4C4F 4749 |, THE. ARCHAEOLOGT
021AE750 14341 4C00 5245 434F 4EFC 554E 4954 1FFD|CAL.RECON,UNIT..
021~E760 |F202 F9EE 03F3 ODFE 0339 4553 0CO00 2900(......... 9ES..).
021AE770 |474F 5400 4954 OErFD F202 F9EF 03F3 02FB|GOT.IT..........
021AE780 002D 5900 554 4954 0049 5300 4845 4144 |. -v.UNIT.IS.HEAD =

AT ar7On lAnA-e ATAN AEA- COr~ CAAD ACAN A1AT E2AL [Thim man e asne

1556 - Mega

%l*jffset: 35317388 [0x0Z L AEGEC] 2|11 instances of 'ANYWHERE' found in 0556 - MegahMan 2+ (US).nds ®

BT Signed Byte 83 Address ‘ Length |

2B Unsigned Byte 83 O0DFS204 00000008

1881 Signed Shart 21331 021 AEEBC On0nnang

I5BIT Unsigned Short 21331 021B04BC 00000008
3281 Signed Long 1425822547 02102704 00000008
32BTUnsigned Long 1425822547 021C3504 00000008
S4BT Signed Quad 600260717520, 021EE9E4 00000003
S4BT Unsigned Quad 600280717520, 021EEFE4 00000008
32BIT Float 8.6698377e+012 022093F2 00000008
S4BT Double 1.9721873e+093 022099F2 00000008
S4BT DATE 02216050 00000008

1581 DOS Date 2021-10-19 022101958 00000008

1881 DOS Time 10:26:35
S4BITFILETIME
32HT time_t 13:49:07 2015...

Binary 010100110101...
| | i
Data Inspector i Structure Viewer Compare_j Checksum Find i Bookmarks i Cutput
Find &l Complete. [OFfset: D21AE6BC [Value: 21331 [p7108864 bytes [OWR [

Say the interest is finding out what goes past z (5A=z from the table earlier)

H Hex Workshop - [0556 - MegaMan 2% (US).nds] i) ﬂ
File Edit Disk Options Tools “Window Help - & x|

FSHG|s2RoC v v @ [m(BsL0ED [EO (B |«]

m e » SR ER A | s - w sz D aa e [BEE | E
021AE630 (1508 2508 5&08 EQ0OE CEOC 1FO0D 580D BZOE|..%. B
021AE640 |EAQE Sa0F 6BOF 2810 3IF10 Ecll 417 BE1Z|..Z.
021AE650|E113 7015 C21B 0419 F202 .1
021AE660 |03F3 OQDFE 0328 S5ED [El
021AEGTO 4c4c 494€ |8 [l OR . CALLIN
021AEGE0 (4700 5353 Fo54 |G. "IRO.EXPRESS.T
021AE690 (5241 453 504F 5254 4552 FOFZ 0ZF9|RANSPORTERS. |
021aE640 |EAQT FIOD FEOI 3745 0043 o054 414, FE.CAN. TAK
021AE6ED (4500 414 5954 4849 447 414E 5957 [E. ANYTHING. . ANYW
021AE6CO (4845 5245 01FD F202 FYEE D2FE Q0027 |HERE. '
021AEGD0 (4952 AF1F 0029 5300 5448 0059 4F55 |IRO. . IS, THAT . vOU
021AEGEQ |1FFD F202 F9EC 03F3 ODFE 4800 D054 ... IH..T
071 AFAFEN 14RAS 0027 5541 5744 4941 OFEOF O04AF IHE ' HIARMT AR al LI
0586 - ega.

ﬁ Data Inspector ji Strucure Wiewer J ﬁ Compare j\ Checksum A Find fi Bookmarks j Output f
Ready [OFfset: 021AE6EE [Sel: 0x10 bytes [e7108864 bytes |OWR [2

132

Original and modified

z was started with which means {|} are 5B, 5C and 5D

The 01 was left as it could have been something the game relies on but no
it was a exclamation mark so add that to the list.

Then a space was left and it starts again with tilde, middle dot or maybe a
bullet symbol, Euro symbol and it carries on.

Either way more information than might ever have been gathered with basic
static analysis; not many occasions in text use a two dot leader and could well
be a triple prime/triple quotes (whether the game would use the triple in place
of double quotes and a single quote for a quote within a quote as a workaround
for the fixed width font is left for others to debate).

3.1.3 Memory viewing and corruption

By the time you see the text on the screen it has probably been in the memory
for several seconds and will tend not to be refreshed from memory once it is there
(VRAM yes, actual memory not so much) so editing it there is usually of little
use with the possible minor exception of a game that allows you to scroll back
through the last few lines of text. The big exception to this though is name
entry screens which are often updated in real time and the saves they make
which can also yield information as they will tend to be encoded in the same
manner which allows similar things to the corruption and alteration techniques
above.

If you manage to catch the data in memory before it gets turned into graph-

133

ics you might be able to do something though and it can be quite useful if
you are otherwise having to deal a custom compression type you have not yet
managed to figure out to snatch the uncompressed/unencrypted text from the
RAM (remember when working in a group once the translation/text editor side
of things has the text they can get going and the ROM hacking specifics can be
ironed out later).

Example from Mr Driller 2 on the GBA. Cheat finding methods were used
to narrow down what memory locations changed as a character was entered and
by increasing the character by one value each time it was noticed a particular
value increased by 1 each time.

Pointing the memory window at it. There were a lot of changes noted
here but 02001CDC displayed interesting changes and perhaps more interest-
ingly the blank character at the bottom right was quite far in value from the
smiley face before it. In this case relative search actually worked on the rom and
it turned out it was quite different (upper and lower case available and decoded
as a different set of values- 0A=A and 24=a) but the potential of the method
is quite clear to see.

File Options Cheats Tools Help
000000000 - BIOS vl C ghit < 1Bkt 32t |02000CDC Go

ENTER YOURNAVEL
i [__] 02601CDC | FFFF FFFF 0000 0008 7500 9002 DI18 0664 | Unvennn
02601CEC | D910 9004 D910 D004 E910 AAAB EG18 AAAE |
@ 02001CFC | DU10 0OOL 00DA DOOO 0176 00DA DIDE OOOD | ._......
) 02001D0C | B3DB 9000 93DB 9909 OIDE 9990 OIDE 060 |
| 062601D1C | B3DB BOOD 0090 DOOS 7500 9602 DI16 BE64 |
062601D2C | DS10 B8O D910 BOO4 E910 AAAB EG18 AAAE |
02001D3C | DU10 0OGL O0DA DOOO 0176 00DA DIDE OOOD |
P I} |o200104C | 6308 000D 308 DOGD BIDE DOOO B3DE BEEO |
@ BUTTON: ENTER /@ BUTTON: DELETE 062601D5C | B3DB 0008 0990 0008 0060 7862 G068 EEED |
A |s2001D6C | D500 306D E800 06086 CA3D 860% AB3A BAB2 | ..nA....0...0...
02001D7C | DA20 DOOL 0ODG DOOD 00OZ 0ODA DOGE BOOD | _.......
02001D8C | B4EB 0000 OuAh 000G 0990 9990 OGO DOED |
062601D9C | G140 PAGD 0090 HOOS 09O 9600 BOGE 6D |@........
062601DAC | BABA BAGD 0000 DOOS OGO G600 BOGE BEBD |
02001DBC | OGO DOGD 00DG DOOD 0OAD GODA OO BOOD |
02001DCC | BOVO VOO0 0000 0O0O 0990 9990 OGO DEED |
062601DDC | BABA PAGS 0000 HOOS OO0 9600 BOGE BEED |
02601DEC | BABA PAGD 0000 DOOS 00O G600 BOGE BEBD |
02001DFC | DOBO DOGD 00DG DOOD 0OAD GODA OO BOOD |
02001EGC | BOVO 0000 0000 0O0O 0990 9990 OGO DEED |
02601E1C | BABA BAGD 0000 HOOS 00O 9600 BOGE BEED |
02601E2C | BABA PAGD 0000 DOOS OGO G600 BOGE BEBD |
02001E3C | DODO DOGD 000G DOOD 0OAD GODA DOBO BOOD |
02001E4C | DOOO 0000 0000 0000 0990 9990 OGO DEED |
020601E5C | BOBA 0000 0000 0008 06O GO BOBA BABD |o..eeeeen...

¥ Automatic update Current address:

Refresh Load... Save... Close |

134

=1visualBoyAdvance-10

ENTER YOUR NAMET
A—

File Options Cheats Tools Help

o]

(000000000 - BIOS

x| © a6t & 166t 32+t

|U2UU1CDE

Go

828681CEC

@2@01CDC | B2B1 FFB3 0000 0000 7500 0002
D910 86864 D910 G004 E918 AAAB

D910 BooL4
E910 AARAB

@2@801CFC | D910 0004 0000 BAOO 0176 0000 B3DB @000
’ @2001D6C | 83DB 0000 63DB VGO0 O3DE 0000 G3DE 0000

@20601D1C | B3DE G000 G006 DOGOO OOGG 0371 6000 BBE3
@z@e1bzC
820801D3C
02001D4C
82001D5C

|
EED

e ——
) BUTTON: ENTER /G BUTTON: DELETE

0000 GB8E3 0000 OBE3 DOAO O3E3 0000 BBE3
0000 GB8E3 0000 DGO0 DOGO OOOD OOBO G000
0000 00DD 0ODOD DAOO DOGO ODOD GOBD AOOD
0000 00DD 00DOD DAOO DOGO GOOD GOBD DOOO
820801D6C | BOAA DAAP ABAG DAGA PEAA DOEAB AABA DOAM
82@801D7C | 11080 DOAP DOAG BAGA POGS AEAOB AB1B AOAA
820801D8C | 618 60D NO1B BAGA PO1B AOAB GA1B AAAA
82@881D9C | 6618 80P POEE BAGA POAD BEMB 6BBA ABAA
82@881DAC | BAAA BABP POEE BAGA POAD PEAB GBBA ABAA
02901DBC | BO0O G000 POO0 VAOA DOGO 000D 0OBO BOO0
02901DCC | BO00 9000 POO0 VAOA DOGO 000D 0OBO 8OO0
02901D0DC | G000 0000 OO0 VOO0 DOOO 000D 0O0BO OO0
@2001DEC | 600G 0000 0000 DOO0 DOGO OOOD 0OBO G000
@2001DFC | G000 0000 0000 DAOO0 DOGO OOOD 0OBO G000
02001EGC | 600G GO0O0 G000 DAOO DOGG OOOD 0OBO OO0
@2001E1C | 600G G000 G000 DAOO DOGO OOOD 0OBO G000
@2001E2C | 600G G000 G000 DAOO DOGG OOOD 0OBO G000
@2001E3C | 600G GO0O0 OOO0 DAOO DOGG OOOD 0OBO G000
@2001E4C | BOPG GO0O0 OOO0 DAOO DOGG OOOD 0OBO OO0
@2001E5C | 600G G000 0000 DGO DOGG OOOD 0OBO OO0

IV &utomatic update Currert address:

Refresh Load... Save. Close |

3.1.4 Frequency analysis

The most common character in a section of text is usually the space character
and in most languages words rarely make it past the 12 letter mark so if the
most common character is on average less than 12 characters apart and rarely
has two together you probably have the space character; from here you can use
other methods or try filling in the blanks if you have some text from the screen
in front of you. Space might not be that useful to search for so consider instead
that e is the most common character in English.

Do remember to restrict any frequency analysis to just the text section or
you might end up with 00 if it is used to pad out parts of the header. Also
remember that it does not have to be exact as there are things the game might
miss or include that are not strictly part of the script but are contained within
the script section never the less.

Example using the MegamanZX file from earlier (limited to a portion of the
text)

135

H Hex Workshop - [talk_gd1_en1.bin [0x000001 1C-0x00000000] Distribution] oy]
1 File Edit Disk ©Options Tools Window Help =

[s=wsjsmesc v |(co(esL e [ED (|« «

[S~«r»s82e2aa|rs -« zWp|[mad||@E® ||
Dec He:x | Char | Counk | Percent ;I
o 000 &40 13.14% —
] 045 'E 458 9.43%

79 O:x4F Lo} 311 5, 39%

a4 054 T 281 5.77%

65 041 'y 232 4, 76%

78 O:x4E W 231 4, 74%

g2 Ox52 R 191 3.92%

73 049 T 155 3.86%

7z 045 H 152 3.74%

g3 0x53 g 167 3.43%

252 OxFC 137 2.81%

&5 0x55 L 133 2.75%

il O L 151 Z.69%:

14 0:0E 117 A0%: i
« f Ll_l
talk_gdl_e... talk_gd‘l_en...l

jl\Dala Inspector A Structure Yiewer [‘ |ﬂ\Compare & Cheacksum }\ Find h Eookmarks)\ Crutput ,"

Ready Offset; Yalue:
Vi

00 which is known to be space is the most common

69 which translates a lower case e (remember the upper case ASCII lined up
with the lower case in this custom encoding).

The next few characters are largely composed of the lowest scoring letters
in scrabble (1 point characters being E, A, I, O, N, R, T, L, S, U).

The FC value will probably want to be investigated further.

Doing a search for 00 gives a good indication that it is indeed the space
character.

136

H Hex Workshop - [talk_gd1_en1.bin] - 10l =l

File Edit Disk Options Tools ‘Window Help =151 x|

=dEr2eoc|vve|aw(Bs10F @[]k«

~oo» KSR E 2 A g +/—+—*/°/..|.<J|'>'||ATala?\HJgEI%§% f\%|*§

D0F0D | 334 A24p 4C4E ED4E FZ24B 6D4C 5C4D BCAD |37, LK. K. EKmLYM. M ;l

0100 |164E 6A4E DB4E 9D4F 9650 1851 5852 9F52 |.NjN.N.O.P.QXR.R _

0110 |BESZ 2B53 F201 F202 F326 FB81a 2152 4500|.R+S5..... &..IRE.

0120 1594F 5500 5448 45FC 5452 414E 5350 4F52 |vOU.THE. TRANSFOR

0130 (5445 520cC 00FaA 1FFD F201 F202 F326 FBLA|TER.......... &. .

0140|2059 004E 414D 4507 5300 2841 5245 447 |-v.NAME.S. (AREN

0150 |0OEFD F201 F202 F326 FB1a 2954 0753 0054 |....... & .)T.5.T

0160 [4F4F 0045 4152 4c59 0054 4F00 5445 4C4C|00.EARLY.TO.TELL

0170 |FC59 4F55 004D 5900 5245 414c Q04 414D |.vOU.MY.REAL.NAM

0180 [450E FD23 4F4E 5349 4445 5200 2841 5245 |E..#O0NSIDER. (ARE

0190 |4E47 004D 4F52 45FC 4F46 0041 0043 4F44 |NG.MORE. OF. A, COD

0120 |454E 414D 450E FEFZ 01F2 02ZF3 26F8 1AZB|ENAME....... &. . C

01B0 [4D4D OEOE OEFD F201 F202 FI26 FBla 2954 MM......... & 3T

01cO (0753 0048 4152 4400 544F 0042 454C 4945 |.S.HARD. TO.BELIE

0100 5645 FC54 4841 5400 4100 4849 4400 4953 |WE. THAT. A.KID.IS

O1ED (0054 4845 Fc43 484F 5345 400 4F4E 4500|. THE.CHOSEN. ONE . [

fA1ra lASAs CO0a0 Tnder AAAL A-~0n 100 Foe? A1ed lean Aaner @

talk_gd‘l_en...l talk_gd‘l_e...l

%'Fffset: 400 [0%00000190] %I‘zms instances of 00" found in kalk_gd1_end . bin x

#HT Signed Byte 7a - Address | Length :I
ST Lnsigned Byte 78 000001C7 00000001 o
15BT Signed Short 18254 000001CA 00000001

I5BT Unsigned Short 18254 00000107 00000001

32HT Signed Long 1291863386 00000109 00000001

32HTUnsigned Long 1291863536 00000100 00000001

E4HT Signed Quad -Z687181022.., 000001ED 00000001

SMETUnsigned Quad 18178025971, 000001EE 00000001

328 Flaat 1.345087%+... D000 1EF 00000001

4T Double -4,1556986e, ., NNnnnm ES nnnnnn 5
SHETDATE x| <rin | _>|_|
Data Inspector /{ Structure Yiewer [‘ Compare)\ Checksum }\Find /{ Bookmarks }\Output [‘

Find All Complete. |offset: 00000190 [walue: 15254 21702 brytes o

3.1.5 Language analysis

Not everything has to be programming related and knowledge of how words are
constructed in a language and how punctuation is used can be just as powerful
as any technique originating from a programming point of view. For instance
in English the letter u almost always follows a g character and every word has
a vowel in it bar some words which tend to have a y instead (try, fly, rhythm,
by, sky....). As mentioned before many sentences and almost certainly larger
sections of text will feature the word “the”. Capitals start the first letter of
every sentence and they are ended with a full stop or some punctuation and
repeated characters will tend to be one of a few selections as opposed to any
character with any frequency. That is just a few things that work for English
and most languages have traits that can be seen like this (indeed a truly random
language as far as word creation and grammar goes would probably not take
off).

Equally in the Megaman ZX example mentioned in the relative search had
pieces of punctuation that were obvious as well as capitals often being obvious
from basic knowledge of the language as well and if you are editing a game in

137

French and you see things like Fran?ais you can be fairly certain the word is
Francais.

3.1.6 Pointer and encoding/hex analysis

You have some language tricks, you have some encoding tricks, you have some
computing tricks but you can also combine them and do things with the raw
hex by itself and the pointers it uses.

Pointer analysis is twofold depending upon what you are doing. On the
GBA if you do a search for 08 (the start of the most commonly used address
type) your results might well be large in number and for the most part 8 bytes
or slightly further apart but preferably still a set distance (you do not have to
put pointers end to end and 08080808 is a valid address and aligned for that
matter as well) you have probably found a bunch of pointers. Now it might be
for sound or graphics but a lot of them are usually worth following to see what
goes. Equally (and this would be the second part of the twofold thing) if you
have a list of what are probably pointers and you suspect the operate at the
sentence or paragraph level they are probably not going to be several hundred
bytes apart.

Furigana, markup, links and such. As mentioned elsewhere things like com-
mas, spaces, full stops and more can give away lots of information but that is not
the whole story as Japanese has a concept named Furigana (in practice game
makers and others often use it to hold little hints, notes and other such things),
most languages will allow for text to be changed to emphasize something (mak-
ing it bold, italic and such), you might have a mini encyclopedia that links to
other entries in the text and more. Unlike relative searching if you suspect one
of these follow up on it and it might give away a lot of the encoding and even
part of the text engine itself.

Compression searching Alongside conventional hex analysis various com-
pression searching tools exist (some worked examples of compression can be
seen later but standard compression methods have quite distinct fingerprints
which can be searched for) and conventional compression tends not to be used
on sound and video so by searching for compressed items and combining it with
other methods you can often quite quickly locate and decode text.

3.1.7 Assembly tracing

Much like tracing a file involves finding it in memory and working backwards
this involves finding the text in memory and watching how it decodes it into
characters or finding the characters and working backwards from there. Second
to this if you have a proper scripting engine you can observe how it works from
on an assembly level.

138

3.1.8 Font viewing

A game will often have the encoding in the same order as the font (it certainly
appears that way in the Megaman ZX example). Done properly this can even
allow a relative search to happen when there is no relative encoding in the game
(the relative search tools do support number driven searches or you can go
abstract) or you can use it to form the basis of an alteration attempt to decode
the encoding. Do note that although they might be following each other in the
font the actual hex values that represent them might have large gaps between
them for various reasons as even in ASCII the upper and lower case is 20 hex
apart despite not needing to be (it allows for simple conversion which is another
sort of thing to look out for).

3.1.9 Language comparing

If you have a game or versions of it with six or so languages embedded within
you can compare things between them and figure things out that way. Do note
though that games frequently use different fonts between languages and in the
case of Japanese to Roman languages may even have changed from a 16 bit
encoding to an 8 bit one. Although there are some language level things that
can be done the main idea here is to figure out file formats and rough ideas of
encoding ranges rather than anything specific but knowing pointers and basic
things about the encodings can reveal quite a bit as demonstrated elsewhere in
this section.

3.1.10 Table creation tools

So after employing techniques that would make early codebreakers proud you
have found out how the game has encoded the text but you do not have the
patience to sit there and handmake the table. This is OK as although tables are
largely just text files it can be useful to add large tracts of data at once. Various
tools are available for use here but the de facto standard for those that need it
is TaBuLar although others do like table manager and tblmaker and crystaltile2
has some abilities here (although the tables it makes sometimes deviate from
the “standard” table format if you are not careful).

Here was the table as seen at the end of the relative searching exercise. Much
like a spreadsheet it is read row column with the numbers being the hexadecimal
they represent.

139

m TaBuLar - { TEST.TBL }

ANSEAREREREREEEE
AlMEAREEEREREEEN
L= el
AENERRERERERENEN
ARMEFEEEERERE RN
S R
AENNEREEEREREEEN
L L=l e LD L L
LU Ll ol L LU LU LLL L
AENNNNEREEEERE RN
L el bl L L L L
S 5
Ll Ll L L L L
Ll el la L L L L L
L lelelelel LLLLLLLLL
ARENENEREE R R RN

If you hold over the part you want to edit you get a tooltip with the hex

decoding and the decimal one.

So far only slightly nicer a text editor for making these but the real abilities

come in the options

#m TaBular - { TEST.TBL)}

e

Ll oL BL L lelstel 1 LILILL
LB sl bl 1 LILLL
LLLLELL el lel Ll LLL
LU EL L ez lel 1o LLILL
LB e bl e LI

T EELEkECICCIL
AR MARA RN

4 B Blsls Ll LLL

25

aEl Bl Ll LLL

oL
2L
UL
IDEENE
LIl

r'l n_r_ds 1 n

From the edit pulldown menu

140

16-bit Font Table Entries x|

Note: 16-bit font table entries will not be saved in

Hexposure table files.

[
[

Ldd | Edit | Delete |
Add Series | Import Fram File | Clear All |
DkalyDokaly | Cancel |

[Confiim Entry Deletions

Import from file and add series are quite useful.

Block ops allow copy and pasting of blocks which is nice when your table has
repeated versions of the same value (sometimes it is used for different fonts and
somethings it seems to be just to be awkward but it happens none the less).
Block lock and unlock (it causes the greyed out things) prevents editing but
more importantly allows insertion of larger sections without having to overwrite
things.

Oriton |Homepage

Filetrip download

In the spirit of providing alternative programs where possible Oriton has
had a lot of development done on it more recently than most alternatives. It
lacks the ability to add long lengths of known orders beyond those of a basic
codepage (right click on the start cell to add it) but the regular expression style
addition options and 16 bit support (and greater if necessary) more than make

up for it.
Iy

Table Edit Options Help
EI=EREE A <

~Characters to fil the cells————————————— 4«

R
|@3@3;3.}:35aﬂaéanaaanabaiiaaésﬁaﬁu 0123456789 ABCDEF
Number of characters in acell: [1 | ABCDEF
1GHI JKLMNOPQRSTUY
Uss this character asanempty ore: 5| 2 wix v 2 abcdefgh i j kI
Final call; 124 flmn o fp s t v iwplyz
4
[~ Tabs sAa B c D E F G H
Type of the hexadecimal codes: 61 1 K I
Hak "k Irver
32 - |e2 Tl 7ABCDEFGHILIKI B
< a How s 2 2 R
4dd Table Block(s) | Change Type aw B oH #H EF F 4
Add Kruptar Codes | Delete Active L A
By ¥ # # ¥ ¥ & £
Add Extra List Delete Al cs B - 2 J T T ¢t
. retab a oY B K @& B oo @
ESTEheE i (= S S S & - N S AN
= v||| s0220(150-2022 Japan... | E ML AT F @ B3 F T

el widthr |

ontents of the current cell
80=#]

\Ciivideo!driller2.tbl

141

http://www.magicteam.net/index.php?page=programs&show=Oriton
http://filetrip.net/pc-downloads/applications/latest-oriton-f29376.html

3.2 Pointers

Granted these are not only a text engine feature (if you have been reading
through you have probably seen several thus far) and are pretty essential for
packing/file formats but text editing is where people first tend to encounter
pointers in earnest so they are here.

Three principle types

1. Standard. Start counting from the start of the file. Sometimes known as
linear pointers although the term does technically encompass the second

type.

2. Offset. Start counting from some point in the file (quite often the start of
the proper data/end of the header).

3. Relative. Start counting from where the actual pointer is at (if the pointer
reads 30h and is located at 20h the data in question is likely at 50h).

Games can use mixtures of these and even in the same file and you can get a
hybrid of relative and offset although more likely you have a wrapper around
your text if this happens or you are reverse engineering a compression format in
the LZ family. Pointers can also apply to various sections and have things like
offset pointers with one offset value dealing with section but the next section
might use a different offset.

Also worth noting is on larger formats which are not usually seen on the
DS you can use sector or block based addressing where instead of pointing at
the byte address you call a given number of bytes a sector or a block (strictly
speaking a sector is a point on a disc and a block is the proper term but most
people will understand when you speak of sector based addressing) and point
to that instead. This is usually done to make up a limitation in the number of
bits available for your address. For an example 32 bits allows for 4 gigabytes or
so but if you instead say assign 8 bytes per 32 bit address all of a sudden you
can deal with 32 gigabytes at the cost of either having a complex addressing
system (sector 37, bytes 2 through (ﬂ) or having to lose out on so many bytes
if you do not use them all in a sector (if you have a modern version of Windows
the properties option on right click will often have “size” and “size on disc¢” and
this is the reason behind it). Addresses in this case will typically appear as a
multiple of the pointer value but occasionally formats have been seen to use
pointers that are proper calculations based on data held in the pointer table.

A related concept that might be better for the section below is sometimes
lengths can be used instead of addresses so you get to calculate the location by
adding up the lengths (and maybe accounting for a bit of alignment /boundaries)
from the files before it.

Speaking of alignment and boundaries it will usually be fairly obvious but
not always and this means simply adding up the file lengths will be that good to

6The graphics imagery used by systems that used palettes uses a similar concept where
each pixel value refers to a table holding lots of other values (which can be changed) or if you
prefer each 4 bit pixel value addresses a 16 bit sector.

142

do when recalculating the locations of the new files (remember unless you can
demonstrate otherwise then match the format of the original ROM) or indeed
just using the length values to calculate things if you are building a tool.

Pointers themselves can be found everywhere in a file but usually the start
of the file, a file with a similar name (it is easier to open/store a small file in
memory and refer to that rather than opening a large archive) or the end of
the file are the locations where pointers can be found. Less commonly pointers
can be seen in between each section or indeed at the start of each section (the
scripting example in the scripting section dealing with The Wizard of Oz -
Beyond the Yellow Brick Road providing a good example of this).

3.2.1 Special cases and non pointer concepts

Pointers are very useful in the long run but there are alternatives. The obvious
method used on more powerful systems and some games is to simply have a
flag/value that signifies the end of a section and calculated at run time. Doubly
nice is most of the games that use such techniques will usually use plain text or
files very close to it as their text (Zombie daisuki seen later has a nice example).

You can also do away with pointers entirely and just use a fixed length of
text and you quite often see this in menus, fixed length entries for in game
dictionaries, bestiaries, item lists and such as well as on older systems. It is
one of the reasons older RPGs originating from Japan like Final Fantasy and
Phantasy Star have odd/short names for their spells compared to later entries in
their franchises or their Japanese counterparts. You can try hacking the game
to support a longer value but this can be tricky (if nothing else you might have
a box bounding the text and will then have to edit that) and you might also
face memory issues so another workaround is related to the early font editing
and dual tile encoding where you might combine a few characters (or fragments
of them) onto a single tile.

Most pointers are kept apart from the rest of the data they concern (either
by being at the start or end of a section of a different file entirely) but sometimes
games will have each section with a length and there was a truly special case
in Riz-Zoawd/The Wizard of Oz - Beyond the Yellow Brick Road where the
text at points was a sort of scripting language and each section had a type, a
length of the whole section and the actual data/payload, if any, it contained.
Also depending upon how you want to look at it many DS formats can be seen
as a nest of pointers (in the case of the SDAT sound format the whole file has a
length, the subsection has a length, the sound file might have a length and then
the actual sound generation section will have a length).

Pointers being part of the header might also house extra data, the DS format
NARC for instance uses the highest bit in a pointer to indicate a subdirectory.

Pointer compression ‘“fire megafire ultramegafire”
A poor example of a spell name progression perhaps but the last version
contains the previous two spell names. Even on older systems it was uncom-

143

mon but games have been seen to just encode ultramegafire and point to the
appropriate fragments when necessary.

File format pointers and flags File formats can see several sorts of pointers
in their main table (which is usually found at the start of the file and is usually
thought of as part of the header) although the three most common are file
location and file length (sometimes all three, two of them or sometimes just
the one) with further ones including number of files contained within, header
length, flags for compression, both compressed and uncompressed sizes, intended
locations in memory, files linked to the file in question (SDAT SBNK and SSEQ).

A nice example can be found in El Tigre- make my mule. A basic example
of the system as shown back in the introduction section but it will be returned
to shortly with an eye towards reverse engineering it properly.

3.2.2 Example reverse engineering of pointers

Returning to the “talk _gdl enl.bin” from megaman ZX. The start of the file
is something that is not text by the looks of things

144

H Hex Workshop - [talk_gd1_enl.bin]

File Edit Disk ©Options Tools Window Help

=lolx|
=l=1x|

ZSE& e |y v (e |mw(Bs L0 |[Ea]a||- s |
S e»EREN A gl - w s x| Mala [BEE| % s
0000000000 B
0000000010
0000000020
0000000030
0000000040
0000000050 [
0000000060 | i
0000000070
0000000080
0000000090
00000000a0
0000000080
00000000C0
0000000000
00000000ED
00000000F0D
0000000100
0000000110
Q000000120 YOU THE TRANSPOR
0000000130 &.
0000000140 (2059 004E 4140 4507 5300 2841 5245 4E47 |-Y.NAME.S. (ARENG
0000000150 |OEFD F201 F202 F326 FELA 2954 0753 0054)....... LTS, T
0000000160 |4F4F 0045 4152 4C59 0054 4F00 5445 4c4c|00.EARLY. TO. TELL
0000000170 |FC59 4F55 004D 5900 5245 414C 004 414D .YOU.MY.REAL.NAM
0000000180 (450 FDZ3 4F4E 5349 4445 5200 2841 5245 .#ONSTDER. (ARE
0000000190 (4E47 004D 4F52 45FC 4F46 0041 0043 4rF44 NG MORE . OF . A, COD
0000000140 [454E 414D 450 FEFZ 01lF2 0ZF3 Z6FB 1AZB|ENAME....... &..C
00000001R0D (404D OEDE OEFD F201 FZ02 F326 FE1A 2954 |MM......... &..)T
00000001c0 (0753 0048 4152 4400 544F 0042 454C 4945|.S.HARD.TO.BELIE
0000000100 (5645 FC54 4841 5400 4100 4849 4400 4953 |VE. THAT.A.KID.IS
D0000001ED (0054 4845 Fcd43 4B4F 5345 400 4F4E 4500 |. THE.CHOSEN. ONE.
D0000001F0 (464F 5200 204F 4445 4c00 380E FDFZ2 01F2 |FOR.-ODEL.Z.....
0000000200 |02F3 26F8 1429 0043 414 0754 0042 454C|. .&..).CAN.T.BEL
0000000210 (4645 5645 0049 5408 FEFZ 01F2 2F3 26F|TEVE.TT....... & =l
B tak_adl_en. [B Unttled? |

ﬂ“\nata Inspector [Structure Viewer JFind [Bockmarks i, Output [

Ready [Offset: 0000011C [Sel: -Dxlic bytes [21702 bytes [ovr [4

Pasting that into a new file, it fairly obviously needs to be flipped though

145

0000 (254 [T

= [000[54c7 T
0002|1001 7. <
0004 0000 |- |58 |9110 1
0006|9300 (.. |3908 0nos|
0008 [0501|.. |30z 010z |
0004|5001 | 1. f3g0a 0150]
000C [BDOL |- . |3p0e 07an |

QO10 |FI02 .. 0010 |07F3 i

0012 (9103 |.. 3017 (0301 "
0014 | 7404 | €. 014 | 0474 t
0016 |EB05 |. . In016 |05SER] ..
0018 14E06 IN. 10018 |064E|.N
DO1AIEIOE | .. |001a|06BET ..
001C |7807 |x. |0plc|0778].x
001E 9008 |.. |001E|0890|. .
00201440911, 10020 {0044,]
0022 |C2091.. |o022|09c2 ..

0024 1FEOD | .. 10024 |09FE|. .
0026 |B70A|. . 10026 |0ABT7 ..

0028 |B40B|.. 0028 |0BE4 ..
0024 310C (1. 0024 |0C3L].1
002C|DADC|. . 002 |0CDA]. .
O0ZE |B90D (.. [002E|[0ODB9|. .

0030 |120F .. D030 |0F12|..
0032 (300F |0, 0032 |0F30 (.0

0034 |7COF||. (0034 |0F7C|. |
0036|7410 |z, 0036|107~ .2
0038 |1p1l].. 0038 |111D|..

Still not immediately obvious as the text does not start until the late 0110
hex range. Equally the first two values are odd until you consider the length
of the file is 54C6 and if you ignore the first two values (offset pointers) the
rest of the pointers appear to finish there with some odd values where (steadily
increasing and then something else entirely)

Location (hex) readout (hex) and decode in ASCII from the export

0100 4E16 N.

0102 4E6A Nj

0104 4EDB N.

0106 4F9D O.

0108 5096 P.

010A 5118 Q.

010C 5258 RX

010E 529F R.

0110 52BE R.

0112 532B S+

0114 01F2 ..

0116 02F2 ..

0118 26F3 &.

011A 1AFS8 ..

So 0110 hex long pointer section followed by something else and then the
text.

There is still the problem of the first pointers being 0000 and 0093 though

Looking at the text again it looks like FE appears at the end of most sections
(FEF2 in most of those but the last one which is FEFF) and there are repeated
sections after those but that is left for markup covered next.

146

Still it is not meaning much so spreadsheet time; it is best to label your
columns for although you can probably work it out if you come back to them
at the end of a three month translation period 3 seconds reading names versus
half an hour just to get back on form is not great.

=
File Edit VYiew Insert Format Tools Data Window Help iy X
iB-Bd&a He@ TR 400 -39 -l@lkw @ -@E o
([[e HAad4a % 5 & E-E-a-]

e s 2=

A | B [C [D | E [F [G [H

1 |Address Yalue FE location decimal FE loc difference to previous decimal value diff value hex diff value test

2 _|oooo 54C2 000001AB 422 21698 IF(GE=E3,1,0)

3 (0002 o110 oooooz18 536 114 272 -21426 FFFFFFACAE
0004 000 10000270 524 88 0 B L = —

5 |000& 0093 00000200 720 el 3} 147 14793

6 (0008 01045 00000358 856 136 267 11472 1

7 |000A 015D 00000408 1030 174 348 6858 1

g _[0ooC 016D 00000444 1188 148 445 96|60 1

g9 |0DDE 0245 0ooooss7? 1415 227 481 136/88 1

10 0010 02F3 00000BFB 1787 T2 Ta4 174 AE 1

11 0012 0391 00000761 1889 102 913 158 9E 1

iz (0014 0474 000007FB 2038 148 1140 2273 1

13 (0016 05E8 ooooosase 2187 148 1512 372174 1

14 (0018 OG4E 000009A3 2467 280 1614 102/66 1

15 |001A 06E3 00000ASD 2653 186 1763 14395 1

16 |001C 0778 00000ADS 2773 120 1912 14395 1

17 |001E 08490 00000811 2833 1] 2192 280118 1

16 (0020 0944 00000BCA 308 185 2378 186 BA 1

19 (0022 0ac2 ooooocar 3223 205 2498 12078 1

20 (0024 09FE 00000D44 3396 173 2658 603C 1

21 |0026 0ABY 00000DED 3665 1649 2743 185B8 1

2z |0028 0BE4 00000EQC 3740 174 20948 205 CD 1

23 (0024 0cat 00001025 4133 383 N 173/AD 1

z4 [00ZC 0CDA 00001043 4163 an 3240 16949 1

25 [D02E opeg oooo108F 4239 76 3465 175/AF 1

26 |0030 0F12 00001180 4493 254 3858 3931849 1

27 |0032 0F30 00001230 4656 163 3888 301E 1

2g |0034 OF7C 00001248 4776 120 3964 764G 1

20 (0036 107A 000012EB 4843 67 4218 254 FE 1

30 (0038 111D 00001383 5043 200 4331 163/A3 1

31 [003A 1195 00001462 5218 174 450 12078 1

32 |003C 1108 00001408 5338 121 4568 6743 1

33 |003E 1240 00001557 A463 124 ATHE 200/Ca 1

34 |0040 134F 000015AE 6650 a7 4943 175 AF 1

35 (0042 13ca 000015F4 5620 70 5064 12179 1 -
[4 [3]¥] Sheet1 {shestz Fohests a7 LAl | 3|
Sheet1/32 | pefault | |sto [& | | Sum=0 [@—e—— @ |20%

The column A is the address in the pointer section and B is the value from
it

The column C is the location of the FE values and their decimal equivalents

Next (column D) comes the interesting parts where the decimal values have
how much they differ from the previous value (E)

Next (F) is the decimal of the pointer value column and the difference each
has from the previous

Notice a pattern between that the the one three up? The last column was
just a test to make sure the pattern held (it did in this case but there have been
games that offset pointers each section).

The best part is know you know the trick to ending a line in the game if you
do not want to code something to do it you can use the very same spreadsheet
with a few minor tweaks to recalculate your pointers as you just need to find
the new locations of FE and drop those in instead (redoing pointers by hand
is a very tedious and very error prone process so definitely automate it if you
can).

147

Still just to check cutting the file off at the end of the “proper” pointers but
still with the odd stuff

H Hex Workshop - [talk_gd1_enl.bin] =] 3]
File Edt Disk Options Tools Window Help _|ﬁl|1|

ESHE | =2@20 v ¥ @ HJ|B|T[0FD H@||JJ|¢-<—-»-»||

S E2ER N g - s Wbl MA@ % *E |
0000000000 [F201 F202 F126 FO1A 2152 4500 594F 5500]..... &..IRE.voU. ii
0000000010 |5448 45FC 5452 414 5350 4F52 5445 520C |THE.TRANSPORTER.
0000000020 |00FA 1FFD F201 F202 F326 FBLA 2059 Q04E|.. & -V N
0000000030 [414D 4507 5300 2841 5245 4E47 OEFD F201 |AME.S. (ARENG. ...

0000000040 (FZ202 F326 FBEla 2954 0753 0054 4F4F 0045|...&..0T.5.TO0.E
0000000050 (4152 4C59 0054 4F00 5445 4C4C FC59 4F55 [ARLY.TO.TELL. YOU
0000000060 (004D 5900 5245 414C 004 414D 450E FD23 |.MY.REAL.NAME. . #
0000000070 [4F4E 5349 4445 5200 2841 5245 4E47 004D |ONSIDER. (ARENG.M
0000000080 [4F52 45FC 4F46 0041 0043 4F44 454 4140 |ORE. OF . A. CODENAM
0000000090 (450E FEFZ 01F2 0ZF3 20F5 1aZ8 404D OEOQOE|E....... &. . (MM,
0000000040 [OEFD F201 F202 F326 F81la 2954 0753 0048 |....... &..JT.S.H
00000000B0 (4152 4400 544F 0042 454C 4945 5645 FC54 |ARD.TO.BELIEVE.T
00000000C0 (4841 5400 4100 4849 4400 4953 0054 4845 [HAT.A.KID.IS. THE
0000000000 (FC43 484F 5345 4e00 4F4E 4500 464F 5200 |.CHOSEN.ONE.FOR.

O0000000ED [204F 4445 4c00 3BPE FOFZ 01F2 02F3 26F8|-0DEL.B....... &.
00000000F0 (1a29 0043 414E 0754 0042 454C 4945 5645|.).CAN.T.BELIEVE
0000000100 (0049 540E FEF2 01F2 0ZF3 26F8 1aFa OCO0 . IT....... &.....

0000000110 (594F 5507 5245 0041 4cC49 5645 01FD F201 |vOU.RE.ALIVE. ...
0000000120 (F202 F326 FBlA 2556 454 0057 4954 4800 |.. . &, . %vEN.WITH.
0000000130 (5448 4500 4845 4C50 004F 46FC 5448 4500 |THE.HELF.OF.THE.
0000000140 (2249 4F4D 4554 414C 0C00 5448 4154 0753 |"IOMETAL..THAT.S
0000000150 [FC49 4050 5245 5353 4956 4501 FEFZ 01F2 |.IMPRESSIVE..... =

talk_odi_en. |B) Urtitledi |

ﬂnffset: 231 [0x000000E7] @‘136 instances of 'FE' Found in talk_gd1_en1 bin x
SHT Signed Byte 14 Address | Length :l
28T Unsignied Byte 14 00000092 00000001 J
|58 Sigried Short -754 00000104 00000001
I5BIT Unsigned Short 64752 00000152 00000001
32B1 Signed Long 32701710 000001BC 00000001
32BM Unsigned Long 32701710 00000244 00000001
S9ET Signed Guad ZBOAS9025121 ... 0o000zZF2 00000001
S4BT Unsigned Quad 280659023121 00000390 00000001
32BN Float 8.9259876e-038 00000473 00000001
S4HT Dauble 4.6014876e-121 OO00OSET 00000001
S4BT DATE 00:00:00 1899-... 00000640 00000001
ISET DOS Date 2106-08-14 00000GEZ 00000001
15BT DOS Time 00000777 00000001
S4BT FILETIME 00000888 00000001
32007 time_t 11:45:30 1971-... 00000945 00000001 ~
Binary 000011101111, 1 | LI_I
Data Inspector i Structure Viewer 7 Compare J, Checksum)\M Bookmarks i Output §
Find All Complete. [Offset: 000000E? [value: 754 [21426 bytes [ovr Mz

It seems the pointers are 1 after the FE but that is fine and to be expected
really. The main things left to determine now are what the stuff after FE means,
a good guess would be character names.

148

3.3 Markup, control codes and placeholders

Even if you are not much of a web developer or coder you will probably have a
rough understanding of variables and markup (you have probably posted on a
forum before if nothing else). Text engines are rarely at the level of a modest
scripting language and almost never Turing complete but they can and do have
markup options and placeholders. It was noted in the past but if by looking at
the text in the game you suspect some form of markup or placeholder it is best
not to use it for the basis of a relative search.

Back on topic the markup and placeholders can take many forms ranging
from simple square bracketed plain text, hexadecimal flags in the text (we see
numbered sections do this often enough and plain hex used to signify a new
line or end of section all the time), XML style markup right through to things
contained in with the pointers (think back to the various file packing formats
that might have a flag to indicate compression for an example of a similar idea.

Control codes are a similar concept although usually treated as part of the
encoding and do things like signify a new line, a tab or some such. At what
point in the reverse engineering of a text engine you want to try figuring them
out is up to you though.

3.3.1 Worked example

Continuing with the Megaman ZX game on the DS. The file has been changed
to talk_m01 enl.bin purely as it appears at the start of the game. It does
however appear that the FE example might not hold entirely true (there are
ones that line up with FE but there now others with FD in some cases being a
potential) but that sort of thing is what makes hacking non trivial.

Looking at the text there is a FC value in the text on occasion. Running
the game it would seem these correspond to line breaks; sometimes pointers do
this, sometimes it is automatic and sometimes it is in the text.

More interesting than that though is the F202 FOE9 03F3 0DF8 03 that the
text starts with.

At the next section

FD F202 FOEA 03F3 ODFS8 03

FD is one thing and can be ignored for the time being (that it does not
appear in the first value would appear to mean that it is not strictly part of it)
leaving

F202 F9EA 03F3 ODF8 03

The original

F202 F9E9 03F3 0DF8 03

E9 = 11101001

EA = 11101010

Probably not a bit level flag which is nice. Equally is is probably not a
length value as the first section is 38 hex long and the second is 20 he

"Remember just because it can be done one way a game does not have to (calculating
things at run time is less than ideal) and equally redundancy exists so if something is there it

149

What is the same about those first two sections is they are being spoken by
the same person (Giro). It is however unlikely that there need to be 72 bits just
to represent a character name so there is probably more to it than that.

F202 FO9EB 03F3 02F8 00 is the next one and that is spoken by someone
different (7?77 and no picture/“sound only” at this point)

This goes back and forth for a while with the next character (Vent) having
a picture appear on the right hand side of the screen

F203 F9F4 03F3 05F8 01

Next screen has the Giro character at the bottom of the screen. Worryingly
there appears to be two extra bytes.

F201 F202 F9F5 03F3 ODF8 03

Vent at the bottom of the screen

F201 F203 F9F7 03F3 07F8 01

Before dealing with that getting the first bunch in a line

F202 F9E9 03F3 0DF8 03

F202 F9EA 03F3 ODF8 03

F202 F9EB 03F3 02F8 00

F202 F9EC 03F3 0DF8 03

F202 F9ED 03F3 02F8 00

The third byte appears to be counting upwards which is quite common in
text systems (it is effectively numbered paragraphs). You will probably want
to keep it intact as the game might trigger animations from a counter using it
(if nothing else it is good form to change as little as is necessary) although you
could test if you wanted.

Speaking of testing static analysis might get somewhere and is proving quite
useful thus far but why analyse something statically when you have a machine
capable of running the example and giving you results.

There are three schools of thought at this juncture

1. Copy and paste another string
2. Minor edit to the value
3. Assembly

Assembly is always an option regardless of what you are doing seen as it is
the lowest level that gets manipulated and it can be combined with the other
two methods. It could be a simple value that loads directly (or via a simple
instruction like a multiplication) to the OAM, it could be the input value to
a nightmare function or indeed something in between. However although a
highly respectable method most of ROM hacking and computing general is
about getting away from assembly if you can so the other two are employed.

There are presumably some working values so one school of thought would
be to replace a working one with another working one and seeing what happens.
The other is a minor, hopefully educated, guess and then seeing what happens.
Either could lead to a crash but it takes but a few seconds to check.

might be ignored in the final product.

150

For the first go around the entire 7777 pre text section was used to replace
the one from the opening text section leading to the following (hacked game
and original game)

(= I He| |-:;:|! wark vou for y ‘ el lo!l Thank vou for

| | INg aira

Only the first section was done and it reverted to the original character
right afterwards but perhaps more interestingly the little sliding animation that
it does between characters was done between the hacked 7?7?77 and the Giro
character.

Next up was editing a single value, the original replacement was left for this
and it continued to display the picture.

The value chosen was the very last one (the final 8 bits before the actual
text, values in hex)

04 appeared to put Prairie

09 appeared to put Model L

10 appeared to put Hivalt

FF caused screen corruption that stuck around for quite a while (the broken
background eventually got replaced after a swap out for a scene but the text pic-
tures stayed broken and there was additional text corruption for several screens
after).

Were it not in the markup this would probably count as multiple tile encod-
ing and it certainly appears the same way when it happens in regular text (a
single byte/character or a couple being used and the game generating a whole
name).

This does however leave 64 other bits (save for the counting section) doing
something.

F202 FI9E9 03F3 ODF8 03 = origin

151

There were ac-
tually two cop-
ies of the file
in the rom so
both were re-
placed for the
sake of this ex-
ample

F202 FO9EA 03F3 0DF8 03 = second
F202 FOEB 03F3 02F8 00 = 7?77 and picture to match
Replacing the 0DF8 with 0AF8 gave

Hivalt

Replacing the F8 with F9 cut off the first letter. Replacing with FA jumped
the text ahead for a line before coming back and stuck things on odd lines and
changed the name to “????” where F7 appeared to do nothing at all other than
change the name. Relegated to magic number/constant /find out later.

Vent has a box with the name on the right hand side although still at the
top

F203 F9F4 03F3 05F8 01

“F203” as opposed to F202

Sticking 03 in there did indeed put the portrait on the right at the top and
it also mirrored it.

152

Not long into the conversation there is a short with the portrait on the left
but at the bottom of the top screen. Pulling the command from it

F201 F202 F9F5 03F3 ODF8 03 = bottom left

xxxx F202 FOE9 03F3 0DF8 03 = first command of the game.

xxxx was added to line things up but could it be a variable length command
system?

Before debating that though 01 was tried and it stuck it on the bottom with
the portrait at the left. 04 and FF appeared to do nothing though.

Some more experimentation could be done but the rest is just filling in the
blanks and most of the interesting stuff appears to have happened already.

153

3.4 Fonts

Fonts when it comes to computers is a whole game unto itself and requires
fairly extensive knowledge to implement a font handling system. Despite some
exceptions the consoles are all bitmap fonts and have no vector graphics to allow
for any size characters although several games have multiple sizes of the same
font. Fonts more than any other type of format like to stray from the power
of 2 tile size even if they are largely fixed width, sport no fancy extras like
no tails or start and stop marks unless they too are part of the font as extra
encodings. It cuts the other way and any characters with diphthongs, diacritic
marks and other such devices will tend to be extra characters within a font as
opposed to generated extras. For the most part they are largely single colours or
only feature minor shading and any animations/real time effects you see usually
being done at a graphics level with markup to trigger it. That is not to say they
are all simple as the DS features a quite complex font format known as NFTR
that many games use (although perhaps just as many use simple 2d graphics
or something truly custom) that is variable width by nature but in general if it
looks like word art or sometime you would have to bust out an image editor for
(title and introduction screens especially) you are probably looking at a picture.

Additionally much like music there is a whole raft of field specific terms
and concepts|that come into play and as such font design/construction has long
been a highly specialised field/skill. However with a few notable exceptions
(NFTR being a big one) games tend to use straight up bitmaps of various forms
although they are frequently nonstandard sizes. Equally the concepts have fallen
out of favour in recent years but 16 bit “flags” similar to scripting have existed
which allowed a given number or selection of 8 bit commands to follow (if you
look at the shiftJIS encoding every Hiragana entry will start with 82 and every
katakana will start with 83) and some games will have a command to switch
out the table/font switching to use Dakuten and Handakuten or punctuation or
custom characters (this is not to be confused with games just having multiple
fonts and tables to match as that is annoying but nothing uncommon).

Dual/multi tile encoding Perhaps more commonly known by the initialisms
DTE or MTE and more commonly a problem for those trying to figure out an
encoding the idea is multiple tiles are encoded in the space one character would
normally occupy (no technical reason for using the “single” character space but it
usually is the case). Very strictly speaking DTE which is a special case of MTE
refers to when a single value has a result encoded across dual (two) or multiple
(the M in MTE wouldn’t you know) but nowadays many use it as a catch all
term for dealing with values that see something than a single character encoded
on a single tile (two characters on tile, a character split horizontally across
multiple tiles, an entire phrase split across tiles, an encoding that generates a
phrase from a single value but uses the tiles normally....).

If your characters/glyphs are split vertically across tiles you probably just
have to set the height value with the three main exceptions to this rule being
GBA3 XBpp which as discussed in graphics is a 4 bpp “compression” format

154

http://www.fontshop.com/glossary/
http://www.fontshop.com/glossary/

that uses interleaves the tiles between the values, graphics level font compression
where the half of a character (think d and b bottom half, j and i top half, R and
B top half and so on) is used to generate things and if the tiles themselves are
scattered across the file/section (this is usually just a matter of lining up one
row with the next though); the GBA saw quite a few instances of this last one.

3.4.1 NFTR

The NFTR font format was previously mentioned and it is a fairly complete font
format featuring variable width abilities and in some cases with later versions
line handling abilities. It carries the encoding for the font with it so if you
find the NFTR font you have the encoding/mapping there and then but note it
still could be custom or feature custom characters so you might have to match
things up by hand or with OCR. There was a revision later on to the format so
some older tools might fall short here but otherwise there are a variety of tools
that can do things with the format (although many will not be in English as
the format was first reverse engineered in Chinese language hacking circles).
Three tools will be focused on here.

Crystaltile2 Filetrip download

Crystaltile2 features NFTR parsing and decoding support including the abil-
ity to run a basic OCR, (optical character recognition) on the font to help with
deciphering the encoding.

It has a limited ability to generate new NFTR fonts from custom encodings
(or a selection of standard ones) using fonts from your computer too. For
the most part it should not matter but the files it generates are not strictly
compliant and it struggles to make smaller sized fonts although that is usually
more a factor of the fonts on your computer with the general rule of thumb
being the “size” of the font add two is the minimum pixel dimensions.

Equally useful is once you can view the font you can type directly and your
chosen font will replace the characters typed (this goes for any point in the tile
viewer /editor)

155

http://filetrip.net/f23649-CrystalTile2-2010-09-06.html

CrystalTilez - [kiaro1212.dat_2.nftr] -1o] x|

&% Ele Wiew Tools Bookmark(C) Plugin Window Help =l x|
DeEsy2axkoEeo@s|EEe
Properties]
- default settings -
offset 40
~ Tile property
scale 400
linked to mave 1
MAP{OAM address 0
byte jump 0
width 11
height 13
Tile Format: sold 1bpp
image pattern Tile:
Angle Angle:0i3
Ieft burn inactive
Fiip horizontal inactive |
fip vertical inactive
2j4 inactive
= Tile Font Editor
Sort LeftTop
transparency inactive
sharow effect inactive
font Perpetua Titing MT

Ao
HEREYYAARNYYNY

http:/fbg crtgb com [system resource utilization: 1927832Kh] | matrix: 01 3=13015 f12h) [sel: 1%1=1(15 f12h) [poooozse /

Editing the font just by typing. Right click also allows a complete insertion
of a font using a table file.

CrystalTile2 - [kiaro1212.dat_2.nftr] =00 x|
or File Edit View Tooks Bookmark(C) Plugin Window Help -8 x|
EEEIEE Y AT = PR

Properties
+ default settings
offset 0
- Tile property
scale 400
linked to move 1
MAPIOAM address (i
byte jump (]
width 1
height 13
Tile Forriat solid 1bpp
image pattern Tie
ande Andle:0id
left turn inactive
flip horizontal inactive
flip vertical inactive
24+ inactive
* Tihe Fork Edtor
LeftTop
transparency inactive
shadow effect inactive
font Frankin Gothic Medum
[Character Fonts ta be used
Illiﬂﬂﬂﬁﬂﬂﬂﬂﬁ ’
Ipifba.crigb.com [system resource utization: 1926052K5] |matrc 01 3= 130018 f12h [l 11 =118 120 joooosse | /|

The main NFTR dialog which is available from the tools pulldown menu in
every section of Crystaltile2.

It pulls double duty as the information window (after clicking the triangle
to expand options click the Nftr button to open a font) although most of it is
fairly self explanatory.

156

NFTR Font Editor x|

~Create
| DS-IPL Fonk table x| TEL. |
—Char

Colors: IB VI Fort... | [antialias
Size: IT IT Encoding IShiftJIS VI

[LC Font FontType: IGLYPH(! 'l

—Flag

[Wertical Writing ~ Rotation: ID vl
Build. .. I o

Wi

| DS-TPL fork table_s.nftr IFtr... |
—OWDH|CMAP

[cwDH:D002AB44 =l Export...l

Char&BCi01,09, 12 Indes: 0000 -
CharaBC:01,09,12 Index: 0001
CharaBZ:01,09,12 Index:0002
CharaBiZ:01,09,12 Index: 0003
CharaBiZ:01,09,12 Index: 0004
CharaBiZ:01,09, 12 Index: 0005
CharaBiZ:01,09, 12 Index: 0006 LI

The other interesting tool is OCR which is available in the tools menu when
in the graphics editing window. Note it need not only be restricted to NFTR
fonts and will operate on any text you can give it.

It is not a good OCR tool and any you have used for ripping subtitles from
DVDs is probably a lot better but it gets some things right and even does some
Japanese which is rare. If you can get rid of any shadows that will probably
help and if the font is complex by all means try but do not expect much.

Usage is set the font up so it is viewable in single tiles, open the tool, select
the approximate size (it only has shiftJIS options unfortunately) of your font
and press “Recognise” to have it guess what it is or you can try “Recognise Whole
Page” which will attempt to decode every character in the viewable window. In
the likely event it is wrong enter the correct character (be very careful as you
may be looking at it guessing a Greek, Japanese or Cyrillic character) enter the
correct one and press the learn button next to it.

Once you are happy with the results press save and it will transfer them
to the left box accordingly, the selections allow for just the list of characters,
to pair them up with their encodings for the currently selected codepage, to
start numbering in order from the box provided (numbers in hexadecimal) or
in the case of index two save it as 16 bit (little endian) starting at the number
provided. Copy and paste this as your table file.

157

x

Clearid Recogrize |
Saveiy E :agnize Whole Pj
4
& NONE P IShiFtJIS_ll 'l
" CodePage %
" Index ore | ﬂl
 Indes bwo '(Learn(&l
0000 y

jA -

Jo wr —C

df; B

CrystalTile2 - [kiaro1212.dat_3.nftr]
or Fle Edt Yiew Toos Bookmark(C) Plugn Window Help

BEET TR A R = - e

Properties

™ default settings
affset 40

- Tile property
scale 400
linked to move 1
MAP{OAM address o
byte jump n
width ﬁ

Recognize
ognizs Whale P{

height Clearid
Tile Format saveid ||

image pattern

1+ MONE ShiftJIS_11 =
Angle € CodePage -
left turn Indox one Reset

fli harizontal | ndex twa | [e
fipverieal [oomn ><
2i4 — I
= Tils Font Edita
Sort ’
transparency
shadaw effer!
Fonk

-(25%each)

u
|
_——— H
Tile to adjust the B
q

3
)
&

|hetp:ffbg.cntgb.com [system resource utiization: 1595900Kb]

Tinke |Google code page

Although the self contained tools focused on thus far has more or less been
limited to Crystaltile2 with a few mentions of the others Tinke does feature a
good amount of support for it and is one of the few tools that will try to add
a character to NFTR which is often not such an easy task owing to the more

complex nature of the format.

158

http://code.google.com/p/tinke/

3% Full file information

E Save new font

Encoding |sh\ll-iis

=100

=

|Char 212

=l

b r T [N EemEnEa|
¥| B < h BT]
SRAET NN -
b balafald BB A A A
ECEEEEN| T B
NOODODMEULD
UFPREasddBéanm
CEEEENI T AR
AR e e =
Y W EECES 4 ¥ Z E [Length: m Char cade: IM
— B .'_J Apply
0 mAd = changes
A, Addchar |[iRemovechar |
et interdunn felis orci et neque. Mullam et maurs metus. Sed ac lectus non sem vestibulum sodales quis et
tortor. Cum socis natoque penatibus et magnis dis parturient montes. nascetur diculus mus. Duisque
tristique, nibh quis venenatis semper. purus ante elementum mauris, eget lacinia odio mi a lectus.

Lorenn ipsurn dakor sit amet, consectetur adpiscihg elf. Mascenas tristinue velt s=d mi susoirit s=d moks ribh blandt. C
s ok sepen ac riE sodakes porta Maurks door dam, tristique 3 ulinces at, feugat et enoe. Masteriss thcdunt ko
reet imperdet. Danec i megna rec febs uitricies pretim ut ut sem Nukem non velt i riss utnicies Lstus, MNune con
sectetur lectus vel thoidunt coreeauat, lectus tortor Litus enos et intendum feks oroi et redues, Nukam et maurs me

“oi) Use custom palette

| PN Change Map char |

NFTRedit [Filetrip download
Although Crystaltile2 has some very nice abilities this is the go to tool for
most needing to do something with the NFTR font format.

Table

Padding: |1—

File

Toals

Options
Max line length: IBUU

=10l

Lorem ipsum dolor sit amet, consectetur adipiscing elit. -
“ivamus nec risus et metus molestie tincidunt. Proin ulbices
aliquamn laoreet. Aliquam sit amet mauris quam. Aliquam
ante ipsum, zagittis vel pulvinar et, pharetra ac lacus.
Praesent vel vivena leo. Mullam vestibulum, felis sit amet
blandit fermentum, nibh ipsum omare ligula, quis
pellentezque libero erat egestaz libero. Westibulum rthoncus
ezt ac purus egestas sed pellentesque lorem evizmod.
Pellentesque a purus magna, fermenturn porttitar ligula.

=

Lorem ipsum dolor sit amet, consectetur adipiscing elit. i
vamus hec risus et metus molestie tincidunt. Proin ultrice
3 aliquam laoreet. Aliquam sit amet mauriz quam. Aliquam
ante ipsum, sagittic vel pulvinar et, pharetra ac lacusz. Pr
aezent vel viverra leo. Mullam westibulum, felis it amet bl
andit fermentum, nibh ipsum ornare ligula, quis pellentesqu
e lbero erat egestas lbero. Yestibulum rhoncus est ac p
urus egestas sed pellentesque lorem euismod. Pellentesqu
& a purus magna, fermentum porttitor gula.

Proin porta, elit nec pulvinar dictum, ligula eros tempus es
t, non bibendum ante elit witae ante. Praesent at sapien

T+

g T =

@® T

CO L e
g X m = B — Tt

T om Wy s
e b] PR R N

L R s MEh D 0 Mo -
T = e FRes WOR 9 OL T

=
O
=]

— e @
BT T e T

oy

W O e =) < 3 3
O Ot

e Qi

Qe et R TR D D gy 00—

=
—+ ;T
Hg o

D=3
WM @ T S T) o

ERE- R A 2 S R R I

=] 3
[«

mlile—————

M apping: I—
Character: I_

[—

width: [0
Offset: ID_
Mext Offset: ID_

ApplwChanges |

Adding characters to NFTR

Simple editing is able to be done in most programs but adding things, assuming
you do not want to just generate a new font, is a slightly more tricky prospect.

159

http://filetrip.net/nds-downloads/utilities/download-nftredit-19-f29196.html

The NFTR format is actually quite complex even before the second known
version appeared in that there are three classes of encoding method.

Tinke is the suggested method for this.

The “add char” button is your first port of call. Doing this will add a
character to the end of the bitmap readout but it will not be mapped to anything

at first. Add your character now and press apply changes to see it added in.
a =[x

[crar213 =l
E L e
FlE[BF kLB |
tEB‘ 1" E
s bababal, AAARAR|
.‘ECEEEEI (2
NDOE5 0 KEDLD
M PRAaGdaEaEa =
BEEEEI =)
BhoBEBEmabLnn]| [we s = s |
v b EeSE FEE L [ean s = chacoe [ma
= m;'.rt-.. ..—J oy
i - fnde
EAHH char Remove char

“)Use custom palsits | crenseMapeher |

The “Change Map char” button is next

3 Character map ~=101x|
Section [0 =] of2

Addsection | Remove ssction |

Map infa
’7Type i) 3: First char. 32 3: Last char. 126 ==

Mumber of image | Char code

This is where the real trick is for the NFTR font allows for a variety of
methods of encoding ranging from fairly simple defining of a start point to code
by code. It also allows for multiple sections of code (each section being known
as CMAP depending upon the documents you read) which can be defined or
restricted as desired. Image number aka Char number on the left and char codes
in decimal here on the right.

160

http://gbatemp.net/topic/105060-nftr-editor/page__view__findpost__p__1455382

/% Character map

Sechon af

2 :

=101 x|
Accept |

— Map info

Type: I 2 5: First char:

I 1] 5: Lagt char:

I 5553!5:

Add zechion | Remove section |
Murnber of image Char code *I
210 249
21 3250
212 3432
A 213 3433
* 1] N i
Pressing accept (and then save new font)
3 Full file information - kiaro1212.dat_3.nftr =1 x]
[ave new fort |Encadm [shiteis | EE) =l
E . K=
HIE[B cq-%
EEF N
» babara), A A A R
VECEEE E I 2]
D6 BB be @ 010D
PRrpaapnpm
EEEEI =
BooEH i widh 3 = Stat 0 =
dhi (EreE g WEE L | [non [§ = chacsde [o12
— LT EE —
AR = .) ! Pl
&Add char & Remove char

) Use custom paletie [crange ap cher

Testing it in another editor
File Table Tools Options Help
Padding: IU Max line length: (300

232123212321 2321 232123212321 2321 232123212321 23;'
2123212321232123212321232123212321 232123212321
232123212321 2321 232123212321 2321 232123212321 23
2123212321232123212321232123212321 232123212321
232123212321 2321 232123212321 2321 232123212321 23
2123212321 23212321232123212321 23212321 23212321
232123212321 2321 2321 2321 2321 2321 2321 2321232122
2123212321 232123212321 23212321 2321 232123212321
232123212321 231 232123212321

=R

R R YR)Y, -
01 234567889: ; ¢=
T@ABCDEF GHI J KL
NOPQRSTUYWHYZ][
] *_"abedetfaghi]
| mhopqgqrestuwwxy
e} ivEu¥l 8§ @
- LR K
» 3% AA AACE
EEEITTT B GEox
UO0OYEEa IR
EEEEI i TiBRAEEE
b +ohadiy 3=
BEEE LT oot
> ™M

o [=[
-

ULEE——

Mapping: 2123
Character: l_

[

width: [3
Offset: ID_
Next Offset: IEI_

Apply Changes |

161

3.4.2 Common hacks

NFTR aside there are a group of fairly common things to do when hacking game
fonts although how easy any one might be varies from game to game.

Variable width font hack (VFW) Along with the 16 bit to 8 bit font
conversion mentioned later this is considered one of the hardest things to do as
far as fonts go. Japanese fonts are all fixed width where Roman languages are
very much not in terms of characters and especially punctuation. Alas add 16
pixels to horizontal location is considerably easier to program than read value
from table and position item accordingly before repeating for every character
and as it would be unnecessary for Japanese games the programmers will tend
not to add it to the game although it is getting better as time goes on.

As the previous sentence intimated the object here is to find the text drawing
routine and get it to determine a value for the width of the text (a premade
table usually being the best choice of method) before using that value to set
locations accordingly and handle any troubles with line wrapping (it might be
set to break and jump when something equals something which is quite possible
when using a single value to multiply but with variable widths it is far less
likely to end up that exact multiple- 16 4+ 16 + 16 will always pass through
160). Almost invariably this means assembly level hacking and creation of new
functions as well as subverting old ones hence it being dubbed one of the harder
hacks to do. The main exception to this would be NFTR and similar formats
that might well have a fixed width character set coming out of Japan but the
format itself (and presumably the libraries used to decode it) supports VFW
which reduces the hack to image editing and adjusting values.

A nice worked example of the assembly side of things for the GBA exists
thanks to KaioShin which can get on Romhacking.net|

Font handling hack This comes in two forms with the line handling (for
characters like pqfgjy that do not sit within the lines unlike Japanese which
always does) reading quite similar to the variable width font hack and the other
being the likes of a skinny font/size change. Japanese characters tend to be
contained within a square box where Roman characters can be contained and
indeed are more often are contained in a rectangle with the lengthier side being
the vertical. To this end making it so the game places characters closer together
can not only allow you to fit more on the screen but make it look better if done
properly.

This is a bit simpler than a true variable width font for all you have to do
is find the value that adds a given amount for each character and change the
payload to something lower (or perhaps something wider if you are improving
a already narrow font).

On top of this you might wish to use a sort of dual tile encoding and split
wide characters like w and m over two characters if you head down this path and
encode one half of each on a tile to itself. Speaking of tiles containing something
other than just a single character

162

http://www.romhacking.net/documents/337/

Pseudo variable width font hack In practice this adds a kind of dual tile
encoding to a font and all sorts of things can be done with it. A basic example
would be to add two lower case | (as in lemur) to a single tile. Returning to
megaman ZX the font _bin.pal file was decoded (it is a NDS 1BPP 8 by 16 pixel
straight decode) and changed accordingly to change the game from the original
to the one next to it which should hopefully look a bit nicer.

Hivalt
Hello! T

call ir

Hel lo! Thanlk

Fiak,
)

call i o E- . -:'...-..:;

Here the 5B character from earlier was replaced with two 1 characters and
the occasions where double 1 happened had the two single 1 characters replaced
with a single 5B hex value (for the sake of the example the spacing was also
accounted for). In practice most games with a fixed width font will add serifs
and such to the thin characters to try to flesh them out a bit which works for
some smaller fonts but does not scale well.

For an example of the serifs idea the 1l was left but the font was replaced
with a font from the Courier family (remember Crystaltile2 allows you to add
characters directly to images just by typing)

163

Thank wou
calling Giro Exp
transporters!

Making fonts nicer is certainly a common improvement hack and changing a
font when translating a game is too but one of the more useful things you can do
with this is if you encounter a fixed width menu (Japanese RPGs are especially
fond of this and the problem is magnified by Japanese having Kanji which can
say a great deal in a few characters) and are faced with the choice of butchering
the language/name, possibly do a 16 to 8 bit conversion (although that might
not help screen real estate issues) or hacking the game to support longer sections
(both in code and in the screen real estate department). As menus are made
up of set and commonly used text it is then quite often beneficial to encode
multiple characters across tiles (no need to fit only whole characters on tiles
unless the game spaces things) thus allowing you a few more characters if you
do it right.

Encoding change You might want to change how the game encodes charac-
ters at some point with the the classic hack being the 16 bit to 8 bit conversion.
Does not tend to happen much today save where there are memory restric-
tions but definitely a skill worth having. There is also the simple one where
the character in the actual picture representation of the font is replaced with
another but unless you are sacrificing uncommon punctuation or going from a
many characters language like Japanese to one with a few characters but a lot
of words like most European languages it is not that useful as you never know
if the character will be used somewhere else.

Back on topic the 16 to 8 bit conversion and the standard encoding tweak
stem from the same concept and that is how are the encodings determined in

164

the first place. Methods are many and varied so some examples

1. A variation on table files where the encoding and the tile are matched up
and this can be somewhat formal or just pointers in a binary table. It will
still usually be in order rather than a full database lookup though.

2. A start point is set in the tiles and the encoding counts from there. There
may be multiple and the same set may be gone over several times not to
mention it may have some maths done on it (think offset pointers).

3. A start point is set in an encoding (at this point a list of “random” num-
bers) and tiles are matched to those

The NFTR format has three main variations similar to those built into it that
developers can choose from.

3.5 Scripting and layout

Mentioned earlier on and still not seen that much in the handhelds and earlier
consoles but some examples exist none the less. The idea here is beyond the basic
text display the rest of the game revolves around a complex engine/interpreter.
The main one of choice here is Riz-Zoawd/The Wizard of Oz - Beyond the
Yellow Brick Road
The game actually displays all three main forms of text methods and for
good measure some XML as well (see op.dat).

1. Fixed length sections
2. Conventional pointer techniques
3. Scripting

The first two have been covered but the scripting engine is worth seeing and
can be seen in event.dat in the data directory

The initial things are the setup for the maps and scenes but are a nice
example

165

H Hex Workshop - [event.dat]

Ele Edit Disk Options Tools Window Help

~=lol x|

=181 x|

BSHE $Re- e vva|mw(Bs LU (B 8 |-«
Se«»ERER A | g - o= s x DA a8
0000|0100 1c00 BERS 7773 BIBE 0000 0500 0000]....newscrn...... :i
0010|0000 0000 Q000 0000 0000 0000 0400 1000 |,
0020|5760 6170 5030 3000 ES03 0000 0400 1000 |wmapPOOD., ...
0030|5760 6170 5030 3200 3c00 0000 wmapP(O2 . <

0040

0050 | I (100 100 6462 6/ .dbas
0060 |636E 0000 0500 0000 0000 0000 0000 0000 |cn..
0070|0000 0000 0400 1000 5760 6170 5030 3000 (........

00RO |E=CT 000D Q400 1000 576D 6170 5030 3100 (........
0090|7201 0000 0400 1000 5760 6170 5030 3200 |k

00A0 | 200 0000

00B0

00cO 0400 1000 576D 6170 5030 3500

0000 |B400 0000 0400 1000 5760 6170 5040 3600 |....

OOEQ |9600 0000 5]

OOFC | [) 576

0100) ..

0110 0400 1000 576D 6170 5041 3000 . WmapPlO.
0120 Qo000 0400 1000 576D 6170 5031 3100, WmapPll
0130 qoo0

0140

0150

0160

0170

0180

0190

0180

01RO

01co

0100

01EQ

01F0

0200 D00 .

0210 7463 0000 0000

0220 AB00 Q000 Q000 4576 6572 F920 Fiv4|..EB.....

0230 7920 BEGS 6564 73I0A 6120 6368 6172

0240 BEGF 2060 6169 BEZ0 6368 6172 6163 (ming main charac
0250 F22E Q080 0961 1000 000 6E39 Q0G0 ..

0260 Q000 |]

0270 5

0280) uld

0290 QCo0 BEZZ 0000 0000 0000 0300 4000 |....nd........ @.
0280 Q000 4EBF F72C 2066 BFF2 2068 6572 (... .Now, for her
02E0 6160 652E ZEZE 0a41 Z06E 616D 6520 name....A name
02C0|666F 7220 B616E 2061 6476 656E 7475 726F |for an_adventuro +|
event.dall

2 fffset: 72 [0x00000045]
' pata Inspector

2| Find Results

X

Structure Wiewer 7

Y Compare }, Checksum) Find 4 Bookmarks p, output /

Ready

[Offset: O000OO48 Sel:

0x10 bytes [101180 bytes

P

166

02a0
02B0
Q2co
02p0
Q2EQ
02F0
2300
0310|0100 2c00 6073 .
0320|0000 0000 0000 0000 0000 0000 6230 3332 |............ b032
0330|0000 0000 6030 3834 0000 0000 1000 0COO|....m0B4........
0340 |6 DEQD 0800 0700 DOO0MENAEEE

0350 [. 769 7463

0360 |8 P oh,
0370|726 7421 0a53 right!.she'11 a
Q380 |736F 206E 6565 6420 6120 7065 7421 041 |so need a pet!. A
0390 |6EZ20 6164 6F7Z 6162 n oadorable puppy
Q302077 GFF5 Gchd 2062

would be perfec
O3B0 (7421 0OOF7 tl.
03ch
030 0700 0cO0 6073 BEID 3037 6200 c...mEn002b.
OIE0 |0E00 1000 4730 3134 0000 0000 0400 0000 |....G014........

Analysis of the scripting engine when it was reverse engineered mimicked the
markup reverse engineering techniques which is to say a combination of static
analysis and testing things to see what happens. Also of possible interest is the
opening few lines which appear to be setting up a debug scene for as mentioned
elsewhere things developers leave in for debugging are often simple examples
of the engine and can demonstrate concepts that might otherwise have to be
extrapolated from the complex ones in the game itself.

Zombie daisuki Of course scripting is not always so bad and a nice example
can be seen in the game Zombie Daisuki which has scripting as seen in the
following picture. If you want to look then in the data directory of the game
itself there are some files with the extension .ini which are shiftJIS compatible.
Note the variable names including spelling mistakes which can see the hacker
accidentally correcting them and causing lots of issues, markup and lack of
pointers.

167

Istage.breefing =

stage. breefing? =[buttan: 1:128][center: BT AFAS— T

stage. breefing. upper = Ld-AEReF 350 L AT—52% MICATEET
stage. breefing. upper_zero =

stage. questhint. button =[xpos: 96][button: 1:84] [center: [0E M~
stage.title =[center][mark:3 1][string: O]

stage. title_sub =[center][mark: 4 7][string: 0]

stage. zambie_nurm =[mark: 37][decimal _k:0: 2]/ [decimal_k:1:2]
stage.getitern = [string: 0% BEMSE Fal!

stage.getriseup =[string: 07 (54277 1% Fol !

stage.getheal =[string: OJff TE—Jl1% 4wl !

ctage. joinzambie =[personname: O F LTI e !

stage. knockdown. enery = [string: QA% [string: TJ&E o001 !

stage. knockdown. zombie =[string: O [string: 1112 5414 !

stage. down.zombie =[string: OJf a0k |

stage.camerarman. startphotographing =hA3<04 E0F0% (Tl |
stage. carnerarnan. startphotographings =h2A57.A40 Eoq0%E (Tlahe !
stage. carmerarman. stopphotographing =HA3740 E0givE bk !
zombieselect title =[personname: 0]

zombieselect. hp =[mark: 1][decimal_k:0: 5] [decirmal_k: 1: 5]
zombieselect. param =[mark:2][decimal_k:2:2][mark:3][decimal_k: 1:2][mark:4][decimal_k:2:2]
humanselect. param =[mark:4a][decimal _k:O:2][mark:3])[decimal_k: 1:2][mark:4][decimal _k:2:2]

Lua The programming language lua was seen a handful of times on the DS.
It was however converted to a bytecode esque arrangement compared to the
plaintext it is usually left as.

El Tigre- make my mule The game features a nice archive format worth
exploring a bit as it showcases a lot of things seen in archive formats.

168

H Hex workshop - [ET.pkg] |3l x|

Fllz Edt Disk Options Tools ‘Window Help =18 x|

ZSH&| a2 v v @ we(B[s1 0ED @63 |-« 5|

Sc«»SBER | glmr - zbl a0 E % e |
000000 [FO6B6700 00000000 01030000 01000000 %kg ﬂ
E

00000000 00000000 02000100 CO040000
0000CO |13010000 7EELQ000 00000000 6261725F
0000D0 |676F6FE4 2E737072 Q0000000 00000000
0O00EQ |00000000 00000000 00000000 03000100
0000F0 |C0040000 E7000000 91E20000 00000000
000100 |626F6775 7T3I666COF 7731362 73707200
000110 (00000000 00000000 00000000 00000000

000120 |04000100 F35C0000 ZBOEQOOD T7RE3IQO00|..... A T
000130 |00000000 626F6775 T73IB66CGF T75FI130. .. .bogusflon 10
000140 (26737072 00000000 00000000 00090000 | SpF.... ;... . =
‘B ETpkg [
fll Ffset: 0 [0x00000000] il‘ ind Results ‘ ‘ x
Sigred Byte 112 = Addrecs Tancth
JJ SI‘V\JE;:nEdyBiIE 12 j ” Kl | i
\ Data Inspector {_ Structure Viewsr 7 Campare h chechsum i Find { Bockmarks Jy output
Ready (Offset; 00000000 [Value: 27504 9212995 bytes [ovr [man [z

Deleting the first and setting the window width very wide, the first part
which was the names (although do not assume that as names quite often follow
the rest of the information covering the file in question) was chopped off for this
shot but the long name has been highlighted to get an idea of what goes.

0000000 00000000 00000000 01000100 AS4F0000 CB100000 BEDOOOOO 00000000 |bandito.spr.. ..o i iu.s,
0000000 00000000 00000000 02000100 COQ40000 13010000 7EE10000 00000000 |bar_bad.spr.......... e
0000000 00000000 00000000 03000100 cO040000 E7000000 91E20000 00000000 |bar_good.spr.........
0000000 00000000 00000000 04000100 FB5C0Q00 2BOEQOQ0 78E3IQQQ0 00000000 |bogusflowlb.spr......
0000000 00000000 00000000 05000100 28270000 D7040000 AOF10000 00000000 |bogusflow_10.spr.....
0000000 00000000 0QO0Q000 06000100 28010000 BOOQQO0D 77FG0000 00000000 |corner.spr...........
0000000 00000000 00000000 07000100 60970000 56150000 27F70000 00000000 |diablo.spr...........
0000000 00000000 00OOQ0Q0 0BD0D100 DO9Z20000 C2170000 700C0100 00000000 |dialoguedc_10.spr. ..

0000000 00000000 00000000 09000100 FE530000 38140000 3F240100 00000000 |edmundsdis_10.spr....
0000000 00000000 DOOOJ000 0ADODLIO0 ASBD0OL0O0 50190000 7A3B0100 00000000 |edmunds_14.spr.....
0000000 00000000 00000000 0BD0OOIO0 TSAFOQOOO 841p0000 CAS10100 00000000 |eTtigre.spr

0000000 00000000 DOOOJ000 0COOD100 78660000 111rF0000 4E6F0100 00000000 |fof_I6.spr.

0000000 00000000 00000000 0DO0OIO0 CBOODOOO FEOOOO00 SFBEQLIOO 00000000 |gesturePoint.sp
0000000 00000000 DOOOQ0O0 0EDODLO0 28010000 E2000000 DDBEOLQO 00000000 |iconselect.spr.....
0000000 00000000 00000000 OFO0ODLO0 28010000 93000000 BFEFO100 00000000 |side.spr.............
0000000 00000000 D0OOO000 10000100 0S0E0000 6E020000 52900100 00000000 |smokestars.spr.......
0000000 00000000 00000000 11000100 10730100 OF270000 C0920100 00000000 |titlesph_16.spr......
0000000 00000000 00000000 12000100 10830100 662A0000 CFBI0100 00000000 |titlesph_1B.spr......
0000000 00000000 00000000 13000100 10730100 00270000 35640100 00000000 |titlesp_lb.spr.......
0000000 00000000 00000000 14000100 10830100 B892A0000 42080200 00000000 |titlesp_18.spr.......
0000000 00000000 DQODQ0Q0 15000100 28010000 99000000 CB3I50200 00000000 |top.spr.......vu..
0000000 00000000 00000000 16000100 28010000 C1000000 64360200 00000000 |wireless_enabled.spr.
= Q0000000 17000100 FQO20000 06010000 25370200 00000000 |wireless_signal_streff
00 00000000 1B000100 283A0000 11060000 283B0200 00000000 |zudjuice_l0.spr......
0000000 00000000 D0OOJ000 19000100 90390000 5p0C0000 3C3IE0200 00000000 |zudjuice B.spr.......
0000000 00000000 00000000 1AD00100 COO10000 F2000000 99440200 00000000 |abutton.spx..........
0000000 00000000 D0OOJ000 18000100 AB0B0000 02010000 88480200 00000000 |arcarodrk.spx........
0000000 00000000 00000000 1CO00100 AB0B0000 06010000 BD4cCOZ00 00000000 |arcaralit.spx........
0000000 00000000 DOOOJ000 1p000100 CO300000 OECBO000 934p0200 00000000 |arc_break.spx........
0000000 00000000 00000000 1EO0ODLIO0 FOOZ0000 42010000 A1580200 00000000 |arrowright.spx.
0000000 00000000 D0O0O000 1FO00100 30ADO00O0 C5260000 E3590200 00000000 |bandidoZ.spx.........
0000000 00000000 00000000 20000100 18BBOCO0 BE1DO00O ABBOOZ00 00000000 |bandito.spx..........
0000000 00000000 00000000 21000100 98630000 58110000 6090200 00000000 |bandi tomanbody.spx. ..
0000000 00000000 00000000 22000100 DBAAQQOD 4D150000 BBAF0200 00000000 |banditomanhead.spx. ..
0000000 00000000 00000000 23000100 CO4cO000 020C0000 05C50200 00000000 |banditoserape.spx....
0000000 00000000 00000000 24000100 50200000 D4030000 07010200 00000000 |ban_ss.spx...........
0000000 00000000 00000000 25000100 30130000 16050000 DED4OZ00 00000000 |barstool.spx.........
0000000 00000000 00000000 26000100 ABQ50000 BC010000 F1D90200 00000000 |bar_badZ.spx.........
0000000 00000000 00000000 27000100 20070000 DEOOOO00 7DDEOZO0 00000000 |bar_edge.spx.........
0000000 00000000 DOOOJ0Q0 2ED00100 60280000 20080000 550C0200 00000000 |bassist.spx
0000000 00000000 00000000 29000100 60IRO0O0 EROS0000 75840200 00000000 |bat.spx.....
0000000 00000000 D0O0J000 2AD00100 0800000 6C020000 5DEADZ00 00000000 |bat_ss.spx...........
0000000 00000000 00000000 ZEO0OI00 90550000 BFOFO000 C9ECOZO0 00000000 |bcuervo_chat.spx.. ...
0000000 00000000 D0OOJ000 2C000100 FOOFOQO0 F3040000 5BFCOZ00 00000000 |bcuervo_n.spx........
0000000 00000000 00000000 20000100 BOO60000 27020000 48010300 00000000 |bg_arc_0l.spx........
0000000 00000000 D0OOO000 Z2E000100 10190000 13050000 72030300 00000000 |bg_arc_02.spx........ e
0000000 00000000 00000000 ZFO00100 980DOCO0 31050000 85080300 00000000 |bg_bt.spx.

There appear to be a bunch of plain ASCII names (underscore allowed) in
alphabetical order by extension although the extensions are no in alphabetical
order. Looking later in the file seems to say that upper or lower case for the
names does not matter (on some systems it does). Remember that the fewer

169

changes made in a thing like this the better so that order probably wants to be
maintained when reassembling the archive

The numbers counting up in the 8 bits following the name section (actually
flipped 16 bits as you will see in a moment) might well file numbers (ordinals
might also be an acceptable term) which are useful for the system as referring
to things by name is quite troublesome where maths gives file numbers.

0100 will want to be returned to later.

Three sets of three numbers, if possible it would be nice to leave them as
they are in the original but that makes simply looking at the more troublesome
than it has to be so a 32 bit byte flip later

EIEE
File Edit Disk Options Tools ‘Window Help ;Iilﬂ
BSHE| @2 v v @ ||m@/ Bs 1 0F
Sea» &2 €N s [|9n @ & v [@
Yo+ = = s ox e]| AT al ds

000 00010000 00ODECEZ 00003452 00009C04 OOOOO%ﬂ
000 00010001 CO0D4FAB 000010CE 000C0DOBE 000001
000 00010002 0000D04C0 00000113 000CELVE QO000(
000 00010003 0000D04C0 O00000EY 000CEZS1 Q00001
100 00010004 0000SCFE QO000EZE QOQ0DEIVE Q0000¢
100 00010005 00002728 00000407 0000F1AD Q0000C
000 00010006 00000128 Q00000B0 0000FG/7 Q0000C
000 00010007 00009760 Q0001556 0000F7Z7 Q0000(
000 00010008 00009200 Q00017CZ 00010C/D Q0000(
000 00010009 000D53FE 00001436 0001243F Q00001
000 00010004 O0D1EDAE 00001950 0001387~ 000001
000 00010008 COOODAFTR 00001DB4 000151ca QO000(
000 0001000C 00005678 Q0001F11 QOQOLEF4E Q0O000C
100 00010000 0D00D0CE Q000007E OO00LEESF Q0000C
000 Q001000E OOOCODLZE 000000EZ OO01EEDD OQOO000C
000 0001000F QQODOL1Z8 Q0000093 00018FEF Q0000(
000 00010010 COODOEDE Q0000Z6E 00019052 Q00001
000 00010011 00017310 Q000270F 000192c0 Q00001
000 00010012 00018310 00002466 0001B9CFE QO000(
000 00010013 00017310 0000270D 0001E435 Q00001
000 00010014 C0001B3I1O 0000ZAB9 00020842 000001
000 00010015 00000128 00000099 000235CE Q00001
100 00010016 000001ZE 000000C1 00023664 Q0000¢
000 00010017 QQODOZFD Q0000106 00023725 Q00001
000 00010018 00003AZE Q0000611 00023828 Q00001
000 00010019 00003990 Q0000C50 00023E3C Q0000!
000 0001001A QOODOLCO Q00000F2 00024439 Q00001
000 00010018 COODOBAE 00000102 00024888 000001
000 0001001c COODOBAR 00000106 00024CBD Q00001
000 0001001p 000030CT QQ000B0E 00024093 Q0000¢
100 0001001 0ODOQODZFO 00000142 000258a1 Q0000C
000 0001001F 000CAD30 00002605 00025953 Q0O000C
000 00010020 00008B1E OO0001DEE 000280A5 000001
000 00010021 00006398 Q0001158 0002960 Q00001
000 00010022 00006ADE Q000154D 000Z2AFE8 Q0000(
000 00010023 00004ccO 00000C02 00020505 000001
000 00010024 00002050 00000304 00020107 Q00001

NN AANTNNTE NAAMT 310 ANANGETE NNATnd no nnnnjrﬂ
»

ET.pka

The 0100 became 0001 in what is now the upper 16 of the 32 bits.

Three numbers then. The first seems larger than the second and the second
plus the third is the next in the sequence in the third number.

Size and location then. For the time being no padding between values is
assumed but there is frequently padding to make sure it lines up with 32 bits
or even more but seeing them start on odd values makes it fairly likely that no
padding is here.

Scrolling down a bit further

170

H Hex Workshop - [ET.pkg] =10lx]

[h Fle Edt Disk Options Toolks Window Help

mm slsLo @O
v - = s xpl mad |[BEE % eE |

FSHE FBB2 Y Y |m
< »

pu
S5~ wn» 8282 g

H]u- -+ -a|‘

00000000 00010124 00000482 Q0000JFA OOOEFBYZ Q0000000 [titlesp_16.fnt
00000000 00010125 00000482 000002FD QDOEFEEC Q0000000 |titlesp 18, fnt.
00000000 00010126 00000184 000000ED O0OF0169 00000000 |zudjuice 10. Fnt

00000000 00010127 00000182 000000ED 000F0256 00000000 | zud fnt.

00000000 DOD00LZA 000JBEEE 000i6EES OULZ/FEEL Q0000000 [Ambient_Rhy, swav.
00a00000 DO00012E 00001364 00001364 00156069 Q0000000 |ArcadeBreakin
00000000 DO0001ZC 00003EBC 00003IERC O01600CD COOO0OO0D |BeatBoss.swav
00000000 00000120 00002508 00002508 D0163F59 Q0000000 |birdcall.swawv
00000000 DO0001ZE 00000DB4 00000084 00166531 Q0000000 |birdiesl.swav. .
00000000 DO000012F 00003258 00003258 00167285 00000000 |8irdsAattack. swav.
00000000 00000130 000017BE 000017EBE 0016A50D 00000000 |BirdsFlying.swav.
00000000 00000131 00000FlC 00000FLe QO16BCCS CQOODODO0 |blink.swav. ..
00000000 00000132 0000117C 0000117C OD16CBEL Q0000000 |boomerang. swas
00600000 00000133 0001£300 6003300 00000000 |boss. swav. . .

K|

ET.pkg

The swav files were checked for (they have a fairly unique start of the file
aka a magic stamp) and they were indeed the swav audio format and as audio
is not usually compressed beyond making it in the first place it finishes off the
rest.

The 0001 now in the upper 16 bits is indeed a compressed flag. (a few files
were extracted and then attempted to have compression applied without any
real success - a quick and easy check).

In the swav examples the first and second of the three numbers is the same
(and the pattern for 3 holds).

The first of the three values is the uncompressed size, the second the com-
pressed size and the third the location.

pkg archive data table

Defined as follows

32 bytes for the name presumably ending with the first 00 in the name and
padded out from there (the last 4 bytes might be necessary though)

2 bytes for the file number (flipped and counting from 0)

2 bytes for a compressed flag (flipped, 1= compressed, 0 = uncompressed)

4 bytes for uncompressed size (flipped)

4 bytes for compressed size (flipped)

4 bytes for file location (flipped, standard pointers (not relative) and starting
from start of main file (not offset))

4 bytes padding (00 filled)

The header format is not finished as there is still the part that was deleted
at first to make everything line up nicely (flipped to make things easier)

171

H Hex Workshop - [ET.pkg] =lolx]

[File Edt Disk Options Tools ‘indow Help =8 x|
ELE&| s mB2c (v v e [mw(Es 1l Ea|o |-~
Se«»EBER A |5 v - o=z b ead B s [x]]

0000000000 [70686700 00000000 00000301 00000001 [pkg. v vuvevu .. ii
0000000010 (019F3323 DO0BBF7/EZ 00094584 0002DDAA|. . 3#...... [P

0000000020 00000003 0000000 00DQO00D 0000000 (. ..., .. e

0000000030 67616065 74657874 SFES6EZE 73747200 |gametext_en.str.

0000000040 (00000000 00000000 00000000 00000000
0000000050 (00000100 82EC0000 52340000 6490000 d

0000000060 (00000000 62616E64 69746F2E 73707200, .. . bandito.spr.
0000000070 (00000000 00000000 00000000 00000000 . .
0000000080 (00000000 01000100 AB4FO000 CB100000]. .
0000000090 |BEDOO0O0OO 00000000 6261725F 6261642E ..
00000000A0 (73707200 00000000 00000000 00000000 |sp
I00000000B0 (00000000 00000000 02000100 CO040000 .. v vuiiiu,
00000000<0 (13010000 7EELO000 00000000 6261725F |... .~ .o\, bar
00000000D0 |676FEF64 2E737072 00000000 00000000 |good.spr
00000000ED (00000000 00000000 00000000 03000100
00000000F0 (C0040000 E7000000 91E20000 00000000).

0000000100 |626FEF75 73666CHF 7731363E 73707200 |boausflowlé.sor. =l

B e |

Lol
.bar_bad.

Ready Offset: 00000027 [Value: O 19212998 bytes 7

pkg is clearly the magic stamp for this format.

301... the last file number is 300 hex and starting with 0000 for numbers
means that is likely the file count.

008C 9446 is the length of the file (usually a common sight in headers) but
is absent

008B F7E2 plus 9C64 (the location of the first file and end of the header) is
008C 9446 and having lengths ignore headers is quite common.

Header format

4 bytes 706B6700 hex (pkg[00])

4 bytes 00 filled.

4 bytes file count (flipped)

4 bytes 0000 0001 when flipped

4 bytes unknown (019F3323 when flipped)

4 bytes size of file - header (flipped)

4 bytes unknown (0009 4584 when flipped)

4 bytes unknown (0002 DDAA when flipped)

4 bytes unknown (0000 0003 when flipped)

12 bytes 00 filled (padding?).

AN AN SN N

The compression The header is a nice example of a custom file format
and most of the time that is where it ends (give or take building something to
remake the archive) but compression was detected. Sadly it is one of the few
times a custom format for compression has been seen on the DS. The exten-
sions appear as though they can be trusted so for the time being they were.
This section might be more useful once compression (covered in game logic) us
covered.

Other than the swav files there were a handful of uncompressed files but
they were usually quite small. That it happened is nice as it points to file level
compression rather than archive wide library compression (formats like 7zip do
this to achieve very high compression rates for groups of similar files at the
cost of decompression time, resources, potential for the archive to be corrupted
beyond recovery of anything via simple means and not able to be extracted
without a complete archive set in the case of split archives).

172

tmpCopy.txt was extracted. It sounds like a debug text file if ever there was
one.

C86 is the length of the compressed file. According to the header it should
be 2DAC hex long.

entities.xml was extracted. xml should have lots of nice brackets to look at.

16D8 is the length of the compressed file. According to the header it should
be 00010344 hex long

Neither appeared to have any flags to start (the first clue it might be custom)
and neither had any obvious starting out OK and degradation as it went on (LZ
usually starts out fairly readable and becomes less readable as things repeat
and get picked up and RLE is much the same) which points to something like
Huffman (the DS BIOS does support huffman but it was not a standard BIOS
compatible version by the looks of things)

[to finish]

Assembly reverse engineering (full assembly as seen across the decompression
function).

Memory viewing reverse engineering (files have to be decompressed to run)

dat files (some naturally decompressed and compressed, partial known plain-
text analysis).

The lua The header is a nice example of a custom file format but later in
the file there are some files with the extension lua which is the chosen extension
of a fairly powerful scripting language of the same name that has been seen on
the DS (the puzzle quest series and several times in homebrew). These were all

compressed using the custom compression format.
[to finish]

Puzzle Quest [to add]

Further reading A scripting engine for the Wii game Tales of Symphonia:
Dawn of the New World was reverse engineered and although GBA and DS
games rarely require anything so extensive it is well worth a read. Links to the
matter at hand at blog.delroth.net part 1| and blog.delroth.net part 2.

3.5.1 Layout and limits

Covered in part earlier (the megaman ZX markup) but worth a quick subsection.
Where most of the time outside games if the text reaches the edge of a screen
it will automatically wrap back around games and especially earlier games and
games on the handhelds can certainly never be assumed to do this.

The methods games employ to do things here and what you will run up
against are as varied as any other are of hacking. The first thing to note is it
might not be the screen dimensions that causes you trouble but a text box or
worse an imaginary /invisible text box which usually means an ASM hack to
change. Equally important and somewhat more troubling are memory limits

173

http://blog.delroth.net/2011/06/reverse-engineering-a-wii-game-script-interpreter-part-1/
http://blog.delroth.net/2011/06/reverse-engineering-a-wii-game-script-interpreter-part-2/

which can happen even if the format uses 32 bit pointers which will usually be
dealt with on a base by case basis, strictly speaking this too is an assembly hack
but you can get a lot done by simply viewing the memory and adjusting your
habits accordingly.

Auto screen (press to continue) making Not really in the same class as
the others mentioned save for some games but definitely worth knowing about
as it is something you will probably run into sooner or later. The game might
have more text in a given conversation than can be displayed in the text box
given and as such it will either have to auto change to the next one or allow the
user to control what happens. Equally some games are fairly concise and there
might not be provisions for it or will require editing of the game engine itself.

The possibilities here are extensive. Some will have a basic end of section
command which the game will pause on pending user input and others will
scroll automatically. The eventually ends up at the choices menus in games
(the classic “yes/no” option in a game, a concept that very frequently sees dual
tile encoding used for it) which can a sort of linked list/level design approach
or something buried deep in the game.

OAM/tile driven wrapping This is more reserved for text in images/tile
maps like those often seen in puzzles although those doing a variable width font
hack might use reads of the OAM or BG tile management to direct things. There
have been games like Kenshuui Tendo Dokuta) that used a font representation
and a nitroSDK graphics format to repeat tiles as necessary to display the scene.

Line wrapping Much like pointers being used to indicate the location and end
of a section for the game to read accordingly a game might not have the ability
to automatically wrap a line when it comes to the edge of the screen/boundary
box. Sometimes it is automatic, sometimes it is pointer driven, sometimes it
has a unique character or set of values (Megaman ZX used FC if you recall) and
sometimes it uses the same character as another ending value.

Section wrapping Much the same as line wrapping but it is not always the
same as it and it too might be pointer drive or the result of a unique value.

3.6 Text extraction and insertion

Knowing what text is, how it is encoded and how any markup happens is all
well and good but for anything beyond a trivial character replacement it gets to
be troublesome to edit things in editor unless you are very fortunate and have a
scripting engine or something similar. Equally your translation team might not
appreciate having to deal with programming style arrangements and will much
prefer to have something that can at least be edited in a general purpose editor.

174

http://gbatemp.net/topic/320192-japanese-programming-madness/

3.6.1 Text extraction

Even with a somewhat more complete table many roms might not have their text
easily extracted to a plain text file thanks to things like markup and placeholders
or even simple things like the section has no new lines/end of section marker
that most text editors understand and it is for this reason that custom programs
are often made to support a given game/series rather than a simple script dump.
However a simple script dump is quite nice to have on occasion and with a bit
of thought can be made so as to allow things to be brought back into the text at
a later date with a little bit of effort rather than require a full manual rework.

Technically table files do support a line, string and section break parameter
(tabular has the ability to add them) but whether your extraction tool supports
them is a different matter. Also recall that not all games use them and might
use pointers or fixed length sections instead.

To this end it can be quite useful to replace things with things you can edit
back in later. Although there are exceptions the vast majority of roms will use
a binary format for things like line breaks

The two main approaches to this are XML style markup and (massive) flags.

XML is a programming language after a fashion and allows you to define a
simple dataset but here the idea of using < and > around custom strings to
indicate concepts in a fashion like <newline> <end of paragraph> and later on
proper markup like <bold> holds a bit of appeal and for the most part games
will not tend to use such concepts (although do check) allowing a simple search
and replace to function in a lot of cases not to mention you can go really far
and actually use proper XML with a parser you built for it.

Flag and massive flag is kind of like XML but instead the actual hex rep-
resentation of things will be used (In basic editors in windows new line in text
is indicated by ODOA hex and while Apple (0D) and Unix systems (0A) are
different it will tend to be supported there as well) but as basic hex replacement
is not ideal here it will be wrapped in an uncommon symbol like # or @ better
yet a long run of them which indicates things that need to be replaced in a
certain manner.

Crystaltile2 scripting window One of the earlier projects of the original au-
thor of Crystaltile2 was a tool known as Crystalscript which aimed to unite table
support, programming approaches and some more linguistic/language driven ap-
proaches to text extraction; the functionality of which more or less made it into
crystaltile2 and is available in the little discussed text editing window.

This is where the hastily translated (with the aid of some machine transla-
tion) brings the process down a bit.

The general idea is after creating a table and telling it to use it on the
pulldown menu (if necessary - remember Crystaltile2 supports a wide range of
known encodings) you open the file in this mode.

After this you can click on the pulldown menu and press “Ambassador” search
which acts much like a strings search from a standard hex editor. After this you
can narrow down your selection with one or more of the special search methods

175

(bungee column means aligned here) and once you have the files selected you
can press “Extract Retrieved Project” or use the similar commands on the edit
menu.

CrystalTileZ - [talk_gdl_eni.bin] ;Iglil

<* File Edit | Special search methods Search TEL Yiew Tools Plugin Window Help — IE Iﬂ
=] Irvealid Poinker e - &)
(i =] e S -1 @
Even length of the atticle(s
Properties | Pa . i 5) dress | le... | article | ﬂ
0dd length of the atticl(Dn)
~ document Se -) 00011C 11 Arevyou the i
B Shorter than the minimum length article(L)
skarting addi) i 000128 11 transporker
i Longer than the maximum length articlefH) .
Exit address) 000140 16 My name's Hareng
Odd bungee column articledA) ;
shortest lzn i 000154 22 It's too early bo tell
Ewen bungee column article()
maximum ler Gl QT 000171 16 you my real name
2-byte alignr ; . 000183 20 Consider Hareng move
Contains & specific Characker{) 00195 3 of a4
2-byte Char colect Reverse(l) 01LAF 3 : & codename
standard Ch Search Project o
Use Code P Sea]rch 0001BE 20 1t's hard ko belisve
. . 000103 17 that akid is the
code reverse Retrieved Projects DO01ES 22 ok For Modsl *
system code Extract Retrieved Project 00205 15 ; os?tnbtu?e Dr_t oas
can't believe i
Scripk S h
aL BZ: O: 00000223 13 youve dlive
pointer address 5000000 f e 00000238 21 Even with the help of
relative address inackive O- OO00ES0 17 the Biometal
starting address i} O- 00000250 7 that's
Exit address o O-: 00000265 10 impressive
Start Search poinker O: 00000279 20 I'mglad you're safe
sentences using the exit code inackive O: ooooDzZo7 18 Don't go overboard
sentence exit code 0 O- 00000246 21 Leave some action for
text search O: 000002C1 14 the rest of us
O: 00000209 18 Iwould never have
= T a- 000002EC 19 imagined they would
R Eie e e S O-: 00000300 17 launch an assault
O: 00000312 14 directly on HO
O: 00000324 22 1guess we're not safe
ﬁ 7y O: 00000341 27 evenway up in the sky
> B O- 00000361 | 20 IF only I could have
O: 00000376 17 been a chosen one
O: 00000393 22 Twould have given the j
|http:,|',|'bg.cntgb.com [svstem resource utilization: 2095200K5H] |A

Conventional text extraction Despite the potential troubles some pro-
grams have been made that can help facilitate text extraction. The two most
popular tools are Cartographer and Kruptar 7 although romjuice (one of the
earlier tools) remains quite popular as well.

Cartographer Romhacking.net download

A command line only tool which you feed file and a commands list (which
includes a table) before it spits out a fairly nicely formatted text dump. The
included readme contains full usage and a few examples. Most of it is fairly
straight forward but it does also support pointers of various types but no explicit
command to support GBA games.

If your GBA game sports some new line/end of section tokens those might
be worth using but if however you are using pointers the addition of a 08 or

176

http://www.romhacking.net/utilities/647/

similar at the start of the value (it does support an endianness swap) might make
things tricky. You can attempt to use the “#POINTER SPACE” command to
skip bytes and you might try using the relative pointers option but a large
negative value might not work well. Failing that a search and replace or better
32 bit bitwise AND with 00OFFFFFF (FFFFFFOO0 if you account for endianness)
across the pointer field will allow you to get things done; workarounds like this
are commonplace if you have to use premade tools and having the ability to do
them is usually a sign of a good hacker.

Kruptar 7 Romhacking.net download

A newer graphical tool (or at least the current rewrite is fairly new) and one
that interfaces with the table making tool Oriton fairly well (they come from the
same hacking group/site). It does also have some editing and insertion abilities
as well as table editing.

Pointer abilities as seen on the picture are some of the best around and it

can support plugins written in turbo pascal.

Fle Edt Search Project Options Help

| BlE® elollse] ¥ x| =l ®mEn | (e @ s B

=loix|

Project1 kpx |
£ Characters 2] Groupt |
“ E.%'m 'f,snum J 000001
£ Text Insert Range 000002
i | 0000000-00019F4 000003
= 2] Lists of Pointers ggggg;
B
0000072 000006
000009C 000007
00000CA 000008
000031E 00000S
4] oo003E? ooooio
0000491 000011
0000SF1 oooo1z
0000644 000013
B nenneTn =l |oooo1a
ptsrcTable EC ggggi:
ptDestTable Table1 oo0017
ptDictionary [None] 000018
pLDestPlrSize H 000019
DiDestReference hFFFFFEEC 000020
ptDeststrLen 0 000021
ptDestAlignment 1
ptDestCharSize 1
ptDestshiftleft 0
ptDestAutoPtrStart FALSE [inde:c 1 of 21
ptDestSplittedPtrs FALSE Listl | List2
ptDestSNESIorom FALSE = Bl
ptPointerSize z
ptReference hFFFFFEBC
pinterval 0
ptalignment 1
pLshiftLeft 0
piCharsize 1
pstringLength 0
PLEIG_ENDIAN FALSE
ptSplitkedPirs FALSE
pLSNESlorom FALSE
ptAutoPtrStart FALSE
ptAutoReference FALSE
Pt ToPtr FALSE
ptseeksame TRLE =l =
pthiotinSource HE [oja [y 0ja Size: 0 [x:0j0 [ys o0 Insert [siee: 0
| Z

177

http://www.romhacking.net/utilities/612/

3.6.2 Text insertion

Once you have found, decoded, extracted and altered/translated the text comes
inserting it back into the ROM. Even the basic text edit can take some thought
to get it back into the rom and if you had to change some things to make it
more amenable for a general text editor or your team it can get worse.

After this you also have to recalculate the pointers but that is a different
matter. You might also have the even more annoying task of recalculating
pointers and editing the ROM binary if your text was eventually found among
the instructions in the game binary or overlays.

Even more so than the detailing of how to find files/desired data or creating
tables the insertion of text in many documents amounts to grumble grumble
just do it and moving on. This is not without reason as there are a great many
things that can trip it up and as such although some ostensibly general purpose
tools do exist they are either impossibly basic and useful for only a few things
or will do it but extensive manual prodding, nearly a programming language
unto themselves or very game specific. Speaking of game specific if you can it
is generally best to get it done that way as there are so many methods games
can use for text.

Still you are going to want to know four things

1. What, if any, markup and placeholders are available, used and what the
extraction stage might have left them as.

2. What, if any, layout, section end and line wrapping commands/markup
are available.

3. What, if any, restrictions you have on line width (note that you might also
have restrictions not immediately obvious if the text is used elsewhere
with things like flashback sequences, chapter introduction sections and
conversation recounting methods).

4. What, if any, limits on text size you have from the perspective of the file
format limits or often more troubling the memory limits.

If you have changed the markup from a binary one to one more resembling
HTML, XML or a forum markup (or used the flag technique) you need to
change it back. You should also take note of your character encodings as games
and computers can do things differently in as much as British English still uses
the different types of quote marks (inverted quotes) which will have different
encodings and American English (also the default setting for most games) will
tend to use the single style of quote (typewriter quotes) or indeed eschew double
quotes in favour single quotes (which appear the same as apostrophes and a
game might use the same character for the different types of punctuation). If
you are not careful a given font on a computer will confuse such things as far
as the representation goes but leave them encoded differently not to mention
the related problem of if a game uses a full stop as a section end (there is often
a proper section end command but not always) and having the quotes outside

178

the punctuation (again differences in types of English grammar appear here).
On the subject of character encodings it is usually best to match the original
encoding with the output as several games have used shiftJIS for parts and
regular ASCII for others (even merging them together in the same string) and
will complain a lot if it is not that way when it it comes to being run but this
is one thing that is definitely worth checking as it can save some space.

Other than that it should be fairly easy to determine if you have things of
legal lengths (although in practice you would probably have a script editor for
this in a big project).

Conventional text insertion Much like text extraction there have been at-
tempts to make general purpose tools. They are quite often limited in ability
or so complex as to be nearly a programming language unto themselves but it
is worth knowing about Atlas which most extraction tools aim to have a meas-
ure of compatibility with and most other insertion tools will copy part of the
functionality as well. Equally even if the encoding has not been changed it is
not uncommon for there to be tables for text extraction and modified versions
thereof for text insertion.

Atlas (romhacking.net)

It is a script based inserter where the script type is defined. The download
includes both source code to allow for modifications (although the program itself
does have limited plugin support) and a manual with several worked examples
on usage. In many ways it is aimed at/has provisions for the SNES and similar
consoles with memory mapping but can be made useful for the file level pointers
as seen in many DS formats.

3.7 Language detection in DS games

The DS features some firmware on which you can select from six languagesﬁ
(Japanese, English, French, Spanish, German and Italian) and games then have
the ability to automatically choose a language. More than once have various
languages been locked out despite being present in the ROM (there have been
a few GBA games to have similar features with one of the most notable being
Magi Nation although that is slightly different) although probably the best
known example is Japanese in Advance Wars Dark Conflict/Days of Ruin (the
first mainline advance wars/famicom wars never to appear in Japan) which was
present in the game but even with Japanese selected it would default away from
it. There were however cheats made that ultimately forced the game to run in
Japanese. More will be detailed in cheats and game logic hacking later but it is
worth noting it exists here.

8There is also a China only DS model known as the iQue DS (occasionally iDS) that features
Chinese as well as a Korean model DS that is less well examined. There have only been a
handful of Chinese games aka iQue games that are supposedly locked out but in practice it is
a simple check. Chinese rom hackers however are some of the most prolific out there and have
translated well over one hundred titles into Chinese with most being of fairly good quality
including several that did not make it out of Japan.

179

http://www.romhacking.net/reviews/62/

Other games will allow the end user to select at boot time and maybe later
on as well.

3.8 Translation hacking

The first rule of translation hacking is under no circumstances should you touch
a machine translator; they are certainly fascinating pieces of kit and they have
their uses but for the foreseeable future they have no place in a creative work like
translation hackingEI and especially not for nearly entirely unrelated languages
like Japanese and European languages.

[

Translating games is a very popular activity among rom hackers and if you
go outside rom hacking and rom running circles fan /rom translation will almost
be a synonym for rom hacking. Most commonly translation is from Japanese
to English, Japanese to Chinese or Japanese to another language of European
origin (although Arabic, Russian, Korean and Thai translations are growing in
number) and unlike almost all the other areas of rom hacking this is not simply
a matter of technical prowess as it requires language ability as well. There have
been a few ROM hacker translators in the past but they are rare and usually
were more one than the other so it usually means setting up a translation group
to get things done. This certainly does not mean you as a ROM hacker would
not do well to know a bit about the language you are translating from and this
typically means Japanese.

Perhaps above all else you should recognise and appreciate that despite
languages sharing many things in common (verbs, adjectives and nouns for
one) they may also lack things (English does not really have gender for words,
some languages have two and languages like Russian have three) and do things
differently in things like adjective ordering. On the subject of word ordering
most modern games that use markup/placeholders can work around it/change
it without any negative consequences if the thing to be replaced with a value
is at a fixed point you might have to work around it which can be troublesome
or accept a slightly clunky translation. Some games have encoded larger pieces
of text as part of the variable/markup though and that leads to things like
innkeepers says it costs gold 600 to stay here for the evening.

Equally languages are built upon hundreds of years of history which informs
how they work; Japanese culture was and in many ways still is strongly informed
by notions of social hierarchy which influences the language no end and can be

9S0me have said the invention of realistic virtual sex will spell the end of the human race
but others would argue the invention of a machine that can do humour would be more damning
and the first step to that would be being able to translate humour and/or wordplay from one
language to another.

10The traditional example is to provide a translation of a piece of a text and back again
so using the paragraph just written from English to Japanese and back again: The first rule
of hacking your translation should be touching the machine translation is located under any
circumstances; they are attractive part of kit indeed, although they have their uses, for the
time being, they are hacking translations for language completely unrelated nearly as well as
the language of Japan and Europe, not particularly There is no place for creative work like.

180

quite hard to translate/convey effectively if the culture of the language you are
translating into (which is to say most European languages) does not have such
a history. Likewise they have various levels of influence upon and from other
languages; Chinese formed a large chunk of the Japanese written language for
instance but nowadays they are far from entirely mutually intelligible (see kokuji
and kokkun) and nowadays you are far more likely to encounter minor tweaks
upon English words in Japanese than you might have been a hundred years ago.

Now the study of the differences between languages is quite a common thing
for those in scientific and technology fields to engage in and although it is great
to have an appreciation of it is not directly related to translation hacking but
the following sections are.

The debate over whether a translation should be kept literal or be able to
be adapted a bit has raged for years no end in sight and several retransla-
tion/cleanup projects being set up to fix problems with official and unofficial
translations. Each and every side has valid arguments here with the only real
consensus being changing a work drastically and calling it a translation is push-
ing the limit at bit (although if the end result works it can be quite interesting)
and having your translation be readable is a good thing; note that readable and
understandable only with a frame of reference for the franchise or a given cul-
ture/history is not necessarily the same thing although such a thing can inform
how you proceed with a translation.

Things one should appreciate about the Japanese language when playing
ROM hacker (hacker side of the fence)

3.8.1 The types of Japanese characters and how they work -

Hiragana, Katakana and Kanji form the basis of the language

Kana. A collective term for the Hiragana and Katakana they are the basic
constructs of the language with Katakana usually being used for loanwords/foreign
words where the Hiragana are fairly freeform the Katakana are somewhat angu-
lar. Hiragana tends to be reserved for native words and both are phonetic which
is to say several are combined to make words.rikai.com shiftJIS has examples of
both.

There are some fairly accepted ordering/sorting methods with Gojuon order
being the most popular. Common rom hacking table making tools like TaBuLar
should add it and few games deviate here. On the flip side be aware the ordering
might change and standard tools might well leave out some of less common and
possibly obsolete ones the script writer might use or that the game might add
entire characters for characters with punctuation (see Dakuten, Youon/Yoon
and Handakuten although most good table creation tools should be able to add
these) so be aware of this when constructing tables. ShiftJIS and EUC-JP use
the order but will also include Dakuten for the respective characters between
them and many games use or take their cues from the ShiftJIS and EUC-JP
encodings.

181

http://www.rikai.com/library/kanjitables/kanji_codes.sjis.shtml
http://www.romhacking.net/utilities/55/

Kanji Kanji are the elaborate symbols sourced from Chinese Hanzi characters
(if presented with an unknown Asian language script one tends to tell Chinese
and Japanese apart by looking for the simpler Kana which Chinese lacks) and
there are a very large number of them. Indeed there is no upper limit although
a book known as Dai Kan-Wa Jiten is considered one of the more complete
listings and almost a must for any translator. Even among native speakers they
are considered the harder part of the language and many translators/language
grades will reference various lists of them; most day to day language usually
stops short of the 2000 mark. Unlike Kana they are ideograms and one symbol
tends to represent an idea although they can still be combined to form related
concepts/compound words. As far as encodings go there have been somewhat
logical methods including order of appearance in a game text (or text from
another game) and character count in the text being the ordering so do consider
that as well.

Importantly for rom hacking there are various types of works and fields
(medicine for example) that aim to reduce the number of them in their text
with shounen manga and anime being among the most notable for following
this practice which is good for ROM translation as they tend to produce a lot
of fairly interesting games that for various reasons might not make it outside
Japan.

A few people have tried to make something resembling an ordering for Kanji
and there are a few things you can learn that might help but in practice there is
none and this means relative searching which is very useful when making tables
for Roman language games at best very tricky and more often largely ineffective;
you will want to have an idea of the existing ordering such as from a font or via
fiddling with the ram and a name entry screen or something before resorting to
a value search or an abstract search.

As mentioned above though there are lists of Kanji you might want to look
at to help make tables although this might be more useful to those doing the
translation; modern games are usually written by modern writers for modern
audiences after all although one should be wary as games do like to use older
symbols as magic symbols and decorations and game development/publishing
companies not wanting to bother defining a new encoding every game will share
them between games either in whole or in part or use existing encodings to
create new ones.

Historically there were things known as moji (categories) which also pre-
sumably led to the slang word moji bake for when the encoding is wrong (not
to be confused with cavespeak which is where a 16 bit encoding is swapped for
an 8 bit one which breaks the untranslated text) that might be useful to know
about but this is getting into Japanese orthographical history and even with a
decent knowledge of Japanese will probably not be that helpful for those tasked
with reverse engineering game text files. On the other hand you should know
what the terms radical and stroke ordering mean as they are in very common
usage. To that end radical refers to the base stroke/component the Kanji in
question started at/as and stroke is quite literally how many brush/pen strokes
are needed to complete the Kanji in question. It is not a true ordering system

182

but when looking things up these will be what is used in the vast majority of
cases.

Rom hacking tools or even general use tools to add vast lists of Kanji in
a manner similar to TaBuLar’s abilities in Kana and Roman languages do not
really exist although TaBuLar will support adding lists of 16 bit characters if
you have them premade with most that have to do being lucky and finding
a common ordering (or a couple of fragments of it they can arrange and add
to accordingly) or pulling it directly from the game; OCR, (optical character
recognition) for Japanese does exist and is even in a couple of rom hacking
tools like crystaltile2 although it works better on Gothic fonts is troubled by
some of the more fanciful /handwriting esque fonts like those in the Kaisho and
Gyosho lines and sometimes even Mincho although if you get a tool that can
do it Tensho and Reisho which appear very different to other Kanji is not that
bad to OCR.

As far as basic regular expression type searches are concerned Kanji and
the kana are able to be anywhere in the text and nowhere, getting further into
Japanese there are situations that commonly call for one or the other or a set
thing (think u always follows q in English) but if you need to change a font as
part of the game hack and keep enough language for your translators to still do
some ongoing play testing Kanji are usually the better choice for something to
lose.

Kanji ordering Although it was stated there is no order there are groupings
which you might wish to learn to recognise or at least appreciate. The most
notable versions of this are the

e 7-moji. Although now considered if not obsolete then not best practice by
many both in Japan and even outside it the idea of categorising kanji into
groups with the suffix moji it is still known of and influences things. Six
groups exist four of which go by the basic stroke/aesthetic and the latter
two by their meaning. Lists are hard to come by and not that widespread
but so you know if your translator tells you it is grouped roughly like this
you have at least heard the term before.

e kyoiku. A list of kanji as specified by the Japanese ministry of education
and broken down by school year/age range. Depending upon the person
you are speaking to the complete collection/concept of the grade by grade
breakdown can go by the name gakushu although that is not ideal.

e joyo. This would be the complete list (kyoiku plus the ones from secondary
school age ranges) of common use kanji.

Various game specific methods have been seen and many custom methods will
share portions or even whole sections with shiftJIS, eucJP or something similar
as it is just as awkward for the original programmers to define a new order as
it is to do it yourself. As mentioned previously though there are examples of
games using an ordering based upon the order in which characters first appear
in the script and orders based upon how common characters are.

183

Furigana Furigana is supposed to be to help with pronunciation for Kanji
(aimed mainly at younger people and those learning the language) but has been
seen to hold little jokes, extra explanations and much more basically turning
it into the equivalent of an asterisk or a footnote/reference. It was not that
common on older systems mainly for technical reasons but the DS which sports
a nice touch screen and enough resources that you do not always have to heavily
optimise things has seen it used extensively. It usually comes as a type of markup
or flagged text but not always and you can use or the space it used can help
you fit more into the file/memory if you are limited there.

Others (yakumono) Although Japanese has many of the same concepts as
languages using the Roman character set in terms of punctuation, shorthand
and constructions stemming from them the characters they use can be radically
different. [sljfag| has more on this. This can allow for some hex analysis type
techniques to return.

3.8.2 Japanese glyphs/characters and observations on the language

There was some mention of the types of fonts seen in Japanese but in general the
characters are fixed width and stay within the lines unlike the Roman alphabet
which has things like ijlt and on the flip side WQMK as well as punctuation
which almost always sits right next to the previous character without much of
a gap and on the matter of lines thing characters like j y p q and f in some
fonts/writing styles.

Also note Japanese does not have space characters per se with any you
see being largely aesthetic or for line wrapping purposes; you will probably
encounter this when translating a game from Japanese that has a text engine
built by a Japanese programmer for use with the Japanese language but the
same could be said of most aspects of translation.

Tategaki In short Japanese is usually written horizontally much like English
and European languages (it is even read left to right) but it can be written
vertically and read top to bottom with the name for the concept being tategaki.
It is usually only reserved for introduction sequences and artwork as far as
games and most modern Japanese goes so it does not tend to trouble translation
although it was seen in Sigma Harmonics.

Equally although it is not strictly legal in English grammar the use of it for
short amounts of text (for instance how often have you see a hotel, cinema and
some such use it in a sign) or simply to cause a mental association with Japan
(it is a fairly recognised visual effect and given it will also probably be floating
over an anime or ink wash painting it helps too) which as mentioned is what
tategaki will usually be seen in it can be quite useful and quite acceptable to
leave it.

Romaji One of the main reasons Japanese is considered hard to learn is that
unlike learning most other languages you also have to learn a new character

184

http://www.sljfaq.org/afaq/symbol.html

set. To lessen this and in some cases allow Japanese to be written without a
proper input method editor (IME)/Japanese keyboard (which remember could
be thousands of keys in size if you wanted to include even a small subset of
kanji) ways of overlaying the Japanese language to the Roman alphabet were
devised. There are several with the most popular, although not necessarily most
liked, being Hepburn. Very few Japanese games will use it and occasions where
it might be instead often opting for all English and almost definitely Arabic
numbers but it is a fairly important concept and doubly so when dealing with
multiple languages at once.

Sentence length Whether due to the existence of kanji or maybe just in gen-
eral the written version of the Japanese language is quite often shorter than the
English translation which ROM hackers and the official translation teams both
run up against. Speech is a different matter and is usually roughly equivalent
in length which is quite nice for the would be translation team usually as it will
be peppered with honorifics and such things.

Wordplay All languages and humour using them have many examples of
wordplay but Japanese is especially noted for it and indeed many translators
have missed things like this and delivered a translation very different in tone to
the original over the years because of it. With a few very notable exceptions
(Rudra no Hihou on the SNES usually being first in that list) not many games
have used language play as a core concept/mechanic similar to how English gets
treated when magic gets brought up.
It is also yet another reason why machine translation is not to be trusted.

3.8.3 On language

Translating a game that already has a translation out there has happened several
times over the course of things and this is usually because the translation does
not fit with various ideas; it could be an awful conversion and full of bad slang, it
could be that the translation team lacked technical skills (even with the source
code some games can be hard to translatdﬂ) or it could be that the translation
team were hampered by the developer/publisher and had to change the tone of
the language or word choice to appeal to a broader audience or meet censorship
requirements. Although this is a very interesting field in ROM hacking and
depending upon what you are doing this can be a solo project it is not what
this section is about.

Several discussions have been had over the years on the matter of how to
translate certain concepts and it also applies to Japanese with a good example
being found in many Final Fantasy and other Square Enix titles where the
folklore and literature of Europe and the Middle East is often a source for

1A Japanese to Dutch translator over at [Loekalization details many of the issues faced
by those translating games “for real”. Some things are very much focused on professional
translation but a lot of it also rings true for ROM hacking and even the professional stuff
hints at the issues that are seen when it comes to ROM hacking.

185

http://www.loekalization.com/mistakes.html

monsters and themes and other games use Chinese history and folklore as a
theme. Much like the translations of games from Japanese to English and such
translations of items and concepts to Japanese can also see people butcher a
meaning of something.

On a different note Japanese and English and other languages are quite
different as mentioned in the previous section, there are also loanwords that
might have had meaning lost at points (Sushi as you might know is not raw fish
but more than a few people still consider it as such not to mention where it is a
normal enough food in Japan it is still quite exotic elsewhere and so you might
consider losing sushi entirely and replacing it with a common foodstuff of your
intended location if the setting is a contemporary city or something).

3.9 Japanese text editors and translation tools

The following section mainly covers various tools for those that need to work
with the Japanese language might find useful. Little, if any, usage will be covered
in favour of some links and a quick overview.

Densetsu’s translation toolbox maintains a nice set of links to various tools
and resources useful to those doing the translating.

3.9.1 General Japanese capable text editors

Although given an input method editor and an appropriate configured operating
system just about anything will do there are certain features that are useful to
have in a text editor when you are editing Japanese. To this end a link to a
couple of them

NJStar NJStar

This is the most commonly used text editor for the Japanese language and
has found favour among the translation teams working on ROM hacking. It is
largely shareware/trial although paid options do exist.

JWPCE JWPCE
An older freeware program that in many ways sits alongside NJStar above.

3.9.2 Rom hacking tools

A hex editor capable of reading tables is quite useful but there are a couple of
other tools that are useful

Get My Hex |Filetrip download
Author homepage

186

http://gbatemp.net/topic/311523-densetsus-translation-toolbox/
http://www.njstar.com/cms/njstar-japanese-word-processor-download
http://www.physics.ucla.edu/~grosenth/japanese.html
http://filetrip.net/pc-downloads/applications/download-getmyhex-1500-f29200.html
http://watercrown.info/

o
Input 5-J15 Text Herel
[P 250 =L
Get our Hesl
|8341 83438350834E 028481 588380

& ShitllS ¢ EUC ¢ Unicode ¢ UTF-A

Does what it is named for and will return the hexadecimal equivalent of the
input text for several common encoding methods.

3.9.3 CAT tools

Although this is not a language document there are things you can do as a ROM
hacker to help projects along and one of those is Computer assisted translation
(CAT). This is not the same as machine translation but a kind of lookup program
and database for previous translations and helps to ensure consistency in terms
and other such things; for instance if you are translating a massive RPG and
you meet a concept three times in a game but translate it three different ways
it is not going to look good.

Free and Open source tools Although the professional field is dominated
by a handful of pricey tools there are some freeware/open source tools

Anaphraseus Project sourceforge page

OmegaT Project sourceforge page
A java based tool and one of the more popular open source programs.

XLIFF Translator [Project homepage

XLIFF is about as close as to an inter software conversion standard as it
gets in CAT tool world. The program itself is an MIT licensed hook for a piece
of professional software but functions none the less.

Commercial tools On the paid/commercial front there are other options.
Being “industrial”/professional /industry specific software though the prices have
a habit of getting rather high and there is a fairly well recognised/supported
format known as XLIFF (an XML based format aimed specifically at transla-
tion) many of the open source tools support as well as some of the commercial
ones.

Still

Trados Homepage
Arguably the market leader in the professional CAT tools.

187

http://sourceforge.net/projects/anaphraseus/?source=recommended
http://sourceforge.net/projects/omegat/?source=recommended
http://felix-cat.com/tools/xliff-translator/
http://www.trados.com/en/freelance-translators/default.asp

memo() Homepage
Not as popular as the other two and similarly priced but rapidly gaining a
following.

Wordfast Homepage

Various tools have been released under this branding and depending where
you go the term wordfast can refer to any or all of them. Still a very popular
series of CAT tools and related technologies.

188

http://kilgray.com/products/memoq
http://www.wordfast.net/

4 Multimedia

Humans have many senses which go into shaping the experience of the world
around us and storytellers have long recognised the power and perhaps more
importantly the limitations of these senses. Games being a branch of the nar-
rative story device use sound and either because of the limitations of a device
or for the purposes of narrative a game might choose to use a video as well both
of which warrant the attention of hackers. Generally speaking the three main
things to do here are

1. Ripping things - games often contain audio/video tracks people want to
listen to outside of the game

2. Simple in game tweaks - usually quite possible without extensive editing

3. Full replacement - either for the purposes of total conversion, restoration
or simply for customisation

Speaking of ripping things simple filesystem changes are often very powerful
here.

4.1 Sound

Sound exists as a wave and it was discovered long ago if you sampled the sound
wave at twice the highest frequency you wanted to capture (the concept became
known as the Nyquist—Shannon sampling theorem although there are others
although it is fairly logical when you think of it as wanting to capture the rise
and the fall of the pulse) and depending upon what you read the young and
healthy human ear works up to the low 20KHz hence the 40KHz range and
upwards being used for higher quality sound capturﬂ although the human
voice is usually far lower than that limit not to mention the all sounds are not
equal (higher frequencies are harder to hear) so you can often get away with
sampling at a lower rate.

There are two types of audio commonly used in games (and most other
places)

o Wave replication

Here you sample the wave at a given frequency (already covered) and given
sample depth (usually 16 bits to allow for 65536 different options for the loudness
of the wave at that point although 8 bit is used on many occasions) and through
a series of various mathematical techniques depending upon the format you are
using you can store and reconstruct the wave to play back later. These can be
hours in length or something less than a second.

e Sound generation/trackers

12S0me go further for various reasons although that gets into interesting territory and less
useful for the end users than it is for those working with the audio in the first place

189

Here you have a collection of sounds (either simple notes/tones or longer samples
it does not matter so much) of various forms which usually get called instruments
and arrange their playback (and playback speed) at runtime in effect creating
music.

Each have their advantages for both audio creators and hackers.

Waves are quite easy to rip and make sure play back exactly as you want
and are quite capable of recreating sounds well enough to capture voice
and more but they are not so easily controlled in game and are quite large
owing to the amount of data that has to be stored.

Sound generation is easy to control in that you can add and remove things
easily, change the speed, change how loud it is played back, loop things
according to actions in a game (a very potent technique) and they are
usually quite small as they are only a sequence of commands a few bytes
long at worst however text to audio generation aside they are generally
not capable of replicating a human voice without serious processing ability
being dedicated to them which rarely done.

A few terms are necessary to make the most out of audio

Sampling - the process of picking points in time to grab snapshots of the
amplitude of a wave with the aim of replaying it at a later date using just
the information from the samples.

Frequency - the amount of samples you take per second. Measured in
Hertz (Hz).

Bit depth - the amount of bits you store your sample in.

Bit rate - in lossy compressed audio the amount of bits you aim to use
over a given time period to store the audio contained within.

Amplitude - the difference between 0/base and the current position.

Normalising - the process of increasing the amplitude as high as it will go.
Many modern tracks will have individual sections normalised.

Noise - sounds that get picked up at various points in the system that sit
on top of the audio and reduce the ability to hear it.

Noise floor - how quiet you can get before the noise picked up by the
equipment overwhelms the actual signal (usually above complete silence).

Headroom - certain processes and capture methods result in an unavoid-
able amount of amplification in one form or another. Headroom is the
difference between the audio and the clipping limit.

Decibels (Db) - a logarithmic scale used to measure power of sound and
other things but mainly sound as far as this is concerned. Note there is a
difference between Db in audio and Db in some aspects of electronics.

190

The GBA and DS audio hardware The GBA and DS feature somewhat
limited audio hardware with regards to playback of some of the compressed audio
formats compared to consoles like the 360 which have hardware level support
for it. They do however have various interesting features that allow for some
interesting things to be done for both sound generation and wave replication
alike. The GBA BIOS also has some fairly extensive abilities and the standard
DS audio format SDAT which has a section on the matter also affords a lot
of nice things. Additionally the GBA has a format Nintendo provided usually
known as Sappy and although it did not quite as much as use as the likes of the
DS SDAT format it too has serious scope for changing things and is well worth
knowing about.

In practice most audio formats abstract the handling of the audio hardware
to such a level that you are better off either editing the audio format directly
(most are extensible enough that you can do whatever you need quite often in-
cluding changing from wave to sound generation) or editing the ROM to change
what audio is played.

Realistically you will probably not spend as much time fiddling with the
audio hardware as you might with the general memory or graphics memory as
most audio formats will abstract this somewhat which in the long run is a good
thing.

The GBA The GBA supported stereo in headphones but the actual unit
only had the one speaker. The GBA has six audio channels although their uses
are somewhat restricted.

The four primary channels similar to those seen on the original gameboy and
gameboy color are there mainly for noise, short samples and tone generation so
basically the sound generation support and the latter two (usually referred to as
A and B) can be used for direct reads of wave audio usually triggered by direct
memory access (DMA) although interrupts can be used as well.

1. Tone with sweep capabilities (sweep is where the frequency is changed in
a continuous manner)

2. Tone (no sweep capabilities)
3. PCM playback for ultra short samples.
4. Noise

belogic.com houses arguably the best public collection of information and worked
examples on the GBA audio hardware (navigation at the top of the page). Nat-
urally |(GBAtek has a fair bit on the DS sound controller as well.

Typically 1 and 3 are used and indeed that is where most of the BIOS
functions (of which there are many) focus their efforts.

BIOS The GBA BIOS features several sound controller handling functions
(which are not present in the DS). GBAtek has more but most are for the

191

http://belogic.com/gba/
http://nocash.emubase.de/gbatek.htm#gbasoundcontroller
http://nocash.emubase.de/gbatek.htm#biossoundfunctions

hardware to function properly and are what gets called to initialise and maintain
the sound system save for SoundBias which can change the internal sampling
rate.

The DS The DS actually gained a fair sound upgrade in terms of internal
capabilities with support for 16 channels of audio and onboard PCM (8 or 16
bit) and ADPCM audio decoding and a second speaker in hardware (the GBA
also supported stereo but only for headphones).

Each of the 16 channels/registers can be told what volume to play things at
and whether to pan the audio to a given speaker as well as hold and loop options
for short samples. The channels 8 through 13 can be told to generate various
types of PSG noise (a square wave you can change the duty cycle of) and 14 and
15 can be used for white noise. Noise is important for various effects in audio
(for one absolute silence is not something most humans can abide) and can make
things sound more complex than they actually are not to mention noise is hard
to compress and being noise there is no real need for it to be repeated exactly
so generating it is useful.

Basic music theory One of the many sections that has guides to it longer
than this one but a knowing a few things about how music has traditionally been
formulated can help and much like learning a bit about how various creative
works are often constructed can help you work with others in a team, put into
words why you find something not to your liking or indeed why it works and
more importantly give an educated guess as to the limits, design and capabilities
of a given setup. Much like ROM hacking though many of these ideas and
techniques are not hard and fast and those that know what they are doing
can break from them to great effect although also much like ROM hacking and
other scientific pursuits those attempting to take shortcuts and twist techniques
without a somewhat deep understanding of why they are doing it will often
come up short with little chance of being able to move backwards and make
something good from their efforts.

For the most part these will be more useful for the times you are dealing
with tracker type formats as other times you will usually just be injecting wave
type sound of some form which if you know the header and encoding format is
probably just a long winded and tedious task at worst.

Although human hearing is relatively continuous it became useful to classify
certain frequencies (and multiples thereof) as notes. Typically there are seven
which in most of the English speaking world and much outside it are given the
letters A through G before they wrap around and start counting upwards again
in the next octave which at this point is double the starting frequency. There
are all sorts of relations and breakdowns after this with two of the most useful
ones being the circles of fifths and the idea of musical scales.

Two or more notes (typically three) that sound like they were played together
can make a chord. In general parlance a chord should be sounds that sound
pleasant to the ear.

192

Dissonance is where notes/chords played together or the interval at which
notes are played does not sound that pleasant or could be said to sound harsh.
Quite often dissonance can be used but will then need to be resolved before
moving to something else. As mentioned though musical “rules” can be broken
to great effect with a special case of dissonance known as tritone aka the Devil’s
chord forming the basis for a lot of hard rock and heavy metal.

Tempo refers to the speed at which notes are played and has large implic-
ations for how a piece of music is perceived even going to so far as to be a
hallmark of a genre; in games an increase in speed will often be used in a panic
scenario with the drowning/low air warning in early Sonic platformers or the
increase in tempo when you near the top of a Tetris playing field being great
examples. The ability to easily and controllably change tempo on the fly is then
one of the main reasons sound generation has stuck around as opposed to simply
opting for waves all the time.

Most music is based on repetition, anticipation and buildup and indeed most
find such arrangements pleasant to listen to. A popular example of this being
ignored in part is the drop where something will be played repeatedly, quite
often at a faster pace for each repeat, in an attempt to build up a pattern
before intentionally being halted (technically it is just a change in rhythm or
occasionally the instrument doing bass as they tend to provide rhythm for a song
or are perceived to) and moved into something else; sometime Tetris backing
track and Russian folk song Kalinka is a fairly noted for using a drop.

Not such a concept as much as a technique commonly is used is layering
where various instruments (or indeed noise) are played at all over the top of
each other with the adjustment of volume levels for each and timing thereof
being known as mixing. Although it is more associated with video and dubbing
of audio should there be a noticeable pop as the sound recording is started
or silence be replaced with some noise (often referred to as room noise) and
that makes it into the final cut people have a tendency to notice. This is not
so commonly seen on handhelds and older consoles but as games have gained
increasingly larger amounts of voice acting this idea has not been observed as
well as it might.

Today games consoles are reasonably able to play sounds even a trained
ear can not distinguish from one another and thus are often afforded full com-
positions no different to standalone music but corners can be cuf®] and ROM
hackers can be called in to drag it back to form.

13There is also the case of games doing it better with a notable case being guitar hero
where Death Magnetic from Metallica was often considered to be mastered better in the
game than the CD version. This is something of an aside though and moves into territory
known as the loudness wars where tracks are amplified to the point of clipping (the point at
which the amplification can not happen any more without a loss of information also known as
normalising) and then often more if only a handful of instruments will be cut out (typically
drums) and then often a bit more to make sure all parts of the track are as loud as they can
be. |Bob Katz - Loudness: War & Peace |is a nice video on the subject and Metallica Death
Magnetic - How to lose the Loudness War is a link to the Metallica song in question and a
side by side compare of the versions.

193

http://www.youtube.com/watch?&v=u9Fb3rWNWDA
http://www.youtube.com/watch?&v=DRyIACDCc1I
http://www.youtube.com/watch?&v=DRyIACDCc1I

4.1.1 SDAT (NDS)

Although several other formats have since been discovered to be quite popular
(for years the list of non SDAT games stood at less than ten) the dominant
format for audio on the DS is known as SDAT.

Format overview The SDAT format is a fully featured if not very extensible
or compressible audio format for the audio engine supplied with the DS SDK.

It features the ability to do tracker/midi style audio in the format known as
SSEQ, short samples in the likes of SWAV and full length audio tracks in the
form of STRM and anything else is a helper format to allow the above formats
to do their job.

Format and formats within

e SDAT - the main format that both stores the files and stores the relations
to each other.

e SSEQ - the tracker (midi) like format that plays instruments according to
a scripting language.

e SSAR - archives of small SSEQ sounds. Usually used for sound effects
rather than music.

e SBNK - the instruments library for SSEQ. Articulation Data can also be
given to determine how a sample is read (attack, decay, sustain and release
options available).

e SWAR - the library of the actual wave representations of the instruments.
Every SWAYV is stored in an SWAR without exception.

e SWAYV - the individual wave representations of the instruments and occa-
sionally sound effects.

e STRM - longer wave files (PCM or ADPCM) that can extend for several
minutes and include full vocal audio tracks. Can be found outside the
SDAT

There are a few other formats sometimes seen alongside them including SMAP
and SADL but they are usually considered leftovers from the build process.
Useful to look at and indeed the finding of an SMAP file played a key role
in the early reverse engineering of the format but not usually necessary to do
anything to for hacking purposes. SMAP files can be generated with tools like
vgmtoolbox and although other parsing tools are available these are often in a
very readable format.

194

SSEQ basics SSEQ is a scripting language of sorts aimed at tracker style
audio and things people like to do there. It is probably closer to midi than
some of the more advanced tracker formats like XM but unlike midi rather than
an instrument being turned on and then off the instruments are called with a
duration value inbuilt into the call.

The scripting commands are not always the same length, sometimes contain
a payload and such so decoding them from an arbitrary point can be a bit
trickier than simply reading things. You can however get a full text decoding of
the format though using sseq2mid and the - | option (you might want to pipe
it to a text file with >>sometextfile.txt) and VGMtoolbox will also provide the
same output (it has sseq2mid as part of the toolchain).

It will produce something like

SEQ_BGM_C_01.sseq:

00000000: 53 53 45 51 | Signature | SSEQ
00000004: FF FE | | Unknown
00000006: 00 01 | | Unknown
00000008: EC OF 00 00 | SSEQ file size | 4076
0000000C: 10 00 | | Unknown
0000000E: 01 00 | | Unknown
00000010: 44 41 54 41 | Signature | DATA
00000014: DC OF 00 00 | DATA chunk size | 4060
00000018: 1C 00 00 00 | Offset Base | 0000001C

0000001C: FE 77 02 dokok — ko m — K e e e

Signify Multi Track

| |
0000001F: 93 01 D4 02 00 | Open Track | Track 02 at 000002FOh
00000024: 93 02 D7 05 00 | Open Track | Track 03 at 000005F3h
00000029: 93 04 EF 06 00 | Open Track | Track 05 at 0000070Bh
0000002E: 93 05 23 0B 00 | Open Track | Track 06 at 00000B3Fh
00000033: 93 06 A8 OC 00 | Open Track | Track 07 at 00000CC4h
00000038: 93 09 F9 0D 00 | Open Track | Track 10 at 00000E15h
0000003D: C7 00 | Mono/Poly | Poly (0)
0000003F: E1 69 00 | Tempo | 105
00000042: 81 2D | Program Change | 45
00000044: CO 40 | Pan | 0
00000046: C5 0C | Pitch Bend Range | 12
00000048: C6 40 | Priority | 64
0000004A: CA 00 | Modulation Depth | 0O
0000004C: CB 10 | Modulation Speed | 16
0000004E: CC 00 | Modulation Type | Pitch
00000050: CD 01 | Modulation Range | 1
00000052: EO 00 00 | Modulation Delay | 0
00000055: C1 7F | Volume | 127
00000057: D5 TF | Expression | 127
00000059: CO 4D | Pan | 13

195

0000005B: 48 6E 0B Note with Duration

0000005E: 80 0C Rest 12
00000060: 47 6E OB Note with Duration B 4 [71] wvel:110
00000063: 80 0C Rest 12
00000065: 48 6E OB Note with Duration C 5 [72] wvel:110
00000068: 80 0C Rest 12

0000006D: 80 0OC Rest 12
0000006F: 45 62 OB Note with Duration A 4 [69] vel:98
00000072: 80 0OC Rest 12
00000074: 47 6E OB Note with Duration B 4 [71] wvel:110
00000077: 80 0OC Rest 12

| |
| |
| |
| |
| |
| |
0000006A: 43 57 OB | Note with Duration | G 4 [67] wvel:87
| |
| |
| |
| |
| |
| |

00000079: 48 6E OB Note with Duration

Also available is a graphical decoding in VGMtrans but editing is not really
possible in VGMtrans.

Being a fairly straightforward scripting language you can then change whatever

you like in whatever fashion the engine is capable of with one of the most com-
mon hacks is looping which will be covered later. High level options are available
where you convert things from midi to SSEQ and use looping flags afforded by
various programs however it is reasonably easy to do manually and allows for a
greater range of methods.

General commands Most programming languages from assembly up to
the highest level programming languages will have a huge selection of inbuilt
commands but most of the time it will boil down a handful of key commands
or classes thereof used over and over again. SSEQ is no different and the four
main classes of item are

e Tones/instrument

e Jumps, branches and calls

e Volume and tempo manipulation.
e Mathematical and file operations

Tones/instruments do what they say and call an instrument and a length it
wants to be played for. On the stock setup (if such a thing can be considered
to exist) middle C is located at 60 with the range running from 0 to 127 (00
to 7F) but games can and do change the instruments not to mention have the
ability to call slightly longer samples.

Jumps, branches and calls are somewhat limited compared to general pro-
gramming but it allows for the construction of loops and includes loop counters
and other such things.

Volume (including panning) and tempo manipulation do what they say.
Maximum tempo is 240 beats per minute (see timing section in a few lines)

196

C 5 [72] wvel:110

C 5 [72] wvel:110

dur:

dur:

dur:

dur:

dur:

dur:

dur:

11

11

11

11

11

11

11

Mathematical and file operations are typically designed to be used to aug-
ment other areas rather than anything general purpose.

Multitrack is possible if it is declared at the start of the first track , up to
16 tracks can be done in one SSEQ.

Timing The timing engine underpinning the SSEQ sound engine stems
from the ARM7 timer and works in an overflow manner where each pulse (cycle)
the tempo value (units of it known as ticks) is added to a counter and if the
value exceeds 240 the SDAT /SSEQ is processed processed for one instruction
and 240 is taken from the counter before it starts all over again. A quarter note
aka a crotchet is 48 ticks and is fixed as such.

Ripping STRM and SWAR/SWAV files can be easily converted/extracted
and manipulated seen as they are little more than wave files but ripping the
SSEQ tracks themselves has a variety of methods that can be used, converting
too them takes some more thought and will hopefully become apparent after
basic SSEQ manipulation is covered. Some of the earliest methods here after
the use of loop back cables from headphones ports and emulators were tools
that just attempted to translate the standard SSEQ sounds to a midi interface
and it kind of worked although was often nothing like the original. Crystaltile2
has the ability to parse SDAT and supposedly play it back but for the most part
it is broken so it is not mentioned as a ripping tool.

On more than a few occasions hidden tracks and tracks that did not make
the final game have been recovered from games.

All the tools linked should also be open source as well.

Emulators and loopback The easiest method and often the crudest; has
three main advantages in that you can mute audio tracks in emulators (and if
you get creative with cheats hardware as well), you can edit the ROM to play
the audio in whatever order you wish with filesystem level hacks and it also
works on the occasions a custom format you do not wish to reverse engineer has
appeared. Desmume has featured audio grabbing capabilities for a long time
now.

SSEQ2midi |Downloads section where it can be found

The earliest method that attempted to decode the SSEQ format into an-
other format. It attempted to approximate the standard banks/logic to midi
controllers and worked fairly well for the most part but things did not sound
exactly as they did on the originals.

Usage is command line only and here is the output of the usage

197

http://code.google.com/p/loveemu/downloads/list

usage : sseq2mid (options) [input-files]

options:

—help show this usage

-0 —noreverb set 0 to reverb send

-1 —1loop convert to 1 loop (no loop)

-2 —2loop convert to 2 loop

-d —loopstylel Duke nukem style loop points (Event 0x74/0x75)

-7 —loopstyle2 FF7 PC style loop points (Meta text "loop(start/end)"
-1 —-log put conversion log

-m —modify-ch modify midi channel to avoid rhythm channel

____ sseq2mid [20070314] by loveemu
There are also STRM and SWAR conversion tools available from the same

author.

NDSSNDEXT Download mirror

Technically called NDS Sound Extractor it usually gets called for the name
of the exe file (NDSSNDEXT) and it is a self contained tool for ripping DS
audio files. Much like SSEQ2midi and some aspects of VGMtrans it attempts
to approximate the original sounds but in a different way to standard SSEQ
which frequently had better results than the original SSEQ2midi and it also
converts SWAR archives by default. It is command line only and usage is quite
simple

<<NDS Sound Extractor v0.3 by TENDON > >

Usage : ndssndext.exe [options] <file...>

Options: -x extract files only(no decoding)

-s show processing status

—help show this usage

VGMtrans (DLS) Download mirror

Arrived around the same time as NDS Sound extractor and eventually got
more stable. Still used today primarily as it has the ability to create DLS files
although certain programs can have issues (awave studio usually cuts through
it and can put things in rmi format which carries instruments) which some midi
playback methods can use to make the sounds match more closely to the original
hardware; the trained ear can still tell the difference between hardware and midi
DLS but it is not the night and day different the other methods often exhibit. It
does also feature graphical parsing of SSEQ and similar files which is invaluable
when actually editing SSEQ tracks even if you have to actually edit thing in
another editor. Usage is drag and drop onto the file (SDAT or NDS) and right
click on various sections to get what the allow for. GUI is quite customisable as
well with toolboxes able to be dragged around at will.

198

http://filetrip.net/nds-downloads/utilities/latest-nds-sound-extractor-f28818.html
http://filetrip.net/nds-downloads/utilities/download-vgmtrans-92909-f27960.html

—inixg

| Fle view window ke

2=

[Scanned Fies 2 x| swap_yGROUP_STRIMSEFS | BANK_EHON | SEQLSEN_P |
| Jsound_data_o0.sdat 0ooo7cio W 556Q Chunk Header
00007C20 [#48 DATA Chunk Header
00007C30 1 ack Poirters
00007C40
00007CE0 BB botewait Mode
00007CE0 A Tempo
oooo7c70 i Program Change
00007CE0 i volume
00007C90 B pan
00007CA0 B Expression
JEEEE = MR 2 =llo0007ce0 7 Mote with Duration
File Hame: [Type |=lfoooa7cco Mok with Duration
BANK_VLKIYAMA Instrument Set 00007CD0 Y Rest
P BANK_AYATAIL Instrument Set 00007CED [Mote with Duration
EANK_BELFNE Instrument et 00007CFO Y Rest
i BANK_CHOIKIN Instrument Set 00007000 {7 ote with Duration
BANK_HART Instrument Set 00007010 Y Rest
P BANK_SENLASBOSS Instrument Set 00007020 o Mote uith Duration
BANK_MAIN) Instrument Set 00007030 Y Rest
W BN _VLLHI Instrument Set EEEE:‘;:E ij :Z: with Duration
BANK_HaINIz Instrument Set 00007D60 7 Mote with Duration
BANK_OP1S Instrument Set 00007070 Y fest
Woani_opzs Instrument Set 00007D80 7 Mote with Duration
BANK_END) Instrument Set 00007DS0 Y Rest
WEATK_EHON Instrument et |ogoo70a0 [Mot with Duration
BANK_TITLEZ Instrument Set 00007DEQ Y Rest
W BANK_YUMEYADO Instrument Set 00007DC0 7 Mate with Duration
W BANK_0P255P Instrument Set 00007DD0 Y Rest
S sEQ_sEN_P Sequence __ljmooo7oED " Mote with Duration
B SEQ_SEN_UMEL Sequence 00007DFO Y Rest
B SEQ_SEN_UMEZ Sequence 00007E00 7 Mot with Duration
P SEQ_SEN_TAKE Sequence 00007E10 Y Rest
L Ssquance 00007E20 Mok with Duration
S SEQ_SEN_RA Sequence 00007E30 9 Rest
& o sEnsPl sequence 00007E40 Mok with Duration
FSEQ_SHORI Sequence 00007ESO Y rest
$F EQ_MAKE Sequence EEEEZE:E i? :Z: vith Buration
(B scq THevEL Sequence 00007EB0 [Mote with Duration
EFsEQ or2 Sequence 00007ES0 Y Rest
S8 SEQ_DIINN_SETS Sequence 00007ELD [Mote with Duration
BFseq uTiL Sequence 00007ERD | Y Rest
| Nane [SEOSENUNEZ gy [¥] Do e 7 SEQ_SEN_MAT [SEQ_MAKE 7 SEQ_AVAKASHIL 7 SEQKAKUSHIN
bS Ve SEQ_SEN N2 7 SEQ_SEN_LMEL 7 SEQ_SEN_RAN : SEQ_THEMEL EQ_ATAKASHIZ : SEQ_KAOCHD
E it SEQ_SEN_UMEZ SECy_SENSP1 Zseq_oP2 EQ_IINKOL 2 sEQ_MURAL
5| BANIK_SEN_UME2 7 SEQ_SEN_TAKE 7 SEQ_SHORI (7 5EQ_DIINN_SETS 7 SEQ_ISEKT 17 SEQ_KANA_MACHT
S|l swiaR_vGROUP_1
|
= Track 1 Offset: 0x7C56 LLength: Ox18F

=l

i
4

vgmtoolbox Homepage

You will also need to find the relevant decoder kit (Caitsith2’s testpack.nds)
that is not included with the standard download.

CRC32

FB16DFOE

MD5

3D902DED2E237D9D0A329E3BC8COA577

SHA1

7B23ABA82BA2957B3D5FC12B4FA99F02DAGFF 766

DLS files from VGMtrans are very useful so it sticks around to this day but
in many ways VGMtoolbox is the best method available for ripping. Much like
earlier audio formats the playback methods actually use an emulation of the DS
sound hardware (foobar compatible plugins are available in vio2sf) although the
playback side of things has since been abandoned so it is not, up to par with the
latest DS emulation.

Also features the ability to generate SMAP files and other such niceties (also
highlighted green on the picture below).

199

http://sourceforge.net/projects/vgmtoolbox/files/vgmtoolbox/
http://filetrip.net/nds-downloads/utilities/download-vio2sf-2011-05-27-foobar-f29356.html

¥GMToolbox r855 (2012-03-10 0755) -3 x|

Other
E YGMToolbo
[#- Auditing Tools S ource Paths
--ExaminefEprulation Tools —
GENH SDAT IC.\wdeo\goldsun\sound_data_DD.sdat . |
E-Misc. Tools Output Path IC:\video\goldsun\aaa |
[+- GBS Tools
- Hoot Tools — Set Information
- NSF Tools Game | Game Serial I\
[+- Stream Tools 5
= VGM Tools it |
= ®5F Tools .
Ci ht N I
SF2EXE e | &=
- %5F Recompress
- w5F Tag Editar)) -
i Salect| Mumbei| File ID | Size Wame Bank | Yolume| CPR | PPR
- 28F
i 3 oooo |0 009496 |SEQ_SEN_F.sseq g1 1o B4 E4
- MNDSTo25F |
2CF Timer v |oom 1 007743 |SEQ_SEN_UMET.sseq g 100 B4 E4
i+ SDAT Optimizer ¥ |ooo2 |2 003188 | SEQ_SEN_UUMEZ sseq il 100 64 64
- Ps;ﬂ to¥2 Tag Copier # |oo3 [z 003480 | SEQ_SEN_TAKE.sseq 45 |10 |s4 |64
5 PSF2 ¥ |ooos |4 007532 |SEQ_SEN_MAT sseq 46 (100 B4 |64
- PSP ¥ |ooos (& 006832 |SEQ_SEMN_RAM.sseq 47 1o B4 E4
- 351 ¥ |ooog |6 012743 |SEQ_SENSP1.ss2q B0 (100 |84 |64
[=- Extraction Tools
- Generic ¥ |ooo7 |7 001804 | SEQ_SHORLsseq 10 100 G4 23
Nintendo DS | ~ looog s 000300 |SEQ MAKE.ssea 11 1127 e | 64 |
4 L3
Make2SFs| Cancel |
B Slrean_ns Copying STRM files -
[=- Compression Tools Oplimizing SDAT
: gzip Compress/Decompress | | Build 25Fs
. zlib Compress/Decompress | || Tagaing Dutput
[Other Timing Qutput ﬂ
00:00:25 |
1 (| Make 25Fs...Complete

Other tools Various tools have been made to convert to and from various
things and play them back and they will be mentioned quickly

MKDS Course modifier GBAtemp thread. Along the way MKDS course
modifier picked up several pretty good abilities in the conversion to and
from SDAT audio stakes including the ability to generate DLS files.

Kazowar’s Player GBAtemp thread. Although more or a playback tool than
anything else Kazowar and a handful of others developed a tool that could
play back the SDAT audio format on DS hardware.

swavtoswar GBAtemp thread A simple tool that can convert from swav to
swar and from wave to swav.

midi2sseq fincs mid to SSEQ. Usually the subject of a lot longer tutorial the
idea was if SSEQ could turn to midi then midi could be turned to SSEQ.
Between slightly troubled conversion and different sound banks reproduc-
tion is not always 100 percent accurate but combined with other techniques
and injection methods a lot can be done and it can be used as an interme-
diate format for those that want some higher level editing options. Two
main versions exist and additionally looping hacks are quite commonly
done on top of this although the later version of midi2sseq linked there
does support a lot more in that field.

200

http://gbatemp.net/topic/299444-mkds-course-modifier/
http://gbatemp.net/topic/306997-nds-music-player/
http://gbatemp.net/t243430-swav-to-swar-converter
http://fincs.drunkencoders.com/2011/07/03/mid-to-sseq-converter/

tinke Google code page. Mentioned elsewhere in the guide as it has some
serious abilities in a lot of fields it is definitely worth having if you are
undertaking any sound work on the DS (SDAT or otherwise). It is also one
of the few tools able to insert files into SDAT files and repoint accordingly.

Rebuilding Rebuilding a SDAT file after a minor edit (that changed a file
length) is possible and Kiwi.DS’ NDS editor| has a rebuilding option available
but the reliability is suspect at best so most opt to either repoint the relevant
file to the end of the SDAT file and change various lengths in the file (the SDAT
length, the File Block size and the location in the FAT section).

More recently Tinke| has gained a measure of injection ability (with the
ability to repoint) so it is worth having a look here. Usage is quite similar to
the rest of the program but the general order of operations is open the SDAT file
and view it, press “Change file”, find the replacement file, repeat as necessary
and finally press “Save SDAT”.

o]
Properl Content
b
Fomat SHD_BGM_M_PLZ.

Offset 013100
Size 2938

% Full file information - sound_2.bin.sdat

i sDaT -
R S5EQ

- SHD_BEM_M_TABI
- SHD_BGM_M_TABI_TOWN
- SND_BGM_M_PROLOGLE

SND_BGM_M_KOPPA

SND_BGM_M_DREAM

SMND_BGM_M_INTRO

SHND_BGM, W PLZZLE
SND_BGM_M_PEACE

-~ GND_BGM_M_RESTAURANT

- SHD_BGM_M_BOOM
- SND_BGM_M_BOOM2

SND_BGM_M_TABIGARS

SHD_BGM_M_KIGAN
SHD_BGM_M_ELDORADO

SHND_BGM_M_SHOP3

SHD_BGM_M_GAIBARA
- SND_BGM_M_ENKA
- SND_BGM_M_FIELD_1
- SND_BGM_M_FIELD_2 I Enctledioon
- SND_BGM_M_FIELD_2_1

SHD_BGM_M_DUNGEONT qeiemena
SHD_BGM_M_DUNGEONT_2

SHD_BGM_M_DUNGEONZ
SHD_BGM_M_DUNGEONZ_IN Urpack: | W) Ifarmatian
SHD_BGM_M_DUNGEON3

- SND_BGM_M_DUNGEON3_2 bt | - e
- SND_BGM_M_DUNGEON4 E
- SND_BGM_M_DUNGEON4_2
L SRR o | m—

4.1.2 Others

Although SDAT is very common there are other formats used by several games
and worth knowing about. There have been a few occasions where some of
the SDAT stuff has been found external to an SDAT file and if there is an
archive/packing format on top of the standard nitro file system the SDAT com-
ponent will usually be found separate to it but not always (recall the packing
example from El Tigre) but this is not what this section is about. With the
exception of music games most games with that use a custom format will be
a known format or at best a simple wrapper to PCM audio. Midi was seen in
Rhythm N Notes but it might well have been a developer leftover.

DAT format Seen in Disgaea it appears to be a wrapper format for the
files usually contained within SDAT. Composed mainly of .dat files which are

201

http://code.google.com/p/tinke/
http://filetrip.net/nds-downloads/utilities/download-nds-editor-01-f5658.html
http://code.google.com/p/tinke/

archives starting with the magic stamp “DSARC FL” and followed by the
amount of files to come (in hex) and then a listing of the file names and 0000
0100 0000 before starting the file name, size and location (each subfile is pad-
ded/aligned to 100 hex). On top of this there is a file with the extension .tbl
which appears to contain various pieces of information about the files.

The SSEQ side of things is further wrapped in MSND files which start with
a DSEQ section and some of the other files appear to be followed by other
sections.

Procyon Audio Usually better known by the extension it commonly comes in
known as SAD (SD and SADL as well). Seen in several notable games in the DS
library including Luminous Arc and Professor Layton. In practice it is a wrapper
format for some IMA-adpem. It differs from system to system depending upon
their implementation of ADPCM but for the most part it holds. Some versions
(mainly ones similar to Professor Layton) are supported by the VGMstream
library which has had frontends made in several programs and additionally is
used by tinke.

SMD, SED and SWD Occasionally seen in wrapper formats (SIR0 in Zom-
bie daisuki and various versions of PH in Inazuma Eleven) this is actually a
sequenced format as well and one of the few to use a truly custom format to do
it.

PCM audio N+ used raw PCM audio (although it is minimal the wave format
does actually provide some more information). Import and export with Auda-
city should be possible.

Conventional wave files Electroplankton was observed to use standard win-
dows style wave files and could be edited as such. Brothers in arms also used
standard wave files but every file in the game was put into the BAR packaging
format (a fairly basic offset pointer affair) first. Luminous arc despite using
other formats also had a wave file for the opening section.

OGG files Some of the official wrestling games were seen to use the OGG
audio format and it is popular on other systems; WWE SmackDown vs Raw 2010
was the original source and looking at some of the other information it is likely
to hold for other entries in the series as well. OGG is a fairly complex format
that arose in an attempt to provide an audio (and later video) compression
format free from patents and the associated issues (for commercial use you may
have to pay codec creators for using their format). VGMtrans can search for
and extract OGG files from container formats.

ADH/AHX/ADX Crimiddleware made a series of audio and video formats

that first rose to prominence back on the Dreamcast although it was spotted on
the DS and really came to the fore when it was seen to be used in The World

202

Ends With You (TWEWY) which allowed remixes to be made with some simple
tools.

DCDEV!| has ADX2WAV and WAV2ADX tools which do much of what is
wanted but newer versions of Tinke also support it as does VGMToolbox (Misc.
Tools -> Extractions tools -> Streams) and as popular game music format
libraries have existed for a long time with support for it there are plugins and
support, for it in lots of places.

Cri middleware maintains a list of games that use their technology (note that
not all are the audio as they do video and file management formats as well). If
you want some more on how the format is implemented and some of the abilities
of it there is/multimedia.cx CRI ADX format discussion| and Imultimedia.cx CRI
ADX ADPCM discussion.

It should be noted they Cri middleware have made a new ADX format seen
on a few PSP games known as ADX2.

Proper custom stuff This is usually reserved for music games that need
extra formats as part of their method of operation although this gets closer to
level formats. Taiko no Tatsujin used SDAT and a custom format known as
DSB, Daigasso Band brothers which uses a format known as BDX and another
called gak and has a selection of tools at [Yasu soft| and information at |Auby.no.

4.1.3 Tracker formats

More popular in the late 1980’s and early 1990’s than right now they are none
the less very closely tied to games and game/hacking culture (some people
erroneously call the sort of sounds they produce keygen music with a better
term being chiptunes). There are many formats but the big ones are XM, MOD
(not to be confused with the DS video format or the camera video format), IT
and midi although midi is not quite the same thing. As you have seen already
Nintendo made their own tracker format called SSEQ which is used extensive
although if you open up GBA and DS games and find something else you are
more likely to find XM or MOD than any others (not that they can be dismissed
lightly as s3m also featured on the GBA).

They are usually editable directly and options vary as widely as music cre-
ation does but Open MPT| should get you started.

4.1.4 General rule of thumb for custom audio formats

Mentioned in passing already but worth noting properly is that although there
are a handful of exceptions (mostly music games) most of the time if you see an
audio format that is not SDAT it is likely one of three things

1. A known complex audio format (ADX/AHX, MP3, OGG, one of the
tracker formats and such)

2. A wave/PCM file or a wrapper for it

203

http://www.geocities.co.jp/Playtown/2004/dcdev/dcdev.html
http://www.cri-mw.com/product/adoption/platform/ds.html
http://wiki.multimedia.cx/index.php?title=CRI_ADX_file
http://wiki.multimedia.cx/index.php?title=CRI_ADX_ADPCM
http://wiki.multimedia.cx/index.php?title=CRI_ADX_ADPCM
http://home.usay.jp/pc/etc/nds/
http://www.auby.no/wiki/index.php?title=Band_Brothers_DX
http://openmpt.org/

3. A known custom format that rose up with the DS (mainly music games).

If it is not a plain audio format (remember to match things if you change it
unless you can demonstrate it works with better or worse) then chances are it
will have been seen in games before. Equally if it is not one of those it will
probably match the hardware quite closely.

Also and far less of a hard and fast rule it is usually SDAT format or some-
thing else entirely but some do still mix SDAT and their other formats.

4.1.5 Common DS SDAT audio hacks (undubbing, injection, tweaks
and relinking)

Although much has been covered there is more and the need for some example
hacks. SDAT hacking can be very simple or it can require a lot of thought and
effort to do although that is usually just a matter of thinking things through as
the format is fairly logical.

Basic undub

The basic undub is a very simple hack; you find the sdat or equivalent files in
the source game (usually the Japanese version) and replace the European or
North American’s SDAT file (renaming if necessary) and rebuild the ROM if
you unpacked it to do it. If the sound format got changed en route (unlikely
but covered later) then at best relinking will need to be done and at worst a
proper header rebuild or injection (or the script is converted to the game that
houses the would be sound source).

Relinking

Occasionally ROMs come with nice tracks for part of the game and ones someone
may not like to hear at other times. An early example of this with a ROM
that was hacked to alter things here is Tetris DS which had a version of the
Korobeiniki (even if it was internally called Karinka (Kalinka) which is another
somewhat similar sounding Russian folk song sometimes seen in Tetris games)
which only played at later stages in the game and it otherwise played a selection
of tracks from the original NES Mario brothers title. Knowing how to do this
also forms the basis for several other types of SDAT audio format hack.

Although you could go into the game and change the relevant calls to tracks
in the game there are two main ideas on how to set about changing this

e The crude way that usually works
e The slightly more complex but proper way

The crude method relies on the idea that most tracks will not deviate from the
standard bank for the game so all you need to do is find the location and size
markers for the file you want to change and the one you want change them to

204

and replace as appropriate. Once you have the relevant data this quite often
can be done with 20 seconds of copy and paste.

There are all sorts of methods but step zero is finding out what tracks you
want to edit and be replaced by which is usually this is done by ripping the
relevant audio although much like regular file finding names can quite often

help you.

You could generate an SMAP file if you wanted but an output from some-

thing like Crystaltile2 is often just as helpful
@test_data.sdat - file information{file count:362/247)
File Sound Your(SPACE)

Skop

g [m[5]

sound files | absolute ... ‘ relative ... | size | list information ‘ -
‘? Sequences\D00-SEQ_SEM_P.S5EQ) 033EEZ00 Q000700 9496 000-0033-100-064-064-000

‘? Sequences\001-5EQ_SEM_UME1.55EQ 038F0720 Qo0o&120 7748 001-0008-100-064-064-000 o
‘? Sequences\002-5EQ_SEM_UMEZ,S5EQ 038F2580 Q000BFS0 9188 002-0009-100-064-064-000

‘? Sequences\003-SE)_SEM_TAKE.SSEQ 038F4950 0000E330 9430 003-0020-100-064-064-000

‘? Sequences|004-5EQ_SEN_MAT.SSEQ 038FEEAD 00010840 7532 004-002E-100-064-064-000

‘? Sequences|00S-5EC_SEM_RAN.SSEQ 038FaC20 00012620 6332 005-002F-100-064-064-000

7 Sequences|0&-5EQ_SEMSP1,55EQ 000140EQ 12745

O38FAGED
[0
038FE040

150

006-003C-100-064-054-000
004-100 oo
008-000E-127-064-064-000

? Sequences|INE-5EQ_MAKE.S5EQ 00017440 300

? Sequences|IN9-5EC_THEME1.55EQ) 038FE1E0 00017680 5460 009-000C-090-064-064-000
? Sequences|10-5EQ_OP2.55EQ) 038FFEED ONO190ED 4964 | 010-D031-127-064-064-000
7 Sequences\011-5EQ_DJINN_SETS.SSEQ O3900A60 | 00014460 3232 011-0034-120-064-064-000
7 Sequences|012-5EQ_UTIL.S5EQ 03901700 O0O1B100 2896 012-D00E-110-064-064-000
7 Sequences|013-5EQ_TRANING, SSEQ 03902260 ODDIBCED 3316 013-D032-090-064-064-000
7 Sequencesl014-5EQ_MAPL.SSEQ 03902F60 D0D1CI6E0 6052 014-D00D-090-064-064-000
7 Sequences\015-5EQ_FIRST DAN.SSEQ 03904720 OOOLELZ0 5940 015-D026-090-064-064-000
7 Sequences\016-5EQ_AYAKASHI,SSEQ O3905EED | OOO1FE60 3248 016-D00F-127-064-064-000
7 Sequencesl017-3EQ_AYAKASHIZ SSEQ 03906B20 | 00020520 2340 017-D010-127-064-064-000
7 Sequences|018-5EQ_JINKOL.SSEQ 03907460 ODOZ0ES0 2360 018-001 1-127-064-064-000
7 Sequences|019-35EQ_ISEKLISEQ 03907080 | 000Z17A0 3556 019-D028-115-064-064-000
2 Sequences|020-5EQ_KAKUSHIN,SSEQ 03908BA0 DD0ZZSAQ 2292 | (120-D029-120-064-064-000
? Sequences|021-3EQ_KAOCHD,S5EQ 03909440 | DDOZZEAQ 3232 (0121-D02E-115-064-064-000
? Sequences|022-5EQ_MURAL SSEQ 0390A140 ODOZ3B40 1760 | 022-0012-127-064-064-000
2 Seauencesl023-5E0 KAMA MACHISSEQ | 0390A820 | 00024220 2364 023-D013-127-064-064-000

=l

The crude method sees that the relative addresses and size values contain

the relevant information

Now either because you read the value from SMAP, read it from the file
itself (at location 20 hex for 4 bytes there is a pointer to the FAT section) or
simply searched for FAT in ASCII (every SDAT file will have it).

Going to a hex editor

205

H Hex Workshop - [test_data.sdat] =0 ﬂ

File Edit Disk Options Tools Window Help =21
#SEG s=e-clvv|e|lme(ssLofn [E0|[a]k s |
Se«nQ2ER s | a|r - s nlb [Mad|[BEE % *E

0000006CE0 [FFA0 0000 0000 0000 4641 5420 7cOF POOO|.
0000006CY0 [F7O0 0000 007C 0000 1825 Q000 000G 0000
0000006CED (0000 D000 20A1 0000 441
0000006C90 (0000 0000 s0BF 0000 E423
0000006CAD (0000 D000 B0E3 0000 0825
0000006CEO (0000 0000 ADDE 0100 6C1D Q000 Q0OC 0QCO|........7T.......
0000006CCO (0000 D000 2026 0100 BOLA e & .
0000006CDO (0000 D000 E040 0100 CC3l
0000006CED (0000 D000 CO072 0100 7007
0000006CFO (0000 D000 4074 0100 2C01
0000006000 (0000 0000 807E 0100 5415
0000006010 (0000 0000 EO9D 0100 6413
0000006020 (0000 D000 60a4 0100 ADOC
0000006030 (0000 D000 00B1 0100 500B
0000006040 (0000 D000 60BC 0100 F40C
0000006050 (0000 D000 60C9 0100 A417
0000006060 (0000 D000 20E1 0100 3417
0000006070 (0000 D000 60FE 0100 BOOC
0000006DE0 (0000 D000 2005 0200 2409
0000006090 (0000 D000 600E 0200 3809
0000006DAD (0000 D000 ADLY 0200 E40D
0000006DEO (0000 D000 ADZS 0200 F40B

0000006DC0 (0000 0000 ADZE D200 AQOC =l
test_data.sdat
2 ffset: 27758 [0x00006CEE] 2l instances of 'FAT' Found in test_data,sdat *
1
3BT Signed Byte O - Address | Length
8B Uinsigned ... 0 00006CES 00000003
16817 Signed Short 0
1B Unsigned ... 0
328l Signed Long 16187392
328 Unsigned .., 16187392
6487 Signed Quad 8935141...
S4BT Unsigned ... 8935141...
32817 Float 2.268336...
648 Couble 1.943062. .,
BHEBIT DATE
A e rore anen 1 a2 | (| L | I
Data Inspector A Structure biewer Compare J Checksum) Find Bookmarks J, Output /
Ready [OFfset: D000GCEE [value: 0 |52399232 bytes [ovR Mo

All just the flipped numbers.

If you look back at the SDAT file readout from Crystaltile2 you will see that
is the relative address. 9496 in hex is 2518 so you have the size as well.

The crude method which often works well simply copies and pastes the
location and size values over the files to be changed.

206

H Hex Workshop - [test_data.sdat] =0 ﬂ

File Edit Disk Options Tools Window Help =21
#=SE8 s =@d2C v ¥ |e|lm=/(ssLorn [E0|[a]«s |
Se«nQ2ER s | a|r - s nlb [Mad|[BEE % *E

0000006C60 [7F40 D000 0000 0000 4641 5420 JCOF 0000 .
0000006CY0 [F7O0 0000 007C 0000 1825 Q000 000G 00CO
0000006CE0 (0000 0000 007C 0000 1825 0000 000G DOCO
0000006C30 (0000 0000 007C 0000 1825 0000 000G 0OCO
0000006CAD (0000 0000 O07C 0000 1825 0000 000G 0OCO
0000006CRO (0000 0000 O07C 0000 1825 0000 000G 0O0CO
0000006CCO (0000 0000 007C 0000 1825 0000 000G 0OCO
0000006CDO (0000 D000 O07C 0000 1825 0000 0000 0000 ..
0000006CED |DO0D 0000 072 0100 7007 0000 0000 0000
0000006CFD (0000 0000 4074 0100 2c0l GO0O 0000 0000|....
0000006D00 (0000 0000 8078 0100 5415 0000 000G 00CO
0000006010 (0000 0000 EO09D 0100 6413 0000 000G 0OCO .
0000006020 (0000 0000 60a4 0100 AGQOC QOO0 0000 0OQO0O0|....
0000006030 (0000 0000 O0B1 0100 5008 0000 0000 00GO)..
0000006040 |0000 0000 H60BC 0100 F40C G000 0000 Q00O(.... .
0000006050 (0000 0000 60C9 0100 A417 QOO0 0000 0000|....

0000006060 |0000 0000 Z0E1 0100 3417 G000 0000 0Q0O0(.... ...
0000006070 (0000 0000 60FE 0100 BOOC Q000 000G 0QCO|....
0000006080 (0000 0000 2005 0200 2409 0000 0000 Q000|.... ...%.......
0000006090 (0000 0000 600E 0200 3809 0000 000G 0QCO|.... ...8.......
0000006DAD (0000 0000 ADLY 0200 E40D 0000 0000 0000 |................
0000006DE0 (0000 0000 A025 0200 F408 Q000 0000 0OOO|.....%.
0000006DCO (0000 0000 ADZE 0200 AO00C Q000 000G 00CO|................ =l

test_data.sdat

| foffset: 27872 [0x00008CED] I [{instances of FAT found In test_data,sdat x
f

- Address | Length
00006CES 00000003

3BT Signed Byte O
BB Unsigned ... 0
15807 Signed Short 0
0
)

I5BIT Unsigned ...

32BIT Signed Lang

328 Unsigned ... 0

S4BT Signed Quad 4076439,
S4BT Unsigned ... 4076430...
22BIT Float 0.

S4BT Double 2.014028...
SHBITDATE 00:00:00... 4 I I _’I

ISR MAE Pk A0TA 14 0

Data Inspector 4 Structure Wiewer Compare f, Checksum), Find { Bookmarks h output /

Ready [OFfset: D000GCED [value: 0 |52399232 bytes [ovR Moz

The more complex method takes the idea of multiple banks into account and
will change those as well else the game might try to play with a different bank
which could well make for a very interesting “cover” so to speak but maybe not
what you are searching for here.

On the crystaltile2 readout the final column has some data which corres-
ponds to the relevant information for the file in approximately the same manner
as an SMAP file.

The actual meanings to use the same terminology as kiwi.DS’ SDAT specific-
ations are in order “file number” “bank” “volume” “channel pressure” “polyphonic
pressure” “polyphonic”’. FileID which is not necessarily the same as file number
(fileID and file number can differ between sections as you can see in an SMAP
file). What is a flag and what is just information is debatable but much like the
sizes and locations in the crude relinking method it does not really matter as
long as it is the correct version.

In the example SEQ_ SEN P.SSEQ was the file in question. It has the
information about it in the INFO section which again you can either search for
or read off from 18 hex.

Now INFO is not quite as nice as FAT but it is still well within the realms
of some light copy and paste and much like everything else INFO has a header
section and a pointer section before that actual data section.

207

The pointer section it at 40h (technically there is a pointer but it should
always be at 40h as there is nothing variable before it), the first entry is the
number of files and you could multiply through and calculate it (if you were
making a program you probably would) but the value after is the pointer to the
first entry so use that instead.

You will end up with something like the following picture (note for the sake
of readability the address was shifted to the start of the INFO block)

~1o(x]
File Edit Disk Options Tools Window Help _1& x|
|zsE& s e (v @|z@(Bs10FDE
“‘:,-v w » K P E2 A | [+ - =% |_qr>1|ATaLa§ﬁH
0003C (0000 0000 5500 0000 9801 0000 (... .U....... fj
00048 (4401 0000 BOOL Q000 BCOL QOO0 (...

00054 |C801 0000 D401 0000 EOOL Q000).,
00060 |ECOL 0000 FE01 0000 0402 0000).
Q006C 1002 0000 1202 0000 2802 Q000|........ oo

000783402 0000 4002 0000 4C02 0000|4...@...L..
Q0084|5802 0000 6402 0000 7002 0000 |x...d...p..
Q0090 | 7C02 0000 BR0Z Q000 9402 Q000 ||...........
0009C | 4002 0000 AC02 0000 BBOZ 0000)............
000a8 |C402 0000 D002 0000 DCO2 Q000
Q00B4 |EBDZ Q000 F402 Q000 0003 0000 |............
0000 |0C03 0000 1803 0000 2403 0000)........ 3...
000Cc | 3003 0000 3C03 0000 4803 0000 |0, .. <. H. ..
000D (5403 0000 6003 0000 6C03 Q000 |T... ...1...

D00E4 |7B03 0000 8403 0000 9003 0000 |=...........
D00F0 |9C03 0000 A803 0000 B4O3 0000 |
Q00FC|CO03 0000 <Cc03 0000 DBOG3 0000vvvut.
00108 |[E403 0000 FOO3 0000 FCO3 0000 |............
00114 0804 0000 1404 0000 2004 0000 |........ -
001202c04 0000 3504 0000 4404 0000|,...5...D...
0012C|5004 0000 5c04 0000 6804 D000 |P.. . N...h...
00138 |7404 0000 8004 0000 BcO4 0000 |t...........
00144 9804 0000 2404 0000 BOO4 OO0O|...... ...t
00150 |BCO4 0000 <804 0000 D404 0000
QO15C|EQD4 0000 ECO4 Q000 FBQ4 0000 |............
00168 (0405 0000 1005 0000 1C05 0000
001742805 0000 3405 0000 4005 0000 |C...4...4@...
Q0180 |4C05 0000 5805 0000 6405 0000 |L...X...d...
0018C|7005 0000 7CO5 0000 8805 0000 |p...|.......

00198 |0000 0000 3300 6440 4000 0000 |....3.d0@. .
00124 | KNKTITN ! 04 [] | (
WIRRIemlOC 00 Q000 Q900 6440 4000 000CH.
D01BC ||)) 40 ¢) hd|
test_data.sdatl
llIJFFset: 420 [0x000001 A= X1 instances of 'TNFO Found in test_data.sdat x
2l 4l
EHT Sign.., 1 i’ Address | Length |
I::::Unsi--- 1 00000000 00000004
Sign... 1
IARITY E: 1 ;I 4 I I LI
Y Data Inspector £ st Compare)\ Checksum ,]\Find H-r\ Eookmarks }\Output [‘
Ready |Offset: 00000LA4 [Sel: 024 bytes

Pulling some information from it
0000 0000 3300 6440 4000 0000

208

0100 0000 0800 6440 4000 0000

Looking back at crystaltile2 and accounting for hex to decimal conversions
it all appears to hold

Now you do not want to replace the fileID as the SSEQ engine might use it
to address the file but the rest needs sorting.

_ioix
File Edit Disk Options Tools Window Help 18] x|
FSE&| s 82 (v v @ [m@ 851 0FD|E
‘:,-v((»f_‘,?_’,fil’,f\|&+/_+—-x/°/,|_<J|'>'||ATaJ,aQQH
00150 (gcOd Q000 c204 Q000 o404 Q000 | ﬂ
O0L5C (EOQ4 Q000 ECO4 Q000 FE04 Q000 |

Q0168|0405 0000 1005 0000 1c05 0000|............
Q0174|2805 0000 3405 0000 4005 0000|C...4...@...
Q0180 |4c05 0000 5805 0000 6405 0000|L...x.. ..
QOlsc|7005 0000 7C05 0000 8805 0000|p...|.......

00198 |0000 0000 3300 6440 4000 0000|....3.dE4E. .
D01a4 0100 0000 3300 6440 4000 0000|....3.d@4E. .
QO1E0D (0200 0000 3300 6440 4000 0000|....3.d@E. ..
QO1BC (0300 0000 3300 6440 4000 0000|....3.d@E. ..
DO1Cs (0400 0000 3300 6440 4000 0000|....3.d@4E. .
Q01pd 0500 0000 3300 6440 4000 0000|....3.d@4E. .
QOLED Q600 0000 3300 6440 4000 0000|....3.d@E. ..
QO1EC |O700 0000 0AD0 6440 4000 0000|._..... daa. . .
QOLFB |0B00 0000 0BOO FrR40 4000 0000|....... @d. ..
Q0204|0900 0000 0C00 5440 4000 0000|...... z@d. . . =l

test_data.sdatl

Xl ffset: 492 [0x000001EC lel instances of TNFO' Found in kest_data,sdak X
| |

0T Sign,.. 7 ﬂ Address | Length |

émUmh-? 00000000 00000004

Sign... 7
ISHT i 7 LI | | _’I
\Dala Inspector 4 st Compare)\ Checksum ,}\Find /-'\ Bookmarks)\ Output [‘

Ready |Offset: DO0001EC [Value: 7 4

In this case it does not matter but SWAR archives contain the actually wave
form representations of instructions and sound effects, they are however some-
what apart from the rest of the SDAT and will need to be handled separately.
Fortunately other than relative pointers they are quite simple archives and all
data on files is contained within the files themselves so no need to edit things
beyond the pointers.

Injection

With undubbing, whole SDAT replacement, a bit of slicing files up (unlike
whole replacement it allowed at least some of the original audio to remain) and
relinking indicating that SDAT was a fairly resilient format the next step was
to try injection of other files into the game. Much of it fairly obvious if you have
a basic appreciation for the SDAT format but an example none the less.
Phoenix Wright 2 replaced with a Phoenix Wright 1 track is the order of
the day here. The audio from the first game is often considered to be top notch
and the second game left much of the classic audio out to the dislike of many
so here injection will be used to change the a track from the second game into

209

one as heard on the first game.

Rather nicely VGMtrans allows in place playback so

BGMO70 in second game is used as the objection track (Phoenix Wright
Justice for all track 7/objection if you go searching)

BGMO002 from original game used (a track otherwise known as “Phoenix
Wright =~ Objection! 2001”)

There are of course several ways to approach this but as one file is being
replaced with another the obvious thing to do is replace one file with the other.

Basic file replacement with tinke was already covered but here is what the
Phoenix Wright Justice for All SDAT will look like

===

Save SDAT Cove VA,

nnnnnn =

Name and location of the track that wishes to be gone and the track being
used to replace it. With things known it is but a few basic clicks.... it will
probably play but will not sound anything like the original. This is as the SSEQ
format is not standalone and in this case has three helper files (see bottom left

box).
=lojx|
| File tiew ‘indow Help
IE- I
Detected Music Files x| BGMO0Z \ 4px
Flewne |tpe 4] SSEQ Chunk Header 4]
DATA Chunk Header
Track Painters
-4 Track L
Track2
p Track3
h Track4
p Tracks
h Tracke
h Track 7
p Tracka
h Tracks
) Track 10
h Track 11 -
[Track 12
) Track 13
= b Track 14 =
Name: [BGMO02 Tseozs &
3 L sEec &
= seozp &3
Tseoze 2
D se0zF &
= se0a0 2
seost &
Zse0z2 &
Tseo3s B
Tse0s &
(D sE0zs B
Tseozs &
ekl B
7 se0as &3
|
[k offset: 0xaz29E00 Length: oxs5DDC #

No problem just replace the other files in the same manner; the trouble
comes in that the SWAR “wave agb bgm” is common to a few files in both
games and it providing a fair few samples (the ones that match the names in
this case merely seem to be house a few longer samples). Replace and damn the
consequences works well enough and does indeed net the promised change and
as it would seem the games are quite similar at least the opening track which
is a rendition of Bach’s “Toccata and Fugue” and has only a couple of small

210

samples works well enough with the replaced file.

The proper way to resolve the issue as straight replacement only works to
a point is somewhat closer to the older methods involving a manual rebuild
(or indeed trying to dodge having to rebuild). Here rather than repoint an
entire file the relevant files would be added to the end of the SDAT and the
files repointed to that in a similar manner to the standard repoint but alongside
that the section lengths would also have to be expanded and on top of this the
grouping data will need to be changed to reflect the new bank. The following
is purely for the WAVE AGB_BGM in this case as the other sample library is
unique to the replaced SSEQ file; not all games will need this as some have a
bank and a sample library for each song and equally some games will just have
a single bank/sample library used for every sequence. Adding an entirely new
file is quite tedious and long winded so another song will be sacrificed and the
sample library it uses being used to house the required file instead; the bonus
here is there are a few voice samples for non English languages that could be
looked at.

Getting back to the matter at hand the track SEOBS is the sacrifice today
and replacement is simple enough but now comes the trick of reassigning the
sample libraries. As with most things in ROM hacking there are a few options
but the easiest way that will not damage the rest of the file beyond the otherwise
unused sacrifice is the chosen one. The bank file itself controls what notes look
to what SWAR but it references the INFO section of the SDAT header so that
is probably the better thing to edit.

After the SSEQ info section seen earlier and one for SEQARC there comes
the list of files associated with banks

211

H Hex Workshop - [sound_datapwZorig.sdat] - |E||L|

File Edic Disk Options Tools Window Help ===
ESHS ey ¥ e |me/BsLLED[EE[0]
e K2 EN A gl - =y |'>'||ATal,a:A|“Qﬂ'%§%

CF £5 — =

0000003588 |B500 0000 0000 FFFF FFFF FFEF
0000003594 [B6OD D000 0000 FFFF FFFF FFFF
0000003540 |B700 0000 0000 FFFF FFFF FFFF
00000035AC [BBOD 0000 0000 FFFF FFFF FFFF
0000003568 |B90D 0000 0000 FFEF FFFF FFFF
00000035c4 [BAOD 0000 0000 0100 FFFF FFFF
0000003500 |BEOD 0000 0000 0200 FFFF FFFF
000000350 |BCOD 0000 0000 03100 FFFF FFFF
0000003568 [BDOD 0000 0000 0400 FFFF FFFF
000000315F4 |BEOD 0000 0000 0500 FFFF FFFF
0000003600 |BFOD 0000 0000 0600 FFFF FFFF
000000360 |CO00 0000 0000 0700 FFFF FFFF
0000003618 |C100 0000 0ODO 0BOD FFFF FFFF
0000003624 |C200 0000 0000 0900 FFFF FFFF
0000003630 |C300 0000 0000 0AOD FFFF FFFF
000000363C |C400 0000 0000 0BOD FFFF FFFF
0000003648 [C500 0000 0000 00D FFFF FFFF
0000003654 |C600 0000 0000 0DOD FFFF FFFF
0000003660 |C700 0000 0000 OEOD FFFF FFEF|............
000000366C |CB00 0000 0000 OF0D FFFF FFEF|...oovnnn...
0000003678 [C900 0000 0000 1000 FFFF FFEF|............
0000003684 [CAQD 0000 0000 1100 FFFF FFEF|...vevnnn. ..
0000003690 |CEOD 0000 0000 1200 FFFF FFEF|............
000000369 [CCOD 0000 0000 1300 FFFF FFEF|. .. vnvnnn. ..
00000036A8 [cDOD 0000 0000 1400 FFFF FFEF|............
0000003664 [CEOD 0000 0000 1500 FFFF FFEF|...vevnnn. ..
00000036c0 [CFOD 0000 0000 1600 FFFF FFEF|.
OOOO003ARCC INO00 0000 0000 1700 FFFF FFFEF LI

suundﬁdatap...l

Ready |offset: 00003610 [value: 2048 5462
Sample from the SMAP file (alas fileID is in decimal here but 181 dec =B5
hex)
428 B label number fileID wa0 wal wa2 wa3 hsize size name
429 BANK_AGE_00 0 181 0 1656 “Bank\BANK_A4GE_00. shnk
430 BANK_AGE_07 1 182 0 1636 \Bank\BANK_AGE_07. shnk
431 BANK_AGE_25 2 183 0 244 \Bank\BANK_AGE_25. shnk
432 BANK_AGE_26 3 184 0O 148 “\Bank\BANK_AGE_26. shnk
433 BANK_EGM 4 185 0 1028 “\Bank\BANK_EGM. shnk
434 BANK_BGMOOL 5 186 o 1 1696 “\Bank\BANK_BGMOOL. shnk
435 BANK_BGMO02 6 187 0 2 1728 “\Bank\BANK_EGMO0Z. shnk
436 BANK_BGMOO6G 7 188 0 3 1796 “\Bank\BANK_BGMO06. shnk
437 BANK_EGMOOT 3 18 o 4 1784 “\Bank\BANK_BGMO07. shnk
438 BANK_BGMO12 3 %0 0 5 1752 \Bank\BANK_BGMOLZ. shnk
439 BANK_BGMOLE 10 91 o & 264 \Bank\BANK_BGMILE. shnk
440 BANK_BGMOLS 11 132 o 7 1704 “\Bank\BANK_BGMOLS. shnk
441 BANK_BGMO1S 1z 193 0o 8 1700 “\Bank\BANK_BGMO1%. sbnk
442 BANK_BGMO21 13 14 o 9 1828 “Bank“\BANK_EGMO21. shnk
443 BANK_EGMO22 14 135 0o 10 1732 “\Bank\BANK_BGMO22. shnk
444 BANK_EGMO23 15 136 0o 11 1796 \Bank\BANK_BGMO23. shnk
445 BANK_BGMO25 16 197 0 12 1740 “\Bank\BANK_EGMO2 5. shnk
446 BANK_BGMO26 17 138 0 13 1756 “Bank\BANK_BGMO26. shnk
447 BANK_BGMO27 18 13 0 14 1808 “\Bank\BANK_BGMO27. shnk
4438 BANK_BGMO28 13 200 0 15 1764 “\Bank\BANK_EGMO28. shnk
449 BANK_BGMO29 20 201 0 18 240 \Bank“\BANK_BGMO2%. shnk
450 BANK_BGMO30 21 202 0 17 1704 “\Bank\BANK_BGMO30. shnk
451 BANK_BGMO51 22 203 0 18 1128 “\Bank\BANK_BGMOS51. shnk
452 BANK_BGMO52 23 204 0 19 1708 “\Bank\BANK_EGMO52. shnk
453 BANK_BGMO53 24 205 0 20 1412 “pank“\BANK_BGMQOS53. shnk
454 BANK_EGMO 54 25 206 0 21 1696 \Bank\BANK_BGMO54. sk
455 BANK_BGMOS S 26 207 0 22 1508 “\Bank\BANK_EGMO55. shnk
456 BANK_BGMOS7 27 208 0 23 1656 “Bank\BANK_BGMO57. shnk
457 BANK_EGMO5S 28 208 0 24 1488 “\Bank\BANK_BGMO5S. shnk
458 BANK_BGMO5S 29 210 0 25 16596 \Bank\BANK_EGMO5%. shnk
459 BANK_BGMOSEL 30 211 0 28 1660 “\Bank“\BANK_EGMO6L. shnk
460 BANK_EGMOE2 31 212 0 27 1616 “\Bank\BANK_BGMO62. shnk

Sample of the wavearc listing

212

a0l
a02
603
a04
G055
a06
607
608
609
&l0
611
612
a13
al4
615
al6
a1y
618
619
620
621
622
623
(23
625
626
627
628
629
630
631
632
633

WAVEARC:

Tabel number filelp
WAVE_AGE_BGM o] 352
WAVE_BGMOOL 1 353
WAVE _BGMO02 2 354
WAVE_BGMOO6 3 355
WAVE_BGMOOT 4 356
WAVE_BGMO12 5 357
WAVE_BGMO16 [358
WAVE_BGMOLE 7 359
WAVE_BGMOLS g 360
WAVE_BGMO21 El 361
WAVE_BGMO22 10 362
WAVE_BGMO23 11 363
WAVE_BGMOZ 5 1z 364
WAVE_BGMOZ26 13 365
WAVE_BGMO2 7 14 366
WAVE_BGMOZS 15 367
WAVE_BGMOZ3 1a 368
WAVE_BGMO30 iz 369
WAVE_BGMOST 18 370
WAVE_BGMOS2 19 371
WAVE_BGMOS3 20 372
WAVE_BGMO54 21 373
WAVE_BGMOS 5 22 374
WAVE_BGMOST 23 375
WAVE_BGMOSE 24 376
WAVE_BGMOSS 25 377
WAVE_BGMOBE1 26 378
WAVE_BGMOGZ 27 370
WAVE_BGMOG3 28 380
WAVE _BGMOB4 29 381
WAVE_BGMOE 5 30 382

size name

380716 “Wavear C\WAVE_AGE_BGM. swal

30028 “\Wavear C\WAVE_BGMOOL.
7BO24 “\Wavear C\WAVE_BGMODZ .
86904 \Wavear C\WAVE_BGMODE.
126824 “waveAr CWwWAVE_BGMOOT
133236 “wavear c\WAVE_BGMOL1Z .
FFPO0 NWavear C\WAVE _BGMOLE.
35408 “\Wavear C\WAVE_BGMOLE.
108196 “waveAr CWwWAVE_BGMOLS
111376 wavear C\WAVE_BGMO21.
HL968 \Wavear C\WAVE_BGMO22 .
136904 “wWaveAr CWwWAVE_BGMOZ3 .
22184 “Wwavear C\WAVE_BGMOZ25.
72900 ‘wWavear c\wWAVE_BGMOZ6
117156 “wWavehr CyWwWAVE_BGMOZ7 .
82888 “Wavear C\WAVE_BGMOZ2S
80388 “Wwavear C\WAVE_BGMOZ2S
45320 “WwaveAr CWAVE_BGMO30.
51964 SwWaveAr CyWAVE_BGMOS5T .
52592 waveAr C\WAVE_BGMOS52
SO884 “waveAr C\WAVE_BGMOS53
37588 “Wavear C\WAVE_BGMOS4 .
31820 “Wavear C\WAVE_BGMOSS .
34416 “Wwavear C\WAVE_BGMOS57
34088 “Wwavear C\WAVE_BGMO5S
SO596 SwWaveAr CWWAVE_BGMOS5S.
35852 “Wavear C\WAVE_BGMOGL .
BOG28 “Wwavear C\WAVE_BGMOGZ .
26456 \Wwavear c\wAVE_BGMOAT .
55920 “wWaveAr CyWAVE_BGMOG .
57528 “wWaveAr CWWAVE_BGMO&S .

swar
swar
swar
swar
Swar
swar
swar
swar
Swar
swar
swar
swar
Swar
swar
swar
swar
swar
swar
swar
swar
swar
swar
swar
swar
swar
swar
swar
Swar
swar
swar

Format is internal file number for bank (16 bits, flipped), 0000 (unknown)
and then the bank numbers and FFFF if there is no need to link it (very few
games have more than two associated wavearc files but it can go to four). As
noted before many BGM tracks are linked to file 0 (WAVE AGB_BGM) and
they often have their own wavearc as well for a couple of samples but stripping
the other data from the smap to leave what is necessary for this hack

sEQ:

label number filerp bnk vol cpr ppr pl
SEQES 408 177 167 127 127 64
BGMO7Q 220 143 38 127 0 64
BAMK:

Jahel number fileIh wal wal waz wa3
BANK_BGMU70 38 219 o 34
BANK_SEOBS 167 348 163

WAVEARC:

lahel number filelp
WAVE_AGE_BGM] 352
WAVE_BGMOTO 34 386
WAVE_SEQBS 163 515

219 decimal
163 decimal

DB hex
A3 hex

H Hex Workshop - [sound_datapwZorig.sdat]

File Edit Disk Options Tools Window Help

¥
1
]

hsize

hsize

~1olx|
~=1a|x|

EIHE|imRD S|y V@ HJ|nWl 0k |p0|e \
S« »EDERa | sy - =D Mald B E
0000003708 0500 0000 0000 1C00 FFFF FFFF =
0000003714 |D600 1000 FFFF FFFF T
0000003720 FEFE FRFF

000000372¢ FFFF FFFF

0000003738 FFFF FFFF

0000003744 FEFE

0000003750

S E T

0000003768

0000003774

0000003780

000000378C

0000003798

0000003724

00000037ED

00000037EC

DOnA0N 7R =l
sound_detep. |
Ready [Offset: 00003750 [Sel: Oxc bytes Bz 2

size
72
5484

size
1696
88

size
389716
28212
35724

nama
“SefhSEQBB. 5581
NSeqhBGMOT0. sseq

name
“Bank\BANK_BGMO70. shnk
“Bank“\BANK_SEOES. shnk

name
SWaveAr CNWAVE_AGE_BGM. swar
SWAVEAR CWWAVE_BGMOTO. Swar
WaveAr Ch\wAVE_SEOBS. swar

Replacing the second 0000 with A300 (flipped as usual)

213

¥GMTrans - [BGM070] =10l x|

| Fle view Window Help

|S@|Fnm

[Detected Music Files 2 x| Bemoro |

File Mame Type 2|fo1icaazs
B WAVE_AGE_BGM Sample Collec.., 011E44F3

B WavE BGMODL Sample Caller... 011E4503
R WAVE BGMO0Z Sample Coller... [011E4513
BRWAVE BGMOD5 Sample Collec... [011E4523
B WAVE BGMOD? Sample Cale... 011E4533
B wavE_BGMO1Z Sample Coller... 011E4543

B wave BaMO16 Sample Caller... 011E4553
B wavE BGMO1E Sample Collec.. 011E4563
B i aH019 Sample Collc 011E4573 95 2z 01 00 95 41 01 OO 95 &5

PRuinur RaMnz1 Samnle moller 011E4583

% | Name: [BGMO70 ﬂ = Bamosae 7 Bamnz2 7 BamTe 7 BaMOE3 7 BEMOAT 7 BaM091 7 SE0BD
A= samom 7 BaMOse 7 BaM0r3 = Batn7? 7 BaMoss 7 BaMOsE 7 BamMoez 7sEnB1
= S BANK_BEMOTD 7 BGMo70 eaMor4 7 eaMoTs 7 Bamoss 7 BGMOE9 T BGMO93 'sE0Bz
5 = &| 7 pamor1 7 Bamzs 7 Bakna0 7 BaMose = BaMasn 7 BGMO94 7 se0ma
S| B wAVE_SEORE
B WAVE_BGMOT0 4 |]
[? (Offset: Dx11E44E3 Length: 0x1DCC 4

Music creation and injection Injection from another source just means
making a SSEQ or some other file, tools like midi2SSEQ which admittedly
have some of the same pitfalls as the original SSEQ2midi tools do exist though
(different instruments leading to a different sound), on the GBA some people
created an instrument library from the standard midi controller and allowed
that where some on the DS use the DLS format VGMtrans (and MK DS course
editor) can create to guide Anvil studio to do things (DLS files from VGMtrans
and open MPT have some issues). On top of this looping is common thing for
tracker /sequenced audio and even some wave files to do and will have to be
taken care of. There are various ways to get looping done and some of the later
versions of midi2sseq did support looping flags after a fashion.

Replacing tracked/sequenced audio with wave based audio has not really
been attempted, it might work as the SDAT seems to call based on file listings
more than anything else but the information it also carries might trip it up.

Proper/complex undub

Note that quite often if an undub fails it is more likely to be the fault of the
tool /process rebuilding the ROM after it is unpacked but occasionally ROM
images do change layout between regions and not usually for the better. For
those few you might have to relink the file in such a manner that it plays back
in an acceptable manner on the localised game but there are other occasions
like Spectral Force Genesis that had voice acting (in AHX format no less) in
the Japanese game but lost it in the move out of Japan; here it would either
be ASM to add it back in or more likely try to translate the game by getting
the official translation and putting it in the Japanese game (Suikoden Tierkreis
had a hack that did just that as part of an undub). Megaman ZX is an early
example of a game that got somewhat gutted when being localised so it might
prove to be interesting to look at as well.

Castlevania portrait of ruin The game actually features the hidden option
to change voices to Japanese (hold L and press A to make a selection at the menu

214

with an audio cue for doing it successfully) but for the sake of this example it
will be assumed that the setup there is sub optimal as maybe only a minor remix
is wanted /only a select few things want to be undubbed. As they are quite long
voices (sometimes several seconds in length) SSEQ and such is probably not the
order of the day and indeed the STRM files were chosen. A quick sample from

Crystaltile2

ound_data.sdat - file information{file count:3745/3740) ;IQILI
File Sound Your(SPACE) Stop
sound files | absalut... | relative ... | sizal lisk infarmation | :I
4§ Unknown3696-5E_SD5_MENU_EMY STRM 014CE740 0O0E40940 44184 3701-455F-000-000-000-000
48 Unknownl3697-5E_SDS_TRIC_FIRE_RING.STRM 014D83E0 O0E4BSED 19288 3702-466F-000-000-000-000
48 Unknowni3698-5E_SDS_TRIC_SEWEMN_PIAND.STRM 014DDF40 0O0ESO140 32024 3703-4078-000-000-000-000
b Unknown3699-5E_SDS_TRIC_SEWEN_DOOR_OPEM.STRM 014E5C60 O0ESTESO 240858 3704-4078-000-000-000-000
b Unknowni3700-5E_SDS_DEMO_SISTER _WARP STRM 014EBAS0 OOESDCG0 20356 3705-4078-000-000-000-000
4§ Unknowny3701-SE_SDS_DEMO_STOP . 5TRM 014F0AZ0 O0EGZCZD 23616 3706-4078-000-000-000-000
48 Unknown3702-5E_SD5_DEMO_WINDOW, STRM 014F6E60 OOEESSE0 44596 3707-4078-000-000-000-000
48 Unknown3703-5E_SDS_DEMO_KEKKAL_LOOP,STRM 01501440 O0E738A0 19692 3708-406E-000-000-000-000
48 Unknawni3704-5E_SDS_DEMO_KAZE.STRM 01506140 OOE7E3A0 37128 3709-4060-000-000-000-000
b Unknowni3705-5E_SDS_DEMO_ENY_KAZE_HETWA.STRM 0150F2C0 0O0EB14C0 53728 3710-4078-000-000-000-000
4§ Unknown3706-5E_SD5_STRSE_BEHIMOS_IWA_SAKEEL.STRM 0151C4A0 OOEZESAD 17112 3711-4076-000-000-000-000
48 Unknown3707-SE_SDS_STRSE_TRIC_WINDOW IN.5TRM 01520780 00ESz530 56052 3712-4078-000-000-000-000
48 Unknown3708-5E_SDS_STRSE_DHURA_LAUGH.STRM 0152E280 OOEAD4E0 54468 3713-4078-000-000-000-000
48 Unknawni3709-5E_SDS_STRSE_DEWIL_FACE_DIE.STRM 01536760 OOEAD9ED 19488 3714-4078-000-000-000-000
b Unknowni3710-5E_SDS_STRSE_E3_AWIBAL_FALL.STRM 01540380 0O0EB2580 37064 3715-4078-000-000-000-000
4§ Unknown3711-SE_SD5_MOVIE.STRM 01549460 0O0EBBSE0 2440532 3716-4075-000-000-000-000
4§ Unknown3712-5E_SD5_VOICE_ASH_DIE.STRM 017901C0 0110F3CO 21128 3717-437F-000-000-000-000
48 Unknown3713-5E_SDS_VOICE_DEA_DIE_A.STRM 017A2460 01114860 19104 3718-437F-000-000-000-000
48 Unknowni3714-5E_SDS_VOICE_DEA_DIE_D.STRM 01119100 28920 3719-437F-000-000-000-000
e 5-SE_SDS5_YOICE_JOM_DAM_DIE.STRM 3 0]
b Unknown3716-5E_SDS_YOICE_MED_DIE.STRM 01763060 01125260 46540 3721-437F-000-000-000-000
4§ Unknown3717-SE_SDS_VOICE_RAL_DIE.STRM 017BES40 01130840 23112 3722-437F-000-000-000-000
b Unknown!3715-5E_SD5_VOICE_SHA_DAM_DIE.STRM 017C40A0 01136240 23112 3723-507F-000-000-000-000
48 Unknowni3719-SE_SDS_VOICE_SHOP_LONG_A,STRM 017CSB00 01138000 56608 3724-437F-000-000-000-000
48 Unknown3720-5E_SDS_VOICE_SHOP_LONG_B.STRM 01707820 01149420 B63948 3725-437F-000-000-000-000
b Unknown3721-5E_SDS_VOICE_SHOP_LONG_C.STRM 017E7200 01159400 78220 3726-437F-000-000-000-000
4§ Unknown3722-SE_SD5_VOICE_SHOP_LONG_D.5TRM O17FASAD 0116CSAD 90740 3727-437F-000-000-000-000
48 Unknown3723-5E_SDS VOICE_SHOP_LONG_E.STRM 01810620 01182820 66304 3728-437F-000-000-000-000
48 Unknowni3724-5E_SDS_VOICE_J DEA_DIE_A.STRM 01820920 01192820 30336 3729-437F-000-000-000-000
48 Unknawni3725-5E_SDS_VOICE_]_DEA_DIE_D.STRM 01827FAD 01194140 42772 3730-437F-000-000-000-000
4§ Unknawn3726-5E_SD5_YOICE_1_DEA_DIE_F.5TRM 01832600 011A43C0 26460 3731-437F-000-000-000-000
4§ Unknown3727-SE_SD5_VOICE_J_DEA_WARAILSTRM 01835E20 011AB0Z0 23352 3732-437F-000-000-000-000
4§ Unknownt3728-5E_SD5_VOICE_J_DRA_2_DIE.STRM 0183E960 011B0B&0 38984 3733-437F-000-000-000-000
48 Unknown3729-5E_SDS VOICE_J_DRA_WARALSTRM 01845100 011BA3CO 32204 3734-437F-000-000-000-000
48 Unknownl3730-5E_SDS_VOICE_]_JON_DAM_DIE.STRM O184FFAD 011C21A0 23532 3735-507F-000-000-000-000
b Unknowni3731-5E_SDS_VOICE_1_MED _WARALSTRM 01855640 011C7DAD 26452 3736-437F-000-000-000-000
b Unknawn3732-5E_SD5_YOICE_1_RAL_DIE.STRM 0185C300 011CESOD 20916 3737-437F-000-000-000-000
4§ Unknowny3733-5E_SD5_VOICE_J_SHA_DAM_DIE.STRM 01861400 011036C0 26464 3738-5073-000-000-000-000
48 Unknown3734-5E_SD5 VOICE_J_SHOP_LONG_A.STRM 01867C20 011D9EZ0 52744 3739-437F-000-000-000-000
48 Unknowni3735-5E_SDS_VOICE_]_SHOP_LONG_B.STRM 0187BFE0 O11EE160 79376 3740-437F-000-000-000-000
48 Unknowni3736-5E_SDS_VOICE_]_SHOP_LONG_C.5TRM 0188F580 01201780 90924 3741-437F-000-000-000-000
48 Unknawn3737-5E_SD5_YOICE_1_SHOF_LONG_D.5TRM 018A58C0 01217ACO 90376 3742-437F-000-000-000-000
4§ Unknown3738-5E_SDS_VOICE_J_SHOP_LOKG_E.STRM 018BE9EQ 01ZZDEED S2692 3743-437F-000-000-000-000
48 Unknown3739-5E_SDS VOICE_J_STL_DIE_A.STRM 015CFDOD 01241F00 24984 3744-437A-000-000-000-000 j

A nice developer left extra in 3710 (it is the voice presumably from the E3
video that said available Fall). Either way as STRM files they are effectively
full wave files there and can be tweaked as per a conventional relinking hack
or injection if you really want. To make life more interesting though not all
the voiced audio is there and buried within the nearly 1600 sound effects are a
few voiced sections (broken up rather nicely into BGM and sound effects here).
These mainly line up with the 380 hex to 560 hex range (ndssndext conversion)
from “WAVE_SE ALL.SWAR” (3665 in the main SDAT file) which will also
want to be remapped accordingly, the SWAR file type is fairly basic and all
data is contained within the files it houses rather than any header so the bigger
problem is figuring out what is what (sadly names are lacking in SWAR).

215

SSEQ editing

Editing commands is occasionally useful so here a few notes will be changed in
one file, the header will be messed with to effect a speed change and then a loop
added in another with image representations of the resulting waveforms for each
being shown.

Tetris DS zelda victory sounds Tetris DS featured a bunch of minigames
based on tetris and featuring some of Nintendo characters as the artwork in
the background and providing some backing audio. One of these minigames
featured Zelda characters in a quickfire mission mode with the classic Zelda
victory sound when you succeeded however there were a few notes that came
out as drum hits after it as a lead back in for the game that play when ripped.

VGMtrans shot (ignore the later highlighting as it breaks down later on

although actual worked breakdown on the right is OK).
ST

| Fle vew window relp

|SE|>nm

=zsicd it Glls 2 x| JINGLE_MIS_CLEAR | BANK_MISSION | wave_ission 4P x

File Hame. Type =l [oozoas00 i 556Q Chunk Header

I wave_msston sample Collec ... 00204B10 B DATA Chunk Headsr

6 BANK_SE Instrument Set 00204820 B Signature

B BANK_MISSION Instrument Set 00204830 Bl Size

BT IINGLE_SUCCESS Sequence 00204840 B§h DataPainter

B JINGLE_FAILLRE Sequence 00204B50 MW Track Poinkers

BB IINGLE_CONGRA Sequence 002Z04B60 i § Tracc1

S BGM s _SELECT Sequence 00204570 § Track2

EF Bl _yS RESULT WIN Sequence 00204880 § Tracka

BEEGM V5 RESULT L... Sequence 00204850 § Tradks

EEEGM_TETRIS(ONG Sequence ggzigggg g ;:itg

ST INGLE_CONGRAZ Sequence

& aG_HMIS_PLAY_01 Se:uence pozoeBco § Trad?
i 00204BD0 & Tracks

BpGH MIS PLAY 02 Sequence e Danmn

ST INGLE_MIS_CLEAR Sequence 00204570

EFENEMYSOLIND Sequence 00204000

B SE_BLOCK ROTATE Sequence loozoac1o

B sE BLOCK SLIDE Sequence 0204020

B 5E_BLOCK_ROTATE... Sequence 00204C30

S 5E_BLOCK SLIDE_F... Sequence 00204C40

S oE_BLOCK FIX Sequence o0z04cs0

BFoe et Sequence 00204C60

BEsE_LNE 2 Sequence 00204C70

P SE_LINE 3 Sequence J 00204C80

BF o _LINE 4 Sequence 00204c90 2 @8

B SE_LINE_BACKTOB... Sequence 00204CA0

B 5E_PLOCK_SOFTDROP Sequence 00204CB0
W SE_BLOCK_HARDDR... Sequence Sszggggs
S sE_BLoCK_HOLD Sequence 0020400
B e LEVELLR Sequence o Dacrn
B sE_TSPIM Sequence 00204D00
EFSE_RETRY Sequence 00204010
BT SE_KIRAKIRA Sequence 00204D20
B se_poms1 Sequence 00204030
B sE_pomez Sequence 00204040
FEF SE_BOMBS Sequence =l
Mame: [JINGLE_MIS_CLEAR ﬂ | 7 BaM_PzL_PLAY_02 7 BGM_TCH_SELECT 7 INGLE_TCH_RENSA_D 7 BEM_CAT_PLAY_OL 7 5E_BLOCK_ROT,
e 2| Bai_PzL_PLAY 03 2 JNGLE_TCH_RENSA_A (Z/BGM_MIS_PLAY_01 L TNGLE_CATCH ('5E_BLOCK_SLD
DRIELE (B Euie 2 7 BGM_TCH_PLAY_DL [NMGLE_TCH RENSA B 7 BaM_MIs_PLAY_D2 7 JNGLE_METROID 7 SE_BLOCK RO,
oink WS % ean o s oz NGl TCHREvE S INGLE S cLeAR [l s ooCaD
Bl | B wvave_mission S - - - -
o) i
[T [oFset: oxan4B00 [Length: ox244 4

There are a couple of schools of thought here with the two main ones being
“what are those other tracks for?” and ‘“just edit the notes”. If it was just for
ripping they are in fact mixed for at least one hit so a simple chop in a more
conventional editor would not do, removing tracks would probably help (indeed
converting it to midi and removing some of the later channels does exactly this)
but this is more for an example of a technique than the end results at this point.

There are a few things to note here although the main thing is the classic
Zelda success sound is well known and is four notes long which means everything
after the first four notes might want to be axed.

The C700 command means it is polyphonic (notes can happen at the same

216

time, C701 means monophonic) and as chords can be built from several notes
playing at the same time simply blanking everything after four notes might not
work. Still it was done and everything after “four” notes had their length values
replaced with 00 or changed to waits with length 0.

On the picture above that means everything after 204B80 was replaced ac-
cordingly to give

i

Fle Yiew ‘Window Help

JINGLE_MIS_CLEAR. | 4px

D0z204E00
00204E10
00204B20
00204E30
D0Z04E40
D0Z04ES0
D0Z04E6D
DOZ04E70D
'D0Z04EE0
‘00204830
00204B4L0
00204BED
00204BCO
00204ED0
J0Z04EED
DOZ04EFD
D0z04co0n
oozo4c1o
00z04cz0
00204030
00z04c4n
\00z04cCs0
Doz04can
00204C70
00z204C80
00zo4con
D0Z04CA0
D0Z04CED
0ozo4gcco
0ozo4cpo
00204CED
00204CFO
00204000
00204010
00204020
00Z04D30
00zZ04D40

Good news is that it did indeed remove the drum hits from the end of the
sample but it changes things for the worse and part of the strings was what was
ended up with (edited version on the bottom)

217

il

File Edit Wew Transport Tracks Generate Effect Analyze Help

- l]|.5 I% l]|.5 1|.[I 1|.5 2‘.0
X[Audio Track ¥ 1.0 =
Stereo, 44100Hz
32-bit flost 05-
Mute | Solo
Tocou@lans * | 0.0-
F
RPN - TR |
-0.5-
1.0
0.5
0.0-
-0.5-
F=y

| Auciia Track | 1.0

Stereo, 44100Hz

32-hit float 0.5-
Mute | Solo
_ + | 0.0
oS f
[P (=) PR RI 70 5]
-1.0
1.0
0.5
0.0-
,D 5 -
Fy -1.0 LI
4| | »
|Drag the track vertically to change the order of the tracks., |Actua| Rate: 44100 v

Editing once more but with the knowledge that the drum hits are 5 beats
and the zelda sound is four beats; it led to track 5 being edited which turned out
perfect. The classic test of such things is to invert the second signal and play it
back which highlights any differences or in the case of two otherwise identical
tracks cancels out the main track and leaves only the differences and doing so
left just the drum hits.

218

=]
Fle Edt Vew Transport Trocks Geoerste Effect Anshes Heb

030020 -010 0b0 00 020 030 040 050 060 070 080 090 100 110 120 130 140 150 160 170 180 190

R amttera ~T 10 B

22t st 08
Mte | Sob
- 00
sl
b 5 |05

05

[«] lw

o [>
[k and kgt skt o BiRa i)

Tetris DS Korobeiniki speed change A good starting place for audio hack-
ing is the crystaltile2 SDAT information.

ound_data.sdat - formation{file counl _ O x|
File Sound ‘Your{SPACE) Stop

sound files ‘ absolut. .. | relative ... sizel list information ‘ -
? sequences\D00-JINGLE_SUCCESS.SSEQ 001DCs20 0000ZAZ0 836 000-0000-127-127-127-001
? Sequences\00L-JINGLE_FAILURE 55EQ) 001DCBS0 00002DE0 1156 | 001-0000-127-127-127-001
? sequences\002-JINGLE_COMGRA.SSEQ 00100020 00003220 945 002-0000-127-127-127-001 s
? Sequences\003-BGM_VS_SELECT.SSEQ 001DD3ED O00O035ED 992 003-0000-100-127-127-000

? seguences\004-BGM_YS_RESULT WIN.55EQ 0010070 | 000039C0 1396 004-0000-127-127-127-001
? Sequences\00S-BGM_YS_RESULT_LOSE.SSEQ 00100040 DODO3F40 516 005-0000-127-127-127-001

“? Seguences\006-BGM_TETRISKONG, 55EQ 001DDF&E0 | 00004160 9853 006-0000-127-127-127-000
? Sequencesi07-JINGLE_CONGRAZ SSEQ 0O01DE340 00004540 1860 007-0000-127-127-127-001
“? Sequences|005-BGM_STD_SMRI_01.33EQ O01DEAAD | 000D4CAD | 21260 008-0001-127-000-064-000
? Sequences\D03-BGM_STD_SMRI_02,55EQ O01E3DCO | 00009FCO 4604 | 009-0001-096-000-064-000
“? Sequences|010-BGM_STD_SMRI_03.33EQ O01E4FCO | O00OBLCO S672 | 010-0001-127-000-064-000
? Sequences|011-BGM_STD_SMR3.55EQ O01E6S00 | 0000800 6444 | 011-0001-103-000-064-000
7 Sequencesi012-BGM_STD_ZELDA.SSEQ O01E7F40 O0DOOEL40 7772 | 012-0001-127-000-064-000
? sequences\013-BGM_STD_METROID.SSEQ O01E9DAD | OOOOFFAQ 10096 013-0001-108-000-064-000
7 Sequencesi014-BGM_STD_DONKY . S5EQ 0O01ECS20 00012720 1164 014-0001-127-000-064-000
? sequences\015-BGM_STD_BALOOM.SSEQ O01ECaCO | 00012BCO 5760 | 015-0001-127-000-064-000

? Sequencesi016-BGM_STD_ICECLIMBER.S5EQ) O01EED40 00014240 3684 016-0001-108-000-064-000
“? Seguences\017-BGM_STD PRE_KARINKA.SSEQ | ODIEEECO 000150C0 3472 017-0001-127-000-064-000

SEOUE Gl ARINEA. oo O0015EGD 018-0001-1 0 0
“? Sequences\019-BGM_STD_STAR.S5EQ) O01FOBED O0O1&DEQ 2z68 019-0001-127-000-064-000
? sequences\020-BGM_PSH_PLAY_01,55EQ O01F14C0 000176CO 8184 020-0002-127-000-064-000 ﬂ

As mentioned for reasons unknown Korobeiniki (ancient tetris in the game
itself) is called Karinka (Kalinka) in this but that is what needs to be edited.

219

¥GMTrans - [BGM_STD_KARINKA] =10 =]

J File View ‘Window Help

| &> nm

BGM_STD_KARINKA | 4bx
OD1EFCED a [f SSEQ Chunk Header a
O01EFCTO
O01EFCE0
O001EFCS0 - walid Tracks
001EFCL0 - Track Pointer
001EFCEQ - Track Pointer
O01EFCCO - Track Pointer
O01EFCDO - Track Pointer
O01EFCEQ - Track Pointer
[001EFCFO - Track Pointer
00 1EFDOO - Track Pointer
001EFD10 - Track Pointer
[O01EFDZO - Track Pointer
001EFD30 -~ Track Pointer
O001EFD40 - Track Pointer
001EFDS0 - Track Pointer
001EFDE0 - Track Pointer
001EFD70 - Track Pointer
001EFLED Track 1
001EFDS0 - Motewait Mode
OO1EFDAD
001EFDEO -8 volume
O001EFDCO B Pan
O01EFDDO -~ Program Change
001EFDEQ % Rest
O01EFDFO _F Mote with Duratic
001EFEOO % Rest
O01EFE10 _F Mote with Duratic
001EFEZ0 % Rest
O01EFE30D _F Mote with Duratic
O001EFE40 % Rest
O01EFESO _F Mote with Duratic
O001EFEGSO % Rest
OO01EFE7O .f'_ Dok with Duratic
O01EFES0 % Rest
OO01EFESO .f'_ Dok with Duratic
O01EFELQ % Rest
OO01EFEEQ .f'_ Dok with Duratic
O01EFECO % Rest
OO01EFEDOD .f'_ Dok with Duratic
O01EFEEQ Y Rest
O01EFEFD L

| = Tempa - BPM: 190 [offset: Ox1EFCC? Length: 03

4

Even in the SDAT viewer double clicking a file in Crystaltile2 sets the hex
editor window to the location in question but if not there are several other tools
that can help and if you decide to change the file length (remember there are
jumps/branches that might be broken) other tools have already been covered
to help here. Some however consider it a bit too fast (and it is slightly faster
than many classic renditions in tetris) so changing the tempo is in order. E1BE
it is. E1 hex is the command for tempo and BE (190 decimal) is the payload so
it was changed to something a bit slower at 78 (120 decimal) which might be a
bit slow but does make for a very clear result. Here none of the others had a
tempo command but repetition is easy enough.

220

CrystalTileZ - 0413 Tetris DS (EU)(M5)smod.nds - |E| ﬂ

File Edit Search TEL Yiew Tools Bookmark Plugin Window Help

| = 9|
L —loix]

" | [addres= 8868106283 84 65 6607 68 09 '0n OB OC 0D OF |OF festers Buropesn (Mindows) [Courier Hewl ||
BB1EFCAA 53 53 45 51 FF FE 80 81,78 6F 88 60 18 88,81 88,5 5 E 0 ¢ b . . x ’

" [|@e1EFC7 0 44 41 54 41 68 6F G000 1C 80,0080 FE FF 7F 93D 4 T A h . . K . L L & p y oo
uu1Echn!n1!sﬁ!uz!30!93!0211E!uu!uu!93!03!51luu!un!ya!uu!. i 1. ..0o.a.00n
BO1EFCYB E9 85 80,93 05 B1 B7 98,93 86 F8 67 8093 87 5A ¢ . L0 . = . k0 .5 .L0 .z
001EFCAG. 68 00,93 08 88,09 06.93,69 5E.0n 80, 93, 0A;A9.0B.. L0 .0 L Lo ~0holfe. —
@01EFCEG 66 /93 o 'EC/6c /60 93/0c/33 6p/ee/o3'op/7nlep'ea!l 0 . i . L0 . 3 L0 | =
B81EFCCH |93 | OE |62 BE [08,C7 88 E1,78 [EC16%CO36 81430 . b . Do HlaxfPlAdicenc
BO1EFCDO 80 . 8C .90 4C 48 .96 80 .06 4C 48 . 06.8B8 A6 . 4C 48:86.0 0 . L H .0 . LH .0 . LH.
BO1EFCED 20 86 ' 4C 48 86 80 66 '4C /48 86 /'80/ 66 4C/'48'86/'8@'0 . L H . 0 . LH . D . L H.I
OO1EFCF D, B6 |4C 48 86 80|06 4C 48 06 80 06 47 4A OC B8 18,. L H . 0 . LH .0 . 57 .0
BO1EFDOO . 48 45 BC 8018 4A 48,06 80 86 4A 48 06 80,86 WA HE . 0 . JH .0 . JH . .7
BO1EFD16/ 48 ' 06 80/ 86 /' 4n /48 06 '88/86 '4n '8 /66 88/86'8A'48'H . 0 . T H .0 . JH.D .JdH
BO1EFD20 B6 80 B6 4A 48 B6 80 06 4A 48 06 80 86 4A 48 86|. [H. I I RS
O01EFD30 4839 OE 80,18 47 39 0FE 80 18,45 48 06 80,86 45 H 5 . 0 . 69 .0 . EH . . E
AR1EFD4A 48 0680/ 06 /45 48 o6 /8096 45 /ug'e6/8A/e6/us /w8’ . 0 . EH .0 . EH.OD . EH
OB1EFD5D, B6 88,86 45 48 86 80 06 45 48 06 86 86 45 48, 86,. 0 . EH .0 . EH .0 . EH
O01EFDGO. 8086 .45 48 . 06.80 06.45 48 06.80.86 45 48 . 86.800 . EH .0 . EH .0 . EH . I
BO1EFD78 86 /45 48 06 /86086 48 /ug OE 88/18/uCc /48068886 . EH .0 . HEH .0 . L H .
OO1EFDBD 4C |48 |66 8006 4C 48 06 80 86 4C 48 06 8006 4C L H . 0 . L H .0 . L e

BO1EFD90 48 06 80 06 4C 48 06 80 06 4C 48 06 80,06 4C 48'H . 0 . LHE .0 . LE.QO0 .LH

BO1EFDAG 06 80/ 66 ' 4n /48 /06 /80 /066 'un 48 '06'88 A6 'va'u8'e6'. 0 . T H .0 . T H .0 .J7H
BO1EFDBA 80 A6 4A 48 A6 80 A6 48 48 A6 80 86 48 48 86 800 . JH .0 . HH .0 . HH . [
OO1EFDCH . 66 48 48 86 .80, 06 48 48 66 80,06 47 48.06,80,06 . HH . 0 . HH . 0 . GH . [
001EFDDO /47 48 ' 06 /8006 /47 48'06/80/06/47 /48 06/80/86 /476 E . 0 . 6 H. D . GH. D .G

BO1EFDED 48| 06 80,06 47 48 D6 80 66 47 48 06 80,06 47 48 H . 1 . GH .0 . GH .0 . 0H
BG1EFDFO; 8680 06 47 48 86 88 06 47 480680 0647 48 06,. [. GH .1 . GH . [. G X

=

BU1EFEDGS 80 86 /47 48 86 /80 66 /48 /48 86 /'88/06 /48 /g /@6 /'s@l] . cH .0 . HH . D . HE .
£ |||BB1EFE18| 86 %8 48 06 80 06 48 48 66 8006 4A 480680 06. HH . 0 . HH .0 . 7 H .
BO1EFE20 . 4A 48 86 80 06 4A 48 06 80 06 4A 48 06.80.86 440 H . 0 . J H . [. J .3

BO1EFE36/ 48 06 /80' 86 /40 /48 06 '80'86 '4n'ue /66 '868/'86 /8048’ . 0 . TH .0 . JH.D .JH
BO1EFE40 | B6 80|06 4C 48 66 80 06 4C 48 66 80 86 4C 48 66 . g
OO1EFESH 80,86 4C 48 86,80 86 4C 48 06 .80 86 4C 48 86.80.0 . ’ W o AR
0O1EFEGH 66 ' 4c /48 06 /80/'66 4c'u8'66/'80/06/u8 u8'06/80'06/. 1 5 .0 . LH .0 . HH . O .
OE1EFE78 48 48 06 86, ﬂﬁ us 48 06 8O 66 48 48 66 88,86 48 HH . [. H H . [%% HEH . [M%H <l
AR4CCCOn Lo Az O Az nz 06 AZ L0 OC 0% 0A 0Z L0 8E u = -

\00000000||001EFcc9||TETRIS DS\NTR ATRPlEURl128MB|TS|N\ntendo| Y

=
=
=
=
=
= o
oo
=+
=
=
o

The resulting wave files (modified slower version clearly on the bottom)

221

TTLT T
TR 1

Wyl 6d Py 60

b
1T =0
Ple x|
(b fig twe o] 0 arawiroase =] O famdro s oz oo o] |
& 5

EER Y 2
e [m@[w[0] o] o 2[elL]

Prrrro]

15 30 X 4 190 15 .

X[ancert 16t v 10 B
Stera, 100z

| 32-bt loat 05

- | 001

I

v & |-

gt |os

|
m

05
00-

05

S 10
X[ancert Tet v] 10
[Stereo, 44100tz
|52:0t fost 051
Mite | Soo
. oo
L@

L 5 |-0s]
beogenh
10

10

05

=
sl
S—] |

[[project Rats ¢z SeloctionStart. @ End C Lengn_Audio Fositon
H|mnn =] |snapTor [BOR0OmO0] B0 h00mO0 <Y |[60ho0 MO0 51

Gk and dap o seect o hewlRas #4100

Although it is quite possible to do this with a wave file to do it in real time
on the DS hardware would push it to the limit where just modifying a sequenced
piece of audio is not only easy it is catered for.

Tetris DS Korobeiniki looping At one point looping was mostly done for
those injecting custom files that were first converted to midi or never started
life as a SSEQ but the newest versions of midi2SSEQ support multiple looping
flags and will add things into the resulting SSEQ accordingly so today it is
largely done for improvement style hacks or those porting SSEQ files between
games. Methods here typically involved adding in dummy commands that could
be replaced with a loop flag.

Although the song itself is a classic for this hack the first few bars are all
that is desired.

222

ound_data.sdat - file information(file count:183/135) ;IEIEI
File Sound Your(SPACE) Stop
sound files ‘ absolut... | relative ... | s|ze| list infarmation ‘ -
? Sequences\000-JINGLE_SUCCESS.S5E 001DCS20 00O0ZAZQ §36 000-0000-127-127-127-001
? Sequences|001-JINGLE_FAILLRE, S5EQ 001DCES0 00002DE0 1156 001-0000-127-127-127-001
? Sequences\002-JINGLE_COMGRA.SSEQ 00100020 00003220 945 002-0000-127-127-127-001 o
? Sequences|003-BEM_YS_SELECT.SSEQ 001DD3ED O0O03SED 992 003-0000-100-127-127-000
? Sequences\004-BGM_VS_RESULT_WIN.55EQ 001D07C0 000039C0 1396 | 004-0000-127-127-127-001
7 Sequencesi00S-BGM_VS_RESULT_LOSE.S3EQ 00100040 | 00003F40 516 005-0000-127-127-127-001
? Sequences\006-BGM_TETRISKONG. SSEQ 001DDFA0 | 00004160 988 006-0000-127-127-127-000
? Sequences\007-JINGLE_COMGRAZ. S5E0 001DE340 00004540 1580 | 007-0000-127-127-127-001
? Sequences|00S-BGM_STD_SMRI_01.55EQ O01DEAAD 00004CAD | 21260 008-0001-127-000-064-000
? Sequences\009-BGM_STD_SMRI_0Z.55E5 O01EZDCO 00O09FCO 4604 | 009-0001-096-000-064-000
? Sequences|0L0-BGM_STD_SMRI_03.55EQ O01E4FCO 00O0ELCO 5672 010-0001-127-000-064-000
? Sequencesi011-BGM_STD_SMR3.55EQ O01EGE00 00O0CE00 6444 011-0001-105-000-064-000
? Sequences|0lz-BGM_STD_ZELDA.S3EQ O01E7F40 ODOOEL40 7772 012-0001-127-000-064-000
? Sequences\013-BGM_STD_METROID.S5EQ 001E90AD ODOOFFAD | 10096 013-0001-108-000-064-000
? Sequences|014-BGM_STD_DONKY SSEQ O001ECSZ0 00012720 11g4 | 014-0001-127-000-064-000
? Sequencesi015-BGM_STD_BALOON.SSEQ 001ECSCO 00012BCO 5760 015-0001-127-000-064-000
7 Sequencesi016-BGM_STD_ICECLIMEER,S5EQ O01EED40 00014240 3684 016-0001-105-000-064-000
? Sequences\D17-BGM_STD_PRE_KARIMKA.SSEQ OO1EEECO | 000150C0 3472 017-0001-127-000-064-000
2l sequen |_STD_KARINKA. s O01EFCED | ODOLSESD 01 11-127-00 -000
? Sequencesi019-BGM_STD_STAR,SSEQ O01FOBEQ O0O1BDEQ 2268 019-0001-127-000-064-000
‘? Sequences\0Z0-BGM_PSH_PLAY_D1.356Q 001F14C0 000L76C0 G184 020-000z2-127-000-064-000 ;I

There are several loop commands available to the would be SSEQ composer
Length of parameter needs one byte added to get length of the whole com-
mand.

] Command \ Param length \ Description of parameters \ Explanation
94 3 offset jump address Offset = start of pointers (typically 1C)
95 3 Location within \ Calls another track into position
FD 0 - Returns to call address plus 4 hex
D4 1 Loop count Starts a loop counter
FC 0 - End marker for D4 command

Various commands are used for various things depending upon the composer
although the 94 command is the one typically used by hackers

4B= start of the track proper (67-1C) for track 1 as the set mono/poly
command is not necessary. As this is just the start of the track for this hack the
last commands in most tracks are jumps back to their respective track starts
and can be copied from there (note VGMtrans has a habit of adding the end of
track markers into the file) and where different command lengths were entered
rather than try to reconfigure them FC was used as a type of NOP as it would
do nothing unless there was a loop running.

This was done for several tracks as there are multiple tracks that can work
at once; this can be quite tricky if you are facing multiple tracks but persevere
and things start to make sense. It is not immediately obvious in the wave form
but some interesting things did happen and at points it sounds like a badly
conducted piece as others attempt to start a section.

223

il
| Fle vew window Help
|EE(>n=
Detected Music Files 2 x| BGM_STD_KARINKA ‘ 4 x
File Name Type *loo1EFce0 < [BY 55EQ Chunk Hez <
Dhwave_se Sample Collec. 001EFCTO i} DATA Churk Hee
B wave_STANDARD sample Collec 001EFCED # Track Pointers
JANE_PLIS Sample Collec... — [001EFCS0 Track1
B warE_TOUCH Sample Collec, 001EFCAD B Notewsit Mo
AVE_PUTZLE Sample Coller 001EFCEO Tempo
AVE_MISSION Sample Collec... [DO1EFCCO volume:
Ewave_caTcH Sample Collec,,, [9D1EFCDD Pan
Sanple Collc 001EFCED 88 Program che
S s fporereno - e
B STADARD Tratumentse [0 0TEEDD tn gz:w‘mm
oAk pUsH Istrment et ooigrp20 D6 80 D6 42 48 D 80 06 44 48 D 80 06 44 45 06 = mote with DL
oacTOUCH wsumentSetooipensg ag 3o OF G0 18 47 39 OF 60 18 25 48 06 G0 06 45 Rest
WA PUZZLE nstrument set 001EFD4D 48 06 90 06 45 48 06 90 06 45 4% 06 80 06 45 48 7 ot with DL
WBANK MISSION Instrument Set 001EFDS0 06 80 06 45 48 06 B0 06 45 48 06 20 06 45 48 06 % Rest
WEAK_CATCH Instrument Set D01EFD60 80 06 45 48 06 80 06 45 48 06 50 06 45 48 06 80 7 Note with DL
WeANC_TITLE Instrument Set 001EFD70 06 45 48 06 80 06 48 48 OE 80 18 4C 48 06 80 06 Y Rest
BFINGLE SUCCESS Sequence 001EFDEO 4C 46 06 B0 06 4¢ 48 06 60 06 4C 48 06 80 06 4C 7 Note with b
BFINGLE_FAILLRE Sequence 001EFDS0 48 06 50 06 4C 48 06 8O 06 4C 48 06 80 06 4C 48 Rest
B INGLE_CoNGRA Sequence 001ErDA0 05 50 05 42 46 05 GO 05 44 45 06 B0 06 44 4G 05 7 Note wih o
B oam Vs SELECT Sequence 001EFDEO 60 06 41 45 06 B0 06 48 45 D6 B0 05 48 48 06 G0 Rest
#FpGM Y5 RESLL., Sequence 001EFDCO 06 48 48 D5 50 06 48 48 06 80 D6 47 48 06 80 06 [~ Note wih oL
oM v RESLL.,, sequente 001EFDDO 47 48 D6 80 06 47 48 06 80 D6 47 48 0§ 80 06 4T Yt |
EFBGM_TETRISKONG Sequence 001EFDED 48 06 B0 06 47 48 06 50 0F 47 48 06 50 06 47 4% 7 Note with DL
B JINGLE_CONGRAZ Sequence D01EFDFO 06 80 06 47 48 06 S0 06 47 48 D6 80 06 47 48 06 Rest
B oG 5TD_SMRL.. Sequence D0IEFEOD 80 06 47 48 06 80 06 48 48 06 80 06 48 48 06 &0 . Note with DL
M <TD SR sequenie D0IEFELD 06 48 48 06 90 06 48 48 U6 80 06 4A 48 06 80 U6 Rest
oo STD_ARL. semione O01EFEZ0 44 48 06 80 06 44 48 06 80 06 44 48 06 80 06 4A [~ Note with D
oo ot s senes D01EFE30 48 06 80 06 4A 48 06 B0 06 4A 45 06 80 06 4A 48 Y Rest
ks DD1EFE40 06 80 06 4C 48 06 80 06 4C 48 06 80 06 4C 48 06 7 MNote with D
FEFBGH_STD_ZELDA Sequence 001EFESD 80 06 4C 45 06 50 06 4C 45 06 80 08 4C 45 06 80 ¥ Rest
FEFBGH STDMETR... Sequence D01EFESD 06 4C 48 D6 50 06 4C 46 06 80 D6 48 48 06 80 06
BEFBGM_STD_PONKY Sequence 001EFETO 46 48 06 B0 06 48 48 06 50 06 45 46 06 G0 06 48 & Tracke -
BPOGM STOBAO., Sequnce o[|001EFES0 48 D6 80 06 45 48 06 B0 06 48 3F 05 50 D6 48 36 . | _»rl
~BGM_STD_ZELDA [BGM_STD_ICECLIMEER T BGM_PSH_PLAY 01 2 BGM_PIL_PLAY_0Z BGM_TCH_
H TR # | 7 BGM_STD_METROID 2} 7/ BaM_PSH_PLAY_02 7/BGM_P2L_PLAY 03 2 meLe_TC
2 it 2| 7 Ba_STD_DONKY 7 BaM_PSH_PLAY_03 2 BGM_TCH_PLAY_01 7 TGLE_TC,
2 8 BANK_STANDARD 7 BGM_STD_BALOCH 7 BGM_STD 7BGM_PIL_PLAY_D1 (7 BGM_TCH_PLAY_02 7 hGLE_TE
S| wAVE_STANDARD
S - Bl
L 3ump (rith count) [Offset: ox1EFDOA Length: x5 v
& loopedkora — 1ol x|
File Edt View Transport Tracks Generate Effect Anabze Help
X|&nciert Tet ¥ | 1.0 =
Sterea, 44100HZ
32-bit flost 0.5+

Mute

Solo

I hd
Stereo, 44100Hz
32-hit loat

Mute | Solo

4.1.6 GBA audio

Nintendo did provide a format for the GBA developers to use and indeed some
did (in ROM hacking circles it is usually known as Sappy) and there was some
support for other tracker formats from a selection of companies (Krawall and
Apex Audio System being two notable examples of alternatives). Because of
alternatives and various other reasons it did not however come as close to dom-

224

inating the entire platform as the SDAT format has for the DS but it is definitely
worth having a look if you are trying to rip sounds from a game. Sappy is a
sequenced /tracker style format and that is the main method of audio for most
GBA games but with a bit of thought wave type audio arrangements can appear
(indeed Golden Sun eventually got voice acting added in as a hack).

Much of GBA audio hacking information for those games with sappy formats
is rom specific but that list does include most of the popular titles for hacking
(pokemon, fire emblem and golden sun being especially well represented) and
many tools will attempt to scan a game for the.

Sappy

Filetrip download (both main forks)

The name of the basic GBA audio ripping tool. There are three main lines
for it with 1.6 being the standard one and Sappy 2005/2006 being a later ver-
sion /fork that is not used as much as it might be but there is a further fork in
the Sappy mod line.

The 2007 line does technically have the ability to insert audio but many
will prefer manual editing and insertion instead. It has some mapping abilities
so games with custom audio mappings sound better when they are played (the
1.6 line outputs to midi format). Although the DS SSEQ audio format takes
a healthy dose of inspiration from the format it is not similar enough to draw
too many broad comparisons beyond them both having commands and concepts
common to sequenced/tracked audio.

1.6, 2006 and 2006 mod screenshots

=10l

Fle Control Options Help

| Pokeéman Sapphire (1] (AXPE)
| E:\Pokemon - Sapphire Version [U].gba

T Moo = ETEE
I J Elle Tasks Options Help

< [u190: Title Screen i
Tasks 2 Song « | |415 tle 2EN
E PRERR| Table 0x4561D0 Spee

EJ Export tracks

Header 0x6864CO
3 Import tracks /J b B

Voices 0x43F218

¥y Export samples
[Assemble song
iy Record to MIDT

Information S

Pokémon Sapphire
Gamecode APE
Made by Gamefreak

Unknown Eagger

Songtable: Ox4554ES

(O o027 (39

Special Event

225

http://filetrip.net/gba-downloads/tools-utilities/download-sappy-2006-f9566.html

Pokemon - Sapphire Yersion {U}.gba - Sappy 20

Fle Tasks Options Help

Tasks 2 Zong « 413

. Exgort tracks Table 0x04561D0 Speed [E
35 Header 0xD6864C0 /J [
" Import tracks Voices 0x043F218
iy Export samples
_R Import sample
i) nssemble song
iy Record to MIDI
iy Edit voice table

Information 2

Pokémon Sapphire
zamecode AXPE

Mads by Gamefreak
Unknown tagger
Songtable: 0x04554E8

CLLLLCLCCK[K

Quick overview of format |Romhacking.net’s copy of Bregalad’s sappy audio
notes

Bregalad (who did the Final Fantasy audio restoration hacks among other
things) wrote up a nice overview of the format.

midi2GBA Occasionally known as mid2AGB or midi2AGB it started out as
part of the official GBA SDK and so is not linked here. Probably the main tools
other than sappy that get used for GBA audio hacking as it is very capable of
turning midi files into sappy audio. It should be noted the toolkit does not seem
to deal with metadata well and several midi tracks have been observed to use
dummy tracks as a type of metadata.

wave2gba |Darkfader GBA section

Darkfader made a tool ostensibly for homebrew but as part of the “close to
hardware” idea it became able to be used to make custom samples. Supposedly
the Sappy mod line renders this less useful.

Zahlman’s song editor [Filetrip download

A python script also capable of doing a lot with Sappy audio. Although it
has a lot of automated functions most of it will have to be manually guided so
most consider it a nice tool to flank tools like sappy with.

loveemu tools Google code download
loveemu made a couple of tools for the GBA known as gha2wav and gba2midi
that attempt to scan the rom for Sappy audio and decode it.

Caitsith2 saptapper Project homepage
Aimed more at audio ripping than audio hacking itself it does still generate
some interesting information.

226

http://www.romhacking.net/documents/462/
http://www.romhacking.net/documents/462/
http://www.darkfader.net/gba/
http://filetrip.net/gba-downloads/tools-utilities/latest-zahlman039s-song-editor-f29864.html
http://code.google.com/p/loveemu/downloads/list
http://gsf.caitsith2.net/ripping.html

GBA audio ripper Filetrip download
Atrius made a simple tool somewhat in line with saptapper above that aims

to rip audio for 1:1 playback (in this case in the author’s GBAjukebox program.
" Cmd.exe - GBA_AudioRipper.exe "Pokem

“exe "Pokemon — Sapphire Uersion <U>.gha"
elease 1

Input File: Pokemon — Sapphire Uersion <U>.gha
Audic data located at: BxB84554E8

Output File: output.ghas

Beginning ripping...
ring Song List...

ring Instrument Lists...
Transferring Insteument Data. ..
Finished

VGMtrans VGMtrans supposedly features a measure of support for the Sappy
audio format.

Others There are various other tools that can be used like LoopMaker| from
blackonix as well as assorted plugins/wrappers for sappy and midi2agh usually
aimed at specific games.

Basic Sappy audio injection hack XXXXXXXXXXXXXXXX
There are three methods commonly seen

1. tr.exe strip and inject
2. sappy inject
3. manual inject

There is a program usually referred to as tr.exe that comes as part of the
Mid2Agb/midi2GBA toolkit that can inject sappy style audio from midi files
and return a basic playback ROM file (playing back audio on actual hardware is
a fairly popular thing to do as it is usually very accurate). It is probably also the
best conversion tool from midi the GBA has (mainly as it is really part of the
SDK). The typical method you will see is summed as up as convert with tr.exe
(usually after making the midi file as basic as possible), strip the GBA header
and inject at equivalent alignment in the GBA rom before changing a couple of
pointers to go where things need to be. This is long winded but works quite well
and is one of the more favoured methods for games that are more extensively
hacked (whether it is a good thing or not depends upon your perspective).

Sappy inject (usually with the later versions of the program) works as part of
the same toolkit there is mid2agh.exe which creates .s files which sappy supports
for inject purposes. Previous versions of sappy 200X were not that stable so the
tr.exe method took off instead.

Manual inject works much as the same as sappy inject but with elements of
the first method (typically via Zahlman’s song editor). It can also be used on
games sappy does not support (assuming you do not want to add support for
it).

227

http://filetrip.net/gba-downloads/tools-utilities/latest-gba-audio-ripper-f29863.html
http://www42.atwiki.jp/_pub/blackonix/Tools/

Any way you do it 10 tracks per midi is the suggested limit and in the case
of tr.exe it does not appreciate the inclusion of extra metadata type tracks some
midi editors/creation tools like to add.

XXX XXXXXXXXXXXXXX

Notable GBA audio hacks

Although some hacks have been noted elsewhere for the most part this doc-
ument is not a collection of hacks but here there are a few hacks well worth
reverse engineering if some of the other and the latter two titles have some
fairly extensive game specific documentation included.

Final fantasy The last SNES final fantasy games (using Japanese num-
bering 5 and 6) were ported later in the GBA lifetime to the GBA. One of the
main criticisms was that the highly regarded audio from the SNES games did
not make the transition (we have since seen a few other hacks aimed at improv-
ing other aspects of the games) but Bregalad made a series of hacks aimed at
improving the audio and indeed the final hacks are nigh on perfect reproduc-
tions of the SNES audio. If you want an example of a Sappy style audio format
hack these are well worth having a look at.

Advance Wars warsworldnews guide to it

Golden Sun Atrius did a lot of work with the sappy audio format and
Golden Sun was the base rom for a lot of it up to and including adding |voice
acting to the game. Hacker led voice dubs have happened in the past but it
is very rare and exceptionally so on low power systems that do not have a
filesystem for their code.

Fire emblem Fire emblem on the GBA saw several audio hacks. An
overview of some of the audio hacking work and a bit of general audio hacking
can be seen at feshrinel

4.2 Video

The GBA and DS are capable of playing video and as such several games use
full motion video of various forms in their games. On the DS at least a company
(now owned by Nintendo) called Mobiclip made a format used for a lot of the
games.

Reverse engineering video formats is in many ways one of the hardest things
you can do but even somewhat luckily on the handhelds you are quite lucky as
they are not usually powerful enough to allow for some of the complex methods
that make up a modern video format like H264 or indeed that much in the way
of a true legacy format like MPEG1 (mind you the DS homebrew moonshell
uses MPEGT1 for the video as part of the DPG format and there were ports of

228

http://forums.warsworldnews.com/viewtopic.php?t=2002
http://forum.goldensunhacking.net/index.php?action=downloads;sa=view;down=4
http://forum.goldensunhacking.net/index.php?action=downloads;sa=view;down=4
http://www.feshrine.net/ultimatetutorial/

MPEG4 ASP aka xvid/divx to the DS as well). The GBA also saw a codec
from the same people that made |Caimans.

The traditional thing at this point is to point at MPEG1 coding methods/and
say MPEG1 had a final draft about 20 years ago at time of writing (late 1992).
Now if you recall back to simple 2d graphics and how just changing a single
tile width could drastically alter things consider trying to work backwards via
analysis methods from there to getting images and then building a compatible
encoder; some DS stuff is somewhat simpler than this but not by a lot.

As most hacking work on handhelds does not allow for video encoding or
editing there have to be workarounds to do things. If just ripping the video is
your desire most emulators have recording options and you can augment things
here by changing the video files so if a game has an ending cutscene or something
you can repoint the intro sequence to play that instead and rip it from there
or inject it into a more suitable game for ripping and by the same logic if you
are “undubbing”/“delocalising” a game you can often just drop the equivalent
video in and call it a day. If you do need to add something to the video the
traditional method used in a handful of DS hacks works off the fact that video
is just 2d images in the end so you can add images, subtitles and such as sprites
or overlay something; this is quite an involved hack and will probably require
some knowledge of assembly (it is part of the reason hardware was discussed
back in graphics editing) unless the game itself already has images placed over
the video that you can subvert.

As just as reverse engineering a video format is a hard task the act of creating
a new one is equally or even troublesome (and that is before you get into the
likes of software patents that trouble just about anyone wanting to break into
the video encoding world) game developers/companies will tend to buy one off
the shelf for use in a game.

Do note that video seen on the DS and games in general frequently does
not to have audio built into it so you might have to find another method by
which to rip the audio or account for this if you do a basic relink/repoint hack
or undubbing the game (especially if the video length changes).

4.2.1 General video theory

Following on from the graphics and audio is that video can work by tricking
senses with the general idea behind video is you play back enough frames fast
enough and you can create the illusion of movement; the magic number seems
to be somewhere around the 17 frames per second mark although the low to
mid 20s are where it gets better although lower can work depending upon what
you are doing. Updating full images to a screen 25 odd times a second places a
serious demand on system resources (storage space and bandwidth mainly) and
when you think about it most video does not really change much frame to frame
so there are things that can be done. More so than other areas moving video is
still very much the domain of the lossy encoder (several great lossless options
exist but they are mainly for storage, editing and capture purposes as opposed
to playback) and in many ways the DS is no exception. The two principle

229

http://www.ds-video.com/index.htm
http://www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/mpeg1/

methods/assumptions are
1. One frame tends not to change from one to the next.
2. One pixel probably does not change much from the one next to it.

Lossless codecs take advantage of this and lossy codecs go one step further and
choose to lose some information based on those principles. There are a very
wide selection of methods and levels of use of those methods which only get
more complex as time goes on but videos are typically broken up into squares
(quantisation - if you have seen what is usually a high action scene break down
into squares where the action should be this is the reason) or treated as a
waveform (wavelet encoding used in encoders like Dirac and Snow but there
was a DS homebrew program called DSVideo that used it). On top of this
although one frame does not change much from one to the next (on average)
inter frame encoding is not mandated and glorified slideshows are quite common
on lower powered systems (motion JPEG is typically given as an example) but
some have been seen on the DS as well.

4.2.2 Mods/VX/act imagine by Mobiclip.

First it should be stated Mobiclip (also known by the former name of Act
Imagine) did make a codec/standard for mobile phones and web which did
enjoy a measure of success there but it is nothing really to do with the console
side of things (certainly if you find the codec for it nothing much will come of
it).

Although now a Nintendo subsidiary before that happened they sold their
video encoding software for use on the gameboy advance and it became part of
the Nitro SDK so as such became the standard video encoder for DS games, use
of it is not as widespread as the likes of the SDAT